Rev 1187 | Rev 1221 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <proc/scheduler.h> |
||
30 | #include <proc/thread.h> |
||
31 | #include <proc/task.h> |
||
378 | jermar | 32 | #include <mm/frame.h> |
33 | #include <mm/page.h> |
||
703 | jermar | 34 | #include <mm/as.h> |
378 | jermar | 35 | #include <arch/asm.h> |
36 | #include <arch/faddr.h> |
||
1104 | jermar | 37 | #include <atomic.h> |
378 | jermar | 38 | #include <synch/spinlock.h> |
1 | jermar | 39 | #include <config.h> |
40 | #include <context.h> |
||
41 | #include <func.h> |
||
42 | #include <arch.h> |
||
788 | jermar | 43 | #include <adt/list.h> |
68 | decky | 44 | #include <panic.h> |
1 | jermar | 45 | #include <typedefs.h> |
378 | jermar | 46 | #include <cpu.h> |
195 | vana | 47 | #include <print.h> |
227 | jermar | 48 | #include <debug.h> |
1 | jermar | 49 | |
1187 | jermar | 50 | static void before_task_runs(void); |
51 | static void before_thread_runs(void); |
||
52 | static void after_thread_ran(void); |
||
898 | jermar | 53 | static void scheduler_separated_stack(void); |
195 | vana | 54 | |
898 | jermar | 55 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
56 | |||
1187 | jermar | 57 | /** Carry out actions before new task runs. */ |
58 | void before_task_runs(void) |
||
59 | { |
||
60 | before_task_runs_arch(); |
||
61 | } |
||
62 | |||
897 | jermar | 63 | /** Take actions before new thread runs. |
107 | decky | 64 | * |
118 | jermar | 65 | * Perform actions that need to be |
66 | * taken before the newly selected |
||
67 | * tread is passed control. |
||
107 | decky | 68 | * |
827 | palkovsky | 69 | * THREAD->lock is locked on entry |
70 | * |
||
107 | decky | 71 | */ |
52 | vana | 72 | void before_thread_runs(void) |
73 | { |
||
309 | palkovsky | 74 | before_thread_runs_arch(); |
906 | palkovsky | 75 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 76 | if(THREAD==CPU->fpu_owner) |
77 | fpu_enable(); |
||
78 | else |
||
79 | fpu_disable(); |
||
906 | palkovsky | 80 | #else |
309 | palkovsky | 81 | fpu_enable(); |
82 | if (THREAD->fpu_context_exists) |
||
906 | palkovsky | 83 | fpu_context_restore(THREAD->saved_fpu_context); |
309 | palkovsky | 84 | else { |
906 | palkovsky | 85 | fpu_init(); |
309 | palkovsky | 86 | THREAD->fpu_context_exists=1; |
87 | } |
||
906 | palkovsky | 88 | #endif |
52 | vana | 89 | } |
90 | |||
898 | jermar | 91 | /** Take actions after THREAD had run. |
897 | jermar | 92 | * |
93 | * Perform actions that need to be |
||
94 | * taken after the running thread |
||
898 | jermar | 95 | * had been preempted by the scheduler. |
897 | jermar | 96 | * |
97 | * THREAD->lock is locked on entry |
||
98 | * |
||
99 | */ |
||
100 | void after_thread_ran(void) |
||
101 | { |
||
102 | after_thread_ran_arch(); |
||
103 | } |
||
104 | |||
458 | decky | 105 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 106 | void scheduler_fpu_lazy_request(void) |
107 | { |
||
907 | palkovsky | 108 | restart: |
309 | palkovsky | 109 | fpu_enable(); |
827 | palkovsky | 110 | spinlock_lock(&CPU->lock); |
111 | |||
112 | /* Save old context */ |
||
309 | palkovsky | 113 | if (CPU->fpu_owner != NULL) { |
827 | palkovsky | 114 | spinlock_lock(&CPU->fpu_owner->lock); |
906 | palkovsky | 115 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
309 | palkovsky | 116 | /* don't prevent migration */ |
117 | CPU->fpu_owner->fpu_context_engaged=0; |
||
827 | palkovsky | 118 | spinlock_unlock(&CPU->fpu_owner->lock); |
907 | palkovsky | 119 | CPU->fpu_owner = NULL; |
309 | palkovsky | 120 | } |
827 | palkovsky | 121 | |
122 | spinlock_lock(&THREAD->lock); |
||
898 | jermar | 123 | if (THREAD->fpu_context_exists) { |
