Rev 775 | Rev 783 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <proc/scheduler.h> |
||
30 | #include <proc/thread.h> |
||
31 | #include <proc/task.h> |
||
378 | jermar | 32 | #include <mm/heap.h> |
33 | #include <mm/frame.h> |
||
34 | #include <mm/page.h> |
||
703 | jermar | 35 | #include <mm/as.h> |
378 | jermar | 36 | #include <arch/asm.h> |
37 | #include <arch/faddr.h> |
||
38 | #include <arch/atomic.h> |
||
39 | #include <synch/spinlock.h> |
||
1 | jermar | 40 | #include <config.h> |
41 | #include <context.h> |
||
42 | #include <func.h> |
||
43 | #include <arch.h> |
||
44 | #include <list.h> |
||
68 | decky | 45 | #include <panic.h> |
1 | jermar | 46 | #include <typedefs.h> |
378 | jermar | 47 | #include <cpu.h> |
195 | vana | 48 | #include <print.h> |
227 | jermar | 49 | #include <debug.h> |
1 | jermar | 50 | |
475 | jermar | 51 | atomic_t nrdy; |
195 | vana | 52 | |
118 | jermar | 53 | /** Take actions before new thread runs |
107 | decky | 54 | * |
118 | jermar | 55 | * Perform actions that need to be |
56 | * taken before the newly selected |
||
57 | * tread is passed control. |
||
107 | decky | 58 | * |
59 | */ |
||
52 | vana | 60 | void before_thread_runs(void) |
61 | { |
||
309 | palkovsky | 62 | before_thread_runs_arch(); |
458 | decky | 63 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 64 | if(THREAD==CPU->fpu_owner) |
65 | fpu_enable(); |
||
66 | else |
||
67 | fpu_disable(); |
||
68 | #else |
||
69 | fpu_enable(); |
||
70 | if (THREAD->fpu_context_exists) |
||
71 | fpu_context_restore(&(THREAD->saved_fpu_context)); |
||
72 | else { |
||
73 | fpu_init(); |
||
74 | THREAD->fpu_context_exists=1; |
||
75 | } |
||
76 | #endif |
||
52 | vana | 77 | } |
78 | |||
458 | decky | 79 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 80 | void scheduler_fpu_lazy_request(void) |
81 | { |
||
82 | fpu_enable(); |
||
83 | if (CPU->fpu_owner != NULL) { |
||
84 | fpu_context_save(&CPU->fpu_owner->saved_fpu_context); |
||
85 | /* don't prevent migration */ |
||
86 | CPU->fpu_owner->fpu_context_engaged=0; |
||
87 | } |
||
88 | if (THREAD->fpu_context_exists) |
||
89 | fpu_context_restore(&THREAD->saved_fpu_context); |
||
90 | else { |
||
91 | fpu_init(); |
||
92 | THREAD->fpu_context_exists=1; |
||
93 | } |
||
94 | CPU->fpu_owner=THREAD; |
||
95 | THREAD->fpu_context_engaged = 1; |
||
96 | } |
||
97 | #endif |
||
52 | vana | 98 | |
107 | decky | 99 | /** Initialize scheduler |
100 | * |
||
101 | * Initialize kernel scheduler. |
||
102 | * |
||
103 | */ |
||
1 | jermar | 104 | void scheduler_init(void) |
105 | { |
||
106 | } |
||
107 | |||
107 | decky | 108 | |
109 | /** Get thread to be scheduled |
||
110 | * |
||
111 | * Get the optimal thread to be scheduled |
||
109 | jermar | 112 | * according to thread accounting and scheduler |
107 | decky | 113 | * policy. |
114 | * |
||
115 | * @return Thread to be scheduled. |
||
116 | * |
||
117 | */ |
||
483 | jermar | 118 | static thread_t *find_best_thread(void) |
1 | jermar | 119 | { |
120 | thread_t *t; |
||
121 | runq_t *r; |
||
122 | int i, n; |
||
123 | |||
227 | jermar | 124 | ASSERT(CPU != NULL); |
125 | |||
1 | jermar | 126 | loop: |
413 | jermar | 127 | interrupts_disable(); |
1 | jermar | 128 | |
15 | jermar | 129 | spinlock_lock(&CPU->lock); |
130 | n = CPU->nrdy; |
