Rev 906 | Rev 1007 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <proc/scheduler.h> |
||
30 | #include <proc/thread.h> |
||
31 | #include <proc/task.h> |
||
378 | jermar | 32 | #include <mm/frame.h> |
33 | #include <mm/page.h> |
||
703 | jermar | 34 | #include <mm/as.h> |
378 | jermar | 35 | #include <arch/asm.h> |
36 | #include <arch/faddr.h> |
||
37 | #include <arch/atomic.h> |
||
38 | #include <synch/spinlock.h> |
||
1 | jermar | 39 | #include <config.h> |
40 | #include <context.h> |
||
41 | #include <func.h> |
||
42 | #include <arch.h> |
||
788 | jermar | 43 | #include <adt/list.h> |
68 | decky | 44 | #include <panic.h> |
1 | jermar | 45 | #include <typedefs.h> |
378 | jermar | 46 | #include <cpu.h> |
195 | vana | 47 | #include <print.h> |
227 | jermar | 48 | #include <debug.h> |
1 | jermar | 49 | |
898 | jermar | 50 | static void scheduler_separated_stack(void); |
195 | vana | 51 | |
898 | jermar | 52 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
53 | |||
897 | jermar | 54 | /** Take actions before new thread runs. |
107 | decky | 55 | * |
118 | jermar | 56 | * Perform actions that need to be |
57 | * taken before the newly selected |
||
58 | * tread is passed control. |
||
107 | decky | 59 | * |
827 | palkovsky | 60 | * THREAD->lock is locked on entry |
61 | * |
||
107 | decky | 62 | */ |
52 | vana | 63 | void before_thread_runs(void) |
64 | { |
||
309 | palkovsky | 65 | before_thread_runs_arch(); |
906 | palkovsky | 66 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 67 | if(THREAD==CPU->fpu_owner) |
68 | fpu_enable(); |
||
69 | else |
||
70 | fpu_disable(); |
||
906 | palkovsky | 71 | #else |
309 | palkovsky | 72 | fpu_enable(); |
73 | if (THREAD->fpu_context_exists) |
||
906 | palkovsky | 74 | fpu_context_restore(THREAD->saved_fpu_context); |
309 | palkovsky | 75 | else { |
906 | palkovsky | 76 | fpu_init(); |
309 | palkovsky | 77 | THREAD->fpu_context_exists=1; |
78 | } |
||
906 | palkovsky | 79 | #endif |
52 | vana | 80 | } |
81 | |||
898 | jermar | 82 | /** Take actions after THREAD had run. |
897 | jermar | 83 | * |
84 | * Perform actions that need to be |
||
85 | * taken after the running thread |
||
898 | jermar | 86 | * had been preempted by the scheduler. |
897 | jermar | 87 | * |
88 | * THREAD->lock is locked on entry |
||
89 | * |
||
90 | */ |
||
91 | void after_thread_ran(void) |
||
92 | { |
||
93 | after_thread_ran_arch(); |
||
94 | } |
||
95 | |||
458 | decky | 96 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 97 | void scheduler_fpu_lazy_request(void) |
98 | { |
||
907 | palkovsky | 99 | restart: |
309 | palkovsky | 100 | fpu_enable(); |
827 | palkovsky | 101 | spinlock_lock(&CPU->lock); |
102 | |||
103 | /* Save old context */ |
||
309 | palkovsky | 104 | if (CPU->fpu_owner != NULL) { |
827 | palkovsky | 105 | spinlock_lock(&CPU->fpu_owner->lock); |
906 | palkovsky | 106 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
309 | palkovsky | 107 | /* don't prevent migration */ |
108 | CPU->fpu_owner->fpu_context_engaged=0; |
||
827 | palkovsky | 109 | spinlock_unlock(&CPU->fpu_owner->lock); |
907 | palkovsky | 110 | CPU->fpu_owner = NULL; |
309 | palkovsky | 111 | } |
827 | palkovsky | 112 | |
113 | spinlock_lock(&THREAD->lock); |
||
898 | jermar | 114 | if (THREAD->fpu_context_exists) { |
906 | palkovsky | 115 | fpu_context_restore(THREAD->saved_fpu_context); |
898 | jermar | 116 | } else { |
906 | palkovsky | 117 | /* Allocate FPU context */ |
118 | if (!THREAD->saved_fpu_context) { |
||
119 | /* Might sleep */ |
||
120 | spinlock_unlock(&THREAD->lock); |
||
907 | palkovsky | 121 | spinlock_unlock(&CPU->lock); |