906 | palkovsky | 124 | fpu_context_restore(THREAD->saved_fpu_context); |
898 | jermar | 125 | } else { |
906 | palkovsky | 126 | /* Allocate FPU context */ |
127 | if (!THREAD->saved_fpu_context) { |
||
128 | /* Might sleep */ |
||
129 | spinlock_unlock(&THREAD->lock); |
||
907 | palkovsky | 130 | spinlock_unlock(&CPU->lock); |
906 | palkovsky | 131 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, |
132 | 0); |
||
907 | palkovsky | 133 | /* We may have switched CPUs during slab_alloc */ |
134 | goto restart; |
||
906 | palkovsky | 135 | } |
136 | fpu_init(); |
||
309 | palkovsky | 137 | THREAD->fpu_context_exists=1; |
138 | } |
||
139 | CPU->fpu_owner=THREAD; |
||
140 | THREAD->fpu_context_engaged = 1; |
||
898 | jermar | 141 | spinlock_unlock(&THREAD->lock); |
827 | palkovsky | 142 | |
143 | spinlock_unlock(&CPU->lock); |
||
309 | palkovsky | 144 | } |
145 | #endif |
||
52 | vana | 146 | |
107 | decky | 147 | /** Initialize scheduler |
148 | * |
||
149 | * Initialize kernel scheduler. |
||
150 | * |
||
151 | */ |
||
1 | jermar | 152 | void scheduler_init(void) |
153 | { |
||
154 | } |
||
155 | |||
107 | decky | 156 | /** Get thread to be scheduled |
157 | * |
||
158 | * Get the optimal thread to be scheduled |
||
109 | jermar | 159 | * according to thread accounting and scheduler |
107 | decky | 160 | * policy. |
161 | * |
||
162 | * @return Thread to be scheduled. |
||
163 | * |
||
164 | */ |
||
483 | jermar | 165 | static thread_t *find_best_thread(void) |
1 | jermar | 166 | { |
167 | thread_t *t; |
||
168 | runq_t *r; |
||
783 | palkovsky | 169 | int i; |
1 | jermar | 170 | |
227 | jermar | 171 | ASSERT(CPU != NULL); |
172 | |||
1 | jermar | 173 | loop: |
413 | jermar | 174 | interrupts_enable(); |
1 | jermar | 175 | |
783 | palkovsky | 176 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 177 | /* |
178 | * For there was nothing to run, the CPU goes to sleep |
||
179 | * until a hardware interrupt or an IPI comes. |
||
180 | * This improves energy saving and hyperthreading. |
||
181 | */ |
||
785 | jermar | 182 | |
183 | /* |
||
184 | * An interrupt might occur right now and wake up a thread. |
||
185 | * In such case, the CPU will continue to go to sleep |
||
186 | * even though there is a runnable thread. |
||
187 | */ |
||
188 | |||
1 | jermar | 189 | cpu_sleep(); |
190 | goto loop; |
||
191 | } |
||
192 | |||
413 | jermar | 193 | interrupts_disable(); |
114 | jermar | 194 | |
898 | jermar | 195 | for (i = 0; i<RQ_COUNT; i++) { |
15 | jermar | 196 | r = &CPU->rq[i]; |
1 | jermar | 197 | spinlock_lock(&r->lock); |
198 | if (r->n == 0) { |
||
199 | /* |
||
200 | * If this queue is empty, try a lower-priority queue. |
||
201 | */ |
||
202 | spinlock_unlock(&r->lock); |
||
203 | continue; |
||
204 | } |
||
213 | jermar | 205 | |
783 | palkovsky | 206 | atomic_dec(&CPU->nrdy); |
475 | jermar | 207 | atomic_dec(&nrdy); |
1 | jermar | 208 | r->n--; |
209 | |||
210 | /* |
||
211 | * Take the first thread from the queue. |
||
212 | */ |
||
213 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
214 | list_remove(&t->rq_link); |
||
215 | |||
216 | spinlock_unlock(&r->lock); |
||
217 | |||
218 | spinlock_lock(&t->lock); |
||
15 | jermar | 219 | t->cpu = CPU; |
1 | jermar | 220 | |
221 | t->ticks = us2ticks((i+1)*10000); |
||
898 | jermar | 222 | t->priority = i; /* correct rq index */ |
1 | jermar | 223 | |
224 | /* |
||
225 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
226 | */ |
||
227 | t->flags &= ~X_STOLEN; |
||
228 | spinlock_unlock(&t->lock); |
||
229 | |||
230 | return t; |
||
231 | } |
||
232 | goto loop; |
||
233 | |||
234 | } |
||
235 | |||
107 | decky | 236 | /** Prevent rq starvation |
237 | * |
||