||
131 | spinlock_unlock(&CPU->lock); |
||
1 | jermar | 132 | |
413 | jermar | 133 | interrupts_enable(); |
1 | jermar | 134 | |
135 | if (n == 0) { |
||
136 | /* |
||
137 | * For there was nothing to run, the CPU goes to sleep |
||
138 | * until a hardware interrupt or an IPI comes. |
||
139 | * This improves energy saving and hyperthreading. |
||
140 | */ |
||
141 | cpu_sleep(); |
||
142 | goto loop; |
||
143 | } |
||
144 | |||
413 | jermar | 145 | interrupts_disable(); |
114 | jermar | 146 | |
147 | i = 0; |
||
148 | retry: |
||
149 | for (; i<RQ_COUNT; i++) { |
||
15 | jermar | 150 | r = &CPU->rq[i]; |
1 | jermar | 151 | spinlock_lock(&r->lock); |
152 | if (r->n == 0) { |
||
153 | /* |
||
154 | * If this queue is empty, try a lower-priority queue. |
||
155 | */ |
||
156 | spinlock_unlock(&r->lock); |
||
157 | continue; |
||
158 | } |
||
213 | jermar | 159 | |
115 | jermar | 160 | /* avoid deadlock with relink_rq() */ |
114 | jermar | 161 | if (!spinlock_trylock(&CPU->lock)) { |
162 | /* |
||
163 | * Unlock r and try again. |
||
164 | */ |
||
165 | spinlock_unlock(&r->lock); |
||
166 | goto retry; |
||
167 | } |
||
15 | jermar | 168 | CPU->nrdy--; |
169 | spinlock_unlock(&CPU->lock); |
||
1 | jermar | 170 | |
475 | jermar | 171 | atomic_dec(&nrdy); |
1 | jermar | 172 | r->n--; |
173 | |||
174 | /* |
||
175 | * Take the first thread from the queue. |
||
176 | */ |
||
177 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
178 | list_remove(&t->rq_link); |
||
179 | |||
180 | spinlock_unlock(&r->lock); |
||
181 | |||
182 | spinlock_lock(&t->lock); |
||
15 | jermar | 183 | t->cpu = CPU; |
1 | jermar | 184 | |
185 | t->ticks = us2ticks((i+1)*10000); |
||
413 | jermar | 186 | t->priority = i; /* eventually correct rq index */ |
1 | jermar | 187 | |
188 | /* |
||
189 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
190 | */ |
||
191 | t->flags &= ~X_STOLEN; |
||
192 | spinlock_unlock(&t->lock); |
||
193 | |||
194 | return t; |
||
195 | } |
||
196 | goto loop; |
||
197 | |||
198 | } |
||
199 | |||
107 | decky | 200 | |
201 | /** Prevent rq starvation |
||
202 | * |
||
203 | * Prevent low priority threads from starving in rq's. |
||
204 | * |
||
205 | * When the function decides to relink rq's, it reconnects |
||
206 | * respective pointers so that in result threads with 'pri' |
||
207 | * greater or equal 'start' are moved to a higher-priority queue. |
||
208 | * |
||
209 | * @param start Threshold priority. |
||
210 | * |
||
1 | jermar | 211 | */ |
452 | decky | 212 | static void relink_rq(int start) |
1 | jermar | 213 | { |
214 | link_t head; |
||
215 | runq_t *r; |
||
216 | int i, n; |
||
217 | |||
218 | list_initialize(&head); |
||
15 | jermar | 219 | spinlock_lock(&CPU->lock); |
220 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 221 | for (i = start; i<RQ_COUNT-1; i++) { |
222 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 223 | r = &CPU->rq[i + 1]; |
1 | jermar | 224 | spinlock_lock(&r->lock); |
225 | list_concat(&head, &r->rq_head); |
||
226 | n = r->n; |
||
227 | r->n = 0; |
||
228 | spinlock_unlock(&r->lock); |
||
229 | |||
230 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 231 | r = &CPU->rq[i]; |
1 | jermar | 232 | spinlock_lock(&r->lock); |
233 | list_concat(&r->rq_head, &head); |
||