906 | palkovsky | 122 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, |
123 | 0); |
||
907 | palkovsky | 124 | /* We may have switched CPUs during slab_alloc */ |
125 | goto restart; |
||
906 | palkovsky | 126 | } |
127 | fpu_init(); |
||
309 | palkovsky | 128 | THREAD->fpu_context_exists=1; |
129 | } |
||
130 | CPU->fpu_owner=THREAD; |
||
131 | THREAD->fpu_context_engaged = 1; |
||
898 | jermar | 132 | spinlock_unlock(&THREAD->lock); |
827 | palkovsky | 133 | |
134 | spinlock_unlock(&CPU->lock); |
||
309 | palkovsky | 135 | } |
136 | #endif |
||
52 | vana | 137 | |
107 | decky | 138 | /** Initialize scheduler |
139 | * |
||
140 | * Initialize kernel scheduler. |
||
141 | * |
||
142 | */ |
||
1 | jermar | 143 | void scheduler_init(void) |
144 | { |
||
145 | } |
||
146 | |||
107 | decky | 147 | /** Get thread to be scheduled |
148 | * |
||
149 | * Get the optimal thread to be scheduled |
||
109 | jermar | 150 | * according to thread accounting and scheduler |
107 | decky | 151 | * policy. |
152 | * |
||
153 | * @return Thread to be scheduled. |
||
154 | * |
||
155 | */ |
||
483 | jermar | 156 | static thread_t *find_best_thread(void) |
1 | jermar | 157 | { |
158 | thread_t *t; |
||
159 | runq_t *r; |
||
783 | palkovsky | 160 | int i; |
1 | jermar | 161 | |
227 | jermar | 162 | ASSERT(CPU != NULL); |
163 | |||
1 | jermar | 164 | loop: |
413 | jermar | 165 | interrupts_enable(); |
1 | jermar | 166 | |
783 | palkovsky | 167 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 168 | /* |
169 | * For there was nothing to run, the CPU goes to sleep |
||
170 | * until a hardware interrupt or an IPI comes. |
||
171 | * This improves energy saving and hyperthreading. |
||
172 | */ |
||
785 | jermar | 173 | |
174 | /* |
||
175 | * An interrupt might occur right now and wake up a thread. |
||
176 | * In such case, the CPU will continue to go to sleep |
||
177 | * even though there is a runnable thread. |
||
178 | */ |
||
179 | |||
1 | jermar | 180 | cpu_sleep(); |
181 | goto loop; |
||
182 | } |
||
183 | |||
413 | jermar | 184 | interrupts_disable(); |
114 | jermar | 185 | |
898 | jermar | 186 | for (i = 0; i<RQ_COUNT; i++) { |
15 | jermar | 187 | r = &CPU->rq[i]; |
1 | jermar | 188 | spinlock_lock(&r->lock); |
189 | if (r->n == 0) { |
||
190 | /* |
||
191 | * If this queue is empty, try a lower-priority queue. |
||
192 | */ |
||
193 | spinlock_unlock(&r->lock); |
||
194 | continue; |
||
195 | } |
||
213 | jermar | 196 | |
783 | palkovsky | 197 | atomic_dec(&CPU->nrdy); |
475 | jermar | 198 | atomic_dec(&nrdy); |
1 | jermar | 199 | r->n--; |
200 | |||
201 | /* |
||
202 | * Take the first thread from the queue. |
||
203 | */ |
||
204 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
205 | list_remove(&t->rq_link); |
||
206 | |||
207 | spinlock_unlock(&r->lock); |
||
208 | |||
209 | spinlock_lock(&t->lock); |
||
15 | jermar | 210 | t->cpu = CPU; |
1 | jermar | 211 | |
212 | t->ticks = us2ticks((i+1)*10000); |
||
898 | jermar | 213 | t->priority = i; /* correct rq index */ |
1 | jermar | 214 | |
215 | /* |
||
216 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
217 | */ |
||
218 | t->flags &= ~X_STOLEN; |
||
219 | spinlock_unlock(&t->lock); |
||
220 | |||
221 | return t; |
||
222 | } |
||
223 | goto loop; |
||
224 | |||
225 | } |
||
226 | |||
107 | decky | 227 | /** Prevent rq starvation |
228 | * |
||
229 | * Prevent low priority threads from starving in rq's. |
||
230 | * |
||
231 | * When the function decides to relink rq's, it reconnects |
||
232 | * respective pointers so that in result threads with 'pri' |