238 | * Prevent low priority threads from starving in rq's. |
||
239 | * |
||
240 | * When the function decides to relink rq's, it reconnects |
||
241 | * respective pointers so that in result threads with 'pri' |
||
242 | * greater or equal 'start' are moved to a higher-priority queue. |
||
243 | * |
||
244 | * @param start Threshold priority. |
||
245 | * |
||
1 | jermar | 246 | */ |
452 | decky | 247 | static void relink_rq(int start) |
1 | jermar | 248 | { |
249 | link_t head; |
||
250 | runq_t *r; |
||
251 | int i, n; |
||
252 | |||
253 | list_initialize(&head); |
||
15 | jermar | 254 | spinlock_lock(&CPU->lock); |
255 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 256 | for (i = start; i<RQ_COUNT-1; i++) { |
257 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 258 | r = &CPU->rq[i + 1]; |
1 | jermar | 259 | spinlock_lock(&r->lock); |
260 | list_concat(&head, &r->rq_head); |
||
261 | n = r->n; |
||
262 | r->n = 0; |
||
263 | spinlock_unlock(&r->lock); |
||
264 | |||
265 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 266 | r = &CPU->rq[i]; |
1 | jermar | 267 | spinlock_lock(&r->lock); |
268 | list_concat(&r->rq_head, &head); |
||
269 | r->n += n; |
||
270 | spinlock_unlock(&r->lock); |
||
271 | } |
||
15 | jermar | 272 | CPU->needs_relink = 0; |
1 | jermar | 273 | } |
784 | palkovsky | 274 | spinlock_unlock(&CPU->lock); |
1 | jermar | 275 | |
276 | } |
||
277 | |||
898 | jermar | 278 | /** The scheduler |
279 | * |
||
280 | * The thread scheduling procedure. |
||
281 | * Passes control directly to |
||
282 | * scheduler_separated_stack(). |
||
283 | * |
||
284 | */ |
||
285 | void scheduler(void) |
||
286 | { |
||
287 | volatile ipl_t ipl; |
||
107 | decky | 288 | |
898 | jermar | 289 | ASSERT(CPU != NULL); |
290 | |||
291 | ipl = interrupts_disable(); |
||
292 | |||
293 | if (atomic_get(&haltstate)) |
||
294 | halt(); |
||
1007 | decky | 295 | |
898 | jermar | 296 | if (THREAD) { |
297 | spinlock_lock(&THREAD->lock); |
||
906 | palkovsky | 298 | #ifndef CONFIG_FPU_LAZY |
299 | fpu_context_save(THREAD->saved_fpu_context); |
||
300 | #endif |
||
898 | jermar | 301 | if (!context_save(&THREAD->saved_context)) { |
302 | /* |
||
303 | * This is the place where threads leave scheduler(); |
||
304 | */ |
||
305 | spinlock_unlock(&THREAD->lock); |
||
306 | interrupts_restore(THREAD->saved_context.ipl); |
||
1007 | decky | 307 | |
898 | jermar | 308 | return; |
309 | } |
||
310 | |||
311 | /* |
||
312 | * Interrupt priority level of preempted thread is recorded here |
||
313 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
314 | * code (e.g. waitq_sleep_timeout()). |
||
315 | */ |
||
316 | THREAD->saved_context.ipl = ipl; |
||
317 | } |
||
318 | |||
319 | /* |
||
320 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
321 | * and preemption counter. At this point THE could be coming either |
||
322 | * from THREAD's or CPU's stack. |
||
323 | */ |
||
324 | the_copy(THE, (the_t *) CPU->stack); |
||
325 | |||
326 | /* |
||
327 | * We may not keep the old stack. |
||
328 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
329 | * find_best_thread(), the old thread could get rescheduled by another |
||
330 | * CPU and overwrite the part of its own stack that was also used by |
||
331 | * the scheduler on this CPU. |
||
332 | * |
||
333 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
334 | * which is fooled by SP being set to the very top of the stack. |
||
335 | * Therefore the scheduler() function continues in |
||
336 | * scheduler_separated_stack(). |
||
337 | */ |
||
338 | context_save(&CPU->saved_context); |
||
339 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