234 | r->n += n; |
||
235 | spinlock_unlock(&r->lock); |
||
236 | } |
||
15 | jermar | 237 | CPU->needs_relink = 0; |
1 | jermar | 238 | } |
15 | jermar | 239 | spinlock_unlock(&CPU->lock); |
1 | jermar | 240 | |
241 | } |
||
242 | |||
107 | decky | 243 | |
244 | /** Scheduler stack switch wrapper |
||
245 | * |
||
246 | * Second part of the scheduler() function |
||
247 | * using new stack. Handling the actual context |
||
248 | * switch to a new thread. |
||
249 | * |
||
250 | */ |
||
452 | decky | 251 | static void scheduler_separated_stack(void) |
1 | jermar | 252 | { |
253 | int priority; |
||
254 | |||
227 | jermar | 255 | ASSERT(CPU != NULL); |
256 | |||
15 | jermar | 257 | if (THREAD) { |
258 | switch (THREAD->state) { |
||
1 | jermar | 259 | case Running: |
125 | jermar | 260 | THREAD->state = Ready; |
261 | spinlock_unlock(&THREAD->lock); |
||
262 | thread_ready(THREAD); |
||
263 | break; |
||
1 | jermar | 264 | |
265 | case Exiting: |
||
125 | jermar | 266 | frame_free((__address) THREAD->kstack); |
267 | if (THREAD->ustack) { |
||
268 | frame_free((__address) THREAD->ustack); |
||
269 | } |
||
1 | jermar | 270 | |
125 | jermar | 271 | /* |
272 | * Detach from the containing task. |
||
273 | */ |
||
274 | spinlock_lock(&TASK->lock); |
||
275 | list_remove(&THREAD->th_link); |
||
276 | spinlock_unlock(&TASK->lock); |
||
73 | vana | 277 | |
125 | jermar | 278 | spinlock_unlock(&THREAD->lock); |
279 | |||
280 | spinlock_lock(&threads_lock); |
||
281 | list_remove(&THREAD->threads_link); |
||
282 | spinlock_unlock(&threads_lock); |
||
73 | vana | 283 | |
125 | jermar | 284 | spinlock_lock(&CPU->lock); |
650 | jermar | 285 | if(CPU->fpu_owner==THREAD) |
286 | CPU->fpu_owner=NULL; |
||
125 | jermar | 287 | spinlock_unlock(&CPU->lock); |
288 | |||
289 | free(THREAD); |
||
290 | |||
291 | break; |
||
292 | |||
1 | jermar | 293 | case Sleeping: |
125 | jermar | 294 | /* |
295 | * Prefer the thread after it's woken up. |
||
296 | */ |
||
413 | jermar | 297 | THREAD->priority = -1; |
1 | jermar | 298 | |
125 | jermar | 299 | /* |
300 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
301 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
302 | */ |
||
303 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 304 | |
125 | jermar | 305 | /* |
306 | * Check for possible requests for out-of-context invocation. |
||
307 | */ |
||
308 | if (THREAD->call_me) { |
||
309 | THREAD->call_me(THREAD->call_me_with); |
||
310 | THREAD->call_me = NULL; |
||
311 | THREAD->call_me_with = NULL; |
||
312 | } |
||
1 | jermar | 313 | |
125 | jermar | 314 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 315 | |
125 | jermar | 316 | break; |
317 | |||
1 | jermar | 318 | default: |
125 | jermar | 319 | /* |
320 | * Entering state is unexpected. |
||
321 | */ |
||
322 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
323 | break; |
||
1 | jermar | 324 | } |
15 | jermar | 325 | THREAD = NULL; |
1 | jermar | 326 | } |
198 | jermar | 327 | |
214 | vana | 328 | |
15 | jermar | 329 | THREAD = find_best_thread(); |
1 | jermar | 330 | |
15 | jermar | 331 | spinlock_lock(&THREAD->lock); |
413 | jermar | 332 | priority = THREAD->priority; |
15 | jermar | 333 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 334 | |
1 | jermar | 335 | relink_rq(priority); |