||
233 | * greater or equal 'start' are moved to a higher-priority queue. |
||
234 | * |
||
235 | * @param start Threshold priority. |
||
236 | * |
||
1 | jermar | 237 | */ |
452 | decky | 238 | static void relink_rq(int start) |
1 | jermar | 239 | { |
240 | link_t head; |
||
241 | runq_t *r; |
||
242 | int i, n; |
||
243 | |||
244 | list_initialize(&head); |
||
15 | jermar | 245 | spinlock_lock(&CPU->lock); |
246 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 247 | for (i = start; i<RQ_COUNT-1; i++) { |
248 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 249 | r = &CPU->rq[i + 1]; |
1 | jermar | 250 | spinlock_lock(&r->lock); |
251 | list_concat(&head, &r->rq_head); |
||
252 | n = r->n; |
||
253 | r->n = 0; |
||
254 | spinlock_unlock(&r->lock); |
||
255 | |||
256 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 257 | r = &CPU->rq[i]; |
1 | jermar | 258 | spinlock_lock(&r->lock); |
259 | list_concat(&r->rq_head, &head); |
||
260 | r->n += n; |
||
261 | spinlock_unlock(&r->lock); |
||
262 | } |
||
15 | jermar | 263 | CPU->needs_relink = 0; |
1 | jermar | 264 | } |
784 | palkovsky | 265 | spinlock_unlock(&CPU->lock); |
1 | jermar | 266 | |
267 | } |
||
268 | |||
898 | jermar | 269 | /** The scheduler |
270 | * |
||
271 | * The thread scheduling procedure. |
||
272 | * Passes control directly to |
||
273 | * scheduler_separated_stack(). |
||
274 | * |
||
275 | */ |
||
276 | void scheduler(void) |
||
277 | { |
||
278 | volatile ipl_t ipl; |
||
107 | decky | 279 | |
898 | jermar | 280 | ASSERT(CPU != NULL); |
281 | |||
282 | ipl = interrupts_disable(); |
||
283 | |||
284 | if (atomic_get(&haltstate)) |
||
285 | halt(); |
||
286 | |||
287 | if (THREAD) { |
||
288 | spinlock_lock(&THREAD->lock); |
||
906 | palkovsky | 289 | #ifndef CONFIG_FPU_LAZY |
290 | fpu_context_save(THREAD->saved_fpu_context); |
||
291 | #endif |
||
898 | jermar | 292 | if (!context_save(&THREAD->saved_context)) { |
293 | /* |
||
294 | * This is the place where threads leave scheduler(); |
||
295 | */ |
||
296 | spinlock_unlock(&THREAD->lock); |
||
297 | interrupts_restore(THREAD->saved_context.ipl); |
||
298 | return; |
||
299 | } |
||
300 | |||
301 | /* |
||
302 | * Interrupt priority level of preempted thread is recorded here |
||
303 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
304 | * code (e.g. waitq_sleep_timeout()). |
||
305 | */ |
||
306 | THREAD->saved_context.ipl = ipl; |
||
307 | } |
||
308 | |||
309 | /* |
||
310 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
311 | * and preemption counter. At this point THE could be coming either |
||
312 | * from THREAD's or CPU's stack. |
||
313 | */ |
||
314 | the_copy(THE, (the_t *) CPU->stack); |
||
315 | |||
316 | /* |
||
317 | * We may not keep the old stack. |
||
318 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
319 | * find_best_thread(), the old thread could get rescheduled by another |
||
320 | * CPU and overwrite the part of its own stack that was also used by |
||
321 | * the scheduler on this CPU. |
||
322 | * |
||
323 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
324 | * which is fooled by SP being set to the very top of the stack. |
||
325 | * Therefore the scheduler() function continues in |
||
326 | * scheduler_separated_stack(). |
||
327 | */ |
||
328 | context_save(&CPU->saved_context); |
||
329 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
330 | context_restore(&CPU->saved_context); |
||
331 | /* not reached */ |
||
332 | } |
||
333 | |||
107 | decky | 334 | /** Scheduler stack switch wrapper |
335 | * |
||
336 | * Second part of the scheduler() function |