340 | context_restore(&CPU->saved_context); |
||
341 | /* not reached */ |
||
342 | } |
||
343 | |||
107 | decky | 344 | /** Scheduler stack switch wrapper |
345 | * |
||
346 | * Second part of the scheduler() function |
||
347 | * using new stack. Handling the actual context |
||
348 | * switch to a new thread. |
||
349 | * |
||
787 | palkovsky | 350 | * Assume THREAD->lock is held. |
107 | decky | 351 | */ |
898 | jermar | 352 | void scheduler_separated_stack(void) |
1 | jermar | 353 | { |
354 | int priority; |
||
1007 | decky | 355 | |
227 | jermar | 356 | ASSERT(CPU != NULL); |
1007 | decky | 357 | |
15 | jermar | 358 | if (THREAD) { |
898 | jermar | 359 | /* must be run after the switch to scheduler stack */ |
897 | jermar | 360 | after_thread_ran(); |
361 | |||
15 | jermar | 362 | switch (THREAD->state) { |
1 | jermar | 363 | case Running: |
125 | jermar | 364 | spinlock_unlock(&THREAD->lock); |
365 | thread_ready(THREAD); |
||
366 | break; |
||
1 | jermar | 367 | |
368 | case Exiting: |
||
787 | palkovsky | 369 | thread_destroy(THREAD); |
125 | jermar | 370 | break; |
787 | palkovsky | 371 | |
1 | jermar | 372 | case Sleeping: |
125 | jermar | 373 | /* |
374 | * Prefer the thread after it's woken up. |
||
375 | */ |
||
413 | jermar | 376 | THREAD->priority = -1; |
1 | jermar | 377 | |
125 | jermar | 378 | /* |
379 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
380 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
381 | */ |
||
382 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 383 | |
125 | jermar | 384 | /* |
385 | * Check for possible requests for out-of-context invocation. |
||
386 | */ |
||
387 | if (THREAD->call_me) { |
||
388 | THREAD->call_me(THREAD->call_me_with); |
||
389 | THREAD->call_me = NULL; |
||
390 | THREAD->call_me_with = NULL; |
||
391 | } |
||
1 | jermar | 392 | |
125 | jermar | 393 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 394 | |
125 | jermar | 395 | break; |
396 | |||
1 | jermar | 397 | default: |
125 | jermar | 398 | /* |
399 | * Entering state is unexpected. |
||
400 | */ |
||
401 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
402 | break; |
||
1 | jermar | 403 | } |
897 | jermar | 404 | |
15 | jermar | 405 | THREAD = NULL; |
1 | jermar | 406 | } |
198 | jermar | 407 | |
15 | jermar | 408 | THREAD = find_best_thread(); |
1 | jermar | 409 | |
15 | jermar | 410 | spinlock_lock(&THREAD->lock); |
413 | jermar | 411 | priority = THREAD->priority; |
15 | jermar | 412 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 413 | |
1 | jermar | 414 | relink_rq(priority); |
415 | |||
15 | jermar | 416 | spinlock_lock(&THREAD->lock); |
1 | jermar | 417 | |
418 | /* |
||
419 | * If both the old and the new task are the same, lots of work is avoided. |
||
420 | */ |
||
15 | jermar | 421 | if (TASK != THREAD->task) { |
703 | jermar | 422 | as_t *as1 = NULL; |
423 | as_t *as2; |
||
1 | jermar | 424 | |
15 | jermar | 425 | if (TASK) { |
426 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 427 | as1 = TASK->as; |
15 | jermar | 428 | spinlock_unlock(&TASK->lock); |
1 | jermar | 429 | } |
430 | |||
15 | jermar | 431 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 432 | as2 = THREAD->task->as; |
15 | jermar | 433 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 434 | |
435 | /* |
||
703 | jermar | 436 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 437 | */ |
703 | jermar | 438 | if (as1 != as2) { |
1 | jermar | 439 | /* |
703 | jermar | 440 | * Both tasks and address spaces are different. |
1 | jermar | 441 | * Replace the old one with the new one. |
442 | */ |
||
823 | jermar | 443 | as_switch(as1, as2); |
1 | jermar | 444 | } |