||
337 | * using new stack. Handling the actual context |
||
338 | * switch to a new thread. |
||
339 | * |
||
787 | palkovsky | 340 | * Assume THREAD->lock is held. |
107 | decky | 341 | */ |
898 | jermar | 342 | void scheduler_separated_stack(void) |
1 | jermar | 343 | { |
344 | int priority; |
||
345 | |||
227 | jermar | 346 | ASSERT(CPU != NULL); |
347 | |||
15 | jermar | 348 | if (THREAD) { |
898 | jermar | 349 | /* must be run after the switch to scheduler stack */ |
897 | jermar | 350 | after_thread_ran(); |
351 | |||
15 | jermar | 352 | switch (THREAD->state) { |
1 | jermar | 353 | case Running: |
125 | jermar | 354 | THREAD->state = Ready; |
355 | spinlock_unlock(&THREAD->lock); |
||
356 | thread_ready(THREAD); |
||
357 | break; |
||
1 | jermar | 358 | |
359 | case Exiting: |
||
787 | palkovsky | 360 | thread_destroy(THREAD); |
125 | jermar | 361 | break; |
787 | palkovsky | 362 | |
1 | jermar | 363 | case Sleeping: |
125 | jermar | 364 | /* |
365 | * Prefer the thread after it's woken up. |
||
366 | */ |
||
413 | jermar | 367 | THREAD->priority = -1; |
1 | jermar | 368 | |
125 | jermar | 369 | /* |
370 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
371 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
372 | */ |
||
373 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 374 | |
125 | jermar | 375 | /* |
376 | * Check for possible requests for out-of-context invocation. |
||
377 | */ |
||
378 | if (THREAD->call_me) { |
||
379 | THREAD->call_me(THREAD->call_me_with); |
||
380 | THREAD->call_me = NULL; |
||
381 | THREAD->call_me_with = NULL; |
||
382 | } |
||
1 | jermar | 383 | |
125 | jermar | 384 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 385 | |
125 | jermar | 386 | break; |
387 | |||
1 | jermar | 388 | default: |
125 | jermar | 389 | /* |
390 | * Entering state is unexpected. |
||
391 | */ |
||
392 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
393 | break; |
||
1 | jermar | 394 | } |
897 | jermar | 395 | |
15 | jermar | 396 | THREAD = NULL; |
1 | jermar | 397 | } |
198 | jermar | 398 | |
15 | jermar | 399 | THREAD = find_best_thread(); |
1 | jermar | 400 | |
15 | jermar | 401 | spinlock_lock(&THREAD->lock); |
413 | jermar | 402 | priority = THREAD->priority; |
15 | jermar | 403 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 404 | |
1 | jermar | 405 | relink_rq(priority); |
406 | |||
15 | jermar | 407 | spinlock_lock(&THREAD->lock); |
1 | jermar | 408 | |
409 | /* |
||
410 | * If both the old and the new task are the same, lots of work is avoided. |
||
411 | */ |
||
15 | jermar | 412 | if (TASK != THREAD->task) { |
703 | jermar | 413 | as_t *as1 = NULL; |
414 | as_t *as2; |
||
1 | jermar | 415 | |
15 | jermar | 416 | if (TASK) { |
417 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 418 | as1 = TASK->as; |
15 | jermar | 419 | spinlock_unlock(&TASK->lock); |
1 | jermar | 420 | } |
421 | |||
15 | jermar | 422 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 423 | as2 = THREAD->task->as; |
15 | jermar | 424 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 425 | |
426 | /* |
||
703 | jermar | 427 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 428 | */ |
703 | jermar | 429 | if (as1 != as2) { |
1 | jermar | 430 | /* |
703 | jermar | 431 | * Both tasks and address spaces are different. |
1 | jermar | 432 | * Replace the old one with the new one. |
433 | */ |
||
823 | jermar | 434 | as_switch(as1, as2); |
1 | jermar | 435 | } |
906 | palkovsky | 436 | TASK = THREAD->task; |
1 | jermar | 437 | } |
438 | |||
15 | jermar | 439 | THREAD->state = Running; |
1 | jermar | 440 | |