906 | palkovsky | 445 | TASK = THREAD->task; |
1187 | jermar | 446 | before_task_runs(); |
1 | jermar | 447 | } |
448 | |||
15 | jermar | 449 | THREAD->state = Running; |
1 | jermar | 450 | |
906 | palkovsky | 451 | #ifdef SCHEDULER_VERBOSE |
1196 | cejka | 452 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
906 | palkovsky | 453 | #endif |
1 | jermar | 454 | |
213 | jermar | 455 | /* |
897 | jermar | 456 | * Some architectures provide late kernel PA2KA(identity) |
457 | * mapping in a page fault handler. However, the page fault |
||
458 | * handler uses the kernel stack of the running thread and |
||
459 | * therefore cannot be used to map it. The kernel stack, if |
||
460 | * necessary, is to be mapped in before_thread_runs(). This |
||
461 | * function must be executed before the switch to the new stack. |
||
462 | */ |
||
463 | before_thread_runs(); |
||
464 | |||
465 | /* |
||
213 | jermar | 466 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
467 | */ |
||
184 | jermar | 468 | the_copy(THE, (the_t *) THREAD->kstack); |
469 | |||
15 | jermar | 470 | context_restore(&THREAD->saved_context); |
1 | jermar | 471 | /* not reached */ |
472 | } |
||
473 | |||
458 | decky | 474 | #ifdef CONFIG_SMP |
107 | decky | 475 | /** Load balancing thread |
476 | * |
||
477 | * SMP load balancing thread, supervising thread supplies |
||
478 | * for the CPU it's wired to. |
||
479 | * |
||
480 | * @param arg Generic thread argument (unused). |
||
481 | * |
||
1 | jermar | 482 | */ |
483 | void kcpulb(void *arg) |
||
484 | { |
||
485 | thread_t *t; |
||
783 | palkovsky | 486 | int count, average, i, j, k = 0; |
413 | jermar | 487 | ipl_t ipl; |
1 | jermar | 488 | |
489 | loop: |
||
490 | /* |
||
779 | jermar | 491 | * Work in 1s intervals. |
1 | jermar | 492 | */ |
779 | jermar | 493 | thread_sleep(1); |
1 | jermar | 494 | |
495 | not_satisfied: |
||
496 | /* |
||
497 | * Calculate the number of threads that will be migrated/stolen from |
||
498 | * other CPU's. Note that situation can have changed between two |
||
499 | * passes. Each time get the most up to date counts. |
||
500 | */ |
||
784 | palkovsky | 501 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 502 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 503 | |
784 | palkovsky | 504 | if (count <= 0) |
1 | jermar | 505 | goto satisfied; |
506 | |||
507 | /* |
||
508 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
509 | */ |
||
510 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
511 | for (i=0; i < config.cpu_active; i++) { |
||
512 | link_t *l; |
||
513 | runq_t *r; |
||
514 | cpu_t *cpu; |
||
515 | |||
516 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
517 | |||
518 | /* |
||
519 | * Not interested in ourselves. |
||
520 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
521 | */ |
||
15 | jermar | 522 | if (CPU == cpu) |
783 | palkovsky | 523 | continue; |
524 | if (atomic_get(&cpu->nrdy) <= average) |
||
525 | continue; |
||
1 | jermar | 526 | |
784 | palkovsky | 527 | ipl = interrupts_disable(); |
115 | jermar | 528 | r = &cpu->rq[j]; |
1 | jermar | 529 | spinlock_lock(&r->lock); |
530 | if (r->n == 0) { |
||
531 | spinlock_unlock(&r->lock); |
||
413 | jermar | 532 | interrupts_restore(ipl); |
1 | jermar | 533 | continue; |
534 | } |
||
535 | |||
536 | t = NULL; |
||
537 | l = r->rq_head.prev; /* search rq from the back */ |
||
538 | while (l != &r->rq_head) { |
||
539 | t = list_get_instance(l, thread_t, rq_link); |
||
540 | /* |
||
125 | jermar | 541 | * We don't want to steal CPU-wired threads neither threads already stolen. |
1 | jermar | 542 | * The latter prevents threads from migrating between CPU's without ever being run. |