906 | palkovsky | 441 | #ifdef SCHEDULER_VERBOSE |
823 | jermar | 442 | printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
906 | palkovsky | 443 | #endif |
1 | jermar | 444 | |
213 | jermar | 445 | /* |
897 | jermar | 446 | * Some architectures provide late kernel PA2KA(identity) |
447 | * mapping in a page fault handler. However, the page fault |
||
448 | * handler uses the kernel stack of the running thread and |
||
449 | * therefore cannot be used to map it. The kernel stack, if |
||
450 | * necessary, is to be mapped in before_thread_runs(). This |
||
451 | * function must be executed before the switch to the new stack. |
||
452 | */ |
||
453 | before_thread_runs(); |
||
454 | |||
455 | /* |
||
213 | jermar | 456 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
457 | */ |
||
184 | jermar | 458 | the_copy(THE, (the_t *) THREAD->kstack); |
459 | |||
15 | jermar | 460 | context_restore(&THREAD->saved_context); |
1 | jermar | 461 | /* not reached */ |
462 | } |
||
463 | |||
458 | decky | 464 | #ifdef CONFIG_SMP |
107 | decky | 465 | /** Load balancing thread |
466 | * |
||
467 | * SMP load balancing thread, supervising thread supplies |
||
468 | * for the CPU it's wired to. |
||
469 | * |
||
470 | * @param arg Generic thread argument (unused). |
||
471 | * |
||
1 | jermar | 472 | */ |
473 | void kcpulb(void *arg) |
||
474 | { |
||
475 | thread_t *t; |
||
783 | palkovsky | 476 | int count, average, i, j, k = 0; |
413 | jermar | 477 | ipl_t ipl; |
1 | jermar | 478 | |
479 | loop: |
||
480 | /* |
||
779 | jermar | 481 | * Work in 1s intervals. |
1 | jermar | 482 | */ |
779 | jermar | 483 | thread_sleep(1); |
1 | jermar | 484 | |
485 | not_satisfied: |
||
486 | /* |
||
487 | * Calculate the number of threads that will be migrated/stolen from |
||
488 | * other CPU's. Note that situation can have changed between two |
||
489 | * passes. Each time get the most up to date counts. |
||
490 | */ |
||
784 | palkovsky | 491 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 492 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 493 | |
784 | palkovsky | 494 | if (count <= 0) |
1 | jermar | 495 | goto satisfied; |
496 | |||
497 | /* |
||
498 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
499 | */ |
||
500 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
501 | for (i=0; i < config.cpu_active; i++) { |
||
502 | link_t *l; |
||
503 | runq_t *r; |
||
504 | cpu_t *cpu; |
||
505 | |||
506 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
507 | |||
508 | /* |
||
509 | * Not interested in ourselves. |
||
510 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
511 | */ |
||
15 | jermar | 512 | if (CPU == cpu) |
783 | palkovsky | 513 | continue; |
514 | if (atomic_get(&cpu->nrdy) <= average) |
||
515 | continue; |
||
1 | jermar | 516 | |
784 | palkovsky | 517 | ipl = interrupts_disable(); |
115 | jermar | 518 | r = &cpu->rq[j]; |
1 | jermar | 519 | spinlock_lock(&r->lock); |
520 | if (r->n == 0) { |
||
521 | spinlock_unlock(&r->lock); |
||
413 | jermar | 522 | interrupts_restore(ipl); |
1 | jermar | 523 | continue; |
524 | } |
||
525 | |||
526 | t = NULL; |
||
527 | l = r->rq_head.prev; /* search rq from the back */ |
||
528 | while (l != &r->rq_head) { |
||
529 | t = list_get_instance(l, thread_t, rq_link); |
||
530 | /* |
||
125 | jermar | 531 | * We don't want to steal CPU-wired threads neither threads already stolen. |
1 | jermar | 532 | * The latter prevents threads from migrating between CPU's without ever being run. |
125 | jermar | 533 | * We don't want to steal threads whose FPU context is still in CPU. |
73 | vana | 534 | */ |
1 | jermar | 535 | spinlock_lock(&t->lock); |
73 | vana | 536 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
1 | jermar | 537 | /* |
538 | * Remove t from r. |
||
539 | */ |
||
540 | spinlock_unlock(&t->lock); |
||
541 | |||
783 | palkovsky | 542 | atomic_dec(&cpu->nrdy); |
475 | jermar | 543 | atomic_dec(&nrdy); |
1 | jermar | 544 | |
125 | jermar | 545 | r->n--; |
1 | jermar | 546 | list_remove(&t->rq_link); |
547 | |||
548 | break; |
||
549 | } |
||
550 | spinlock_unlock(&t->lock); |
||
551 | l = l->prev; |
||
552 | t = NULL; |
||
553 | } |
||
554 | spinlock_unlock(&r->lock); |
||
555 | |||
556 | if (t) { |
||
557 | /* |
||
558 | * Ready t on local CPU |
||
559 | */ |
||
560 | spinlock_lock(&t->lock); |
||
906 | palkovsky | 561 | #ifdef KCPULB_VERBOSE |
783 | palkovsky | 562 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
906 | palkovsky | 563 | #endif |
1 | jermar | 564 | t->flags |= X_STOLEN; |
565 | spinlock_unlock(&t->lock); |
||
566 | |||
567 | thread_ready(t); |
||
568 | |||
413 | jermar | 569 | interrupts_restore(ipl); |
1 | jermar | 570 | |
571 | if (--count == 0) |
||
572 | goto satisfied; |
||
573 | |||
574 | /* |
||
125 | jermar | 575 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 576 | */ |
577 | k++; |
||
578 | |||
579 | continue; |
||
580 | } |
||
413 | jermar | 581 | interrupts_restore(ipl); |
1 | jermar | 582 | } |
583 | } |
||
584 | |||
783 | palkovsky | 585 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 586 | /* |
587 | * Be a little bit light-weight and let migrated threads run. |
||
588 | */ |
||
589 | scheduler(); |
||
779 | jermar | 590 | } else { |
1 | jermar | 591 | /* |
592 | * We failed to migrate a single thread. |
||
779 | jermar | 593 | * Give up this turn. |
1 | jermar | 594 | */ |
779 | jermar | 595 | goto loop; |
1 | jermar | 596 | } |
597 | |||
598 | goto not_satisfied; |
||
125 | jermar | 599 | |
1 | jermar | 600 | satisfied: |
601 | goto loop; |
||
602 | } |
||
603 | |||
458 | decky | 604 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 605 | |
606 | |||
607 | /** Print information about threads & scheduler queues */ |
||
608 | void sched_print_list(void) |
||
609 | { |
||
610 | ipl_t ipl; |
||
611 | int cpu,i; |
||
612 | runq_t *r; |
||
613 | thread_t *t; |
||
614 | link_t *cur; |
||
615 | |||
616 | /* We are going to mess with scheduler structures, |
||
617 | * let's not be interrupted */ |
||
618 | ipl = interrupts_disable(); |
||
898 | jermar | 619 | printf("Scheduler dump:\n"); |
775 | palkovsky | 620 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
898 | jermar | 621 | |
775 | palkovsky | 622 | if (!cpus[cpu].active) |
623 | continue; |
||
898 | jermar | 624 | |
775 | palkovsky | 625 | spinlock_lock(&cpus[cpu].lock); |
898 | jermar | 626 | printf("cpu%d: nrdy: %d, needs_relink: %d\n", |
783 | palkovsky | 627 | cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
775 | palkovsky | 628 | |
629 | for (i=0; i<RQ_COUNT; i++) { |
||
630 | r = &cpus[cpu].rq[i]; |
||
631 | spinlock_lock(&r->lock); |
||
632 | if (!r->n) { |
||
633 | spinlock_unlock(&r->lock); |
||
634 | continue; |
||
635 | } |
||
898 | jermar | 636 | printf("\trq[%d]: ", i); |
775 | palkovsky | 637 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
638 | t = list_get_instance(cur, thread_t, rq_link); |
||
639 | printf("%d(%s) ", t->tid, |
||
640 | thread_states[t->state]); |
||
641 | } |
||
642 | printf("\n"); |
||
643 | spinlock_unlock(&r->lock); |
||
644 | } |
||
645 | spinlock_unlock(&cpus[cpu].lock); |
||
646 | } |
||
647 | |||
648 | interrupts_restore(ipl); |
||
649 | } |