125 | jermar | 543 | * We don't want to steal threads whose FPU context is still in CPU. |
73 | vana | 544 | */ |
1 | jermar | 545 | spinlock_lock(&t->lock); |
73 | vana | 546 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
1 | jermar | 547 | /* |
548 | * Remove t from r. |
||
549 | */ |
||
550 | spinlock_unlock(&t->lock); |
||
551 | |||
783 | palkovsky | 552 | atomic_dec(&cpu->nrdy); |
475 | jermar | 553 | atomic_dec(&nrdy); |
1 | jermar | 554 | |
125 | jermar | 555 | r->n--; |
1 | jermar | 556 | list_remove(&t->rq_link); |
557 | |||
558 | break; |
||
559 | } |
||
560 | spinlock_unlock(&t->lock); |
||
561 | l = l->prev; |
||
562 | t = NULL; |
||
563 | } |
||
564 | spinlock_unlock(&r->lock); |
||
565 | |||
566 | if (t) { |
||
567 | /* |
||
568 | * Ready t on local CPU |
||
569 | */ |
||
570 | spinlock_lock(&t->lock); |
||
906 | palkovsky | 571 | #ifdef KCPULB_VERBOSE |
1196 | cejka | 572 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
906 | palkovsky | 573 | #endif |
1 | jermar | 574 | t->flags |= X_STOLEN; |
1115 | jermar | 575 | t->state = Entering; |
1 | jermar | 576 | spinlock_unlock(&t->lock); |
577 | |||
578 | thread_ready(t); |
||
579 | |||
413 | jermar | 580 | interrupts_restore(ipl); |
1 | jermar | 581 | |
582 | if (--count == 0) |
||
583 | goto satisfied; |
||
584 | |||
585 | /* |
||
125 | jermar | 586 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 587 | */ |
588 | k++; |
||
589 | |||
590 | continue; |
||
591 | } |
||
413 | jermar | 592 | interrupts_restore(ipl); |
1 | jermar | 593 | } |
594 | } |
||
595 | |||
783 | palkovsky | 596 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 597 | /* |
598 | * Be a little bit light-weight and let migrated threads run. |
||
599 | */ |
||
600 | scheduler(); |
||
779 | jermar | 601 | } else { |
1 | jermar | 602 | /* |
603 | * We failed to migrate a single thread. |
||
779 | jermar | 604 | * Give up this turn. |
1 | jermar | 605 | */ |
779 | jermar | 606 | goto loop; |
1 | jermar | 607 | } |
608 | |||
609 | goto not_satisfied; |
||
125 | jermar | 610 | |
1 | jermar | 611 | satisfied: |
612 | goto loop; |
||
613 | } |
||
614 | |||
458 | decky | 615 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 616 | |
617 | |||
618 | /** Print information about threads & scheduler queues */ |
||
619 | void sched_print_list(void) |
||
620 | { |
||
621 | ipl_t ipl; |
||
622 | int cpu,i; |
||
623 | runq_t *r; |
||
624 | thread_t *t; |
||
625 | link_t *cur; |
||
626 | |||
627 | /* We are going to mess with scheduler structures, |
||
628 | * let's not be interrupted */ |
||
629 | ipl = interrupts_disable(); |
||
630 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
898 | jermar | 631 | |
775 | palkovsky | 632 | if (!cpus[cpu].active) |
633 | continue; |
||
898 | jermar | 634 | |
775 | palkovsky | 635 | spinlock_lock(&cpus[cpu].lock); |
1196 | cejka | 636 | printf("cpu%d: address=%P, nrdy=%ld, needs_relink=%ld\n", |
1062 | jermar | 637 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
775 | palkovsky | 638 | |
639 | for (i=0; i<RQ_COUNT; i++) { |
||
640 | r = &cpus[cpu].rq[i]; |
||
641 | spinlock_lock(&r->lock); |
||
642 | if (!r->n) { |
||
643 | spinlock_unlock(&r->lock); |
||
644 | continue; |
||
645 | } |
||
898 | jermar | 646 | printf("\trq[%d]: ", i); |
775 | palkovsky | 647 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
648 | t = list_get_instance(cur, thread_t, rq_link); |
||
649 | printf("%d(%s) ", t->tid, |
||
650 | thread_states[t->state]); |
||
651 | } |
||
652 | printf("\n"); |
||
653 | spinlock_unlock(&r->lock); |
||
654 | } |
||
655 | spinlock_unlock(&cpus[cpu].lock); |
||
656 | } |
||
657 | |||
658 | interrupts_restore(ipl); |
||
659 | } |