336 | |||
15 | jermar | 337 | spinlock_lock(&THREAD->lock); |
1 | jermar | 338 | |
339 | /* |
||
340 | * If both the old and the new task are the same, lots of work is avoided. |
||
341 | */ |
||
15 | jermar | 342 | if (TASK != THREAD->task) { |
703 | jermar | 343 | as_t *as1 = NULL; |
344 | as_t *as2; |
||
1 | jermar | 345 | |
15 | jermar | 346 | if (TASK) { |
347 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 348 | as1 = TASK->as; |
15 | jermar | 349 | spinlock_unlock(&TASK->lock); |
1 | jermar | 350 | } |
351 | |||
15 | jermar | 352 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 353 | as2 = THREAD->task->as; |
15 | jermar | 354 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 355 | |
356 | /* |
||
703 | jermar | 357 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 358 | */ |
703 | jermar | 359 | if (as1 != as2) { |
1 | jermar | 360 | /* |
703 | jermar | 361 | * Both tasks and address spaces are different. |
1 | jermar | 362 | * Replace the old one with the new one. |
363 | */ |
||
703 | jermar | 364 | as_install(as2); |
1 | jermar | 365 | } |
15 | jermar | 366 | TASK = THREAD->task; |
1 | jermar | 367 | } |
368 | |||
15 | jermar | 369 | THREAD->state = Running; |
1 | jermar | 370 | |
371 | #ifdef SCHEDULER_VERBOSE |
||
413 | jermar | 372 | printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, CPU->nrdy); |
1 | jermar | 373 | #endif |
374 | |||
213 | jermar | 375 | /* |
376 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
||
377 | */ |
||
184 | jermar | 378 | the_copy(THE, (the_t *) THREAD->kstack); |
379 | |||
15 | jermar | 380 | context_restore(&THREAD->saved_context); |
1 | jermar | 381 | /* not reached */ |
382 | } |
||
383 | |||
107 | decky | 384 | |
452 | decky | 385 | /** The scheduler |
386 | * |
||
387 | * The thread scheduling procedure. |
||
675 | jermar | 388 | * Passes control directly to |
389 | * scheduler_separated_stack(). |
||
452 | decky | 390 | * |
391 | */ |
||
392 | void scheduler(void) |
||
393 | { |
||
394 | volatile ipl_t ipl; |
||
395 | |||
396 | ASSERT(CPU != NULL); |
||
397 | |||
398 | ipl = interrupts_disable(); |
||
399 | |||
631 | palkovsky | 400 | if (atomic_get(&haltstate)) |
452 | decky | 401 | halt(); |
402 | |||
403 | if (THREAD) { |
||
404 | spinlock_lock(&THREAD->lock); |
||
458 | decky | 405 | #ifndef CONFIG_FPU_LAZY |
452 | decky | 406 | fpu_context_save(&(THREAD->saved_fpu_context)); |
407 | #endif |
||
408 | if (!context_save(&THREAD->saved_context)) { |
||
409 | /* |
||
410 | * This is the place where threads leave scheduler(); |
||
411 | */ |
||
412 | before_thread_runs(); |
||
413 | spinlock_unlock(&THREAD->lock); |
||
414 | interrupts_restore(THREAD->saved_context.ipl); |
||
415 | return; |
||
416 | } |
||
417 | |||
418 | /* |
||
419 | * Interrupt priority level of preempted thread is recorded here |
||
420 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
421 | * code (e.g. waitq_sleep_timeout()). |
||
422 | */ |
||
423 | THREAD->saved_context.ipl = ipl; |
||
424 | } |
||
425 | |||
426 | /* |
||
557 | jermar | 427 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
452 | decky | 428 | * and preemption counter. At this point THE could be coming either |
429 | * from THREAD's or CPU's stack. |
||
430 | */ |
||
431 | the_copy(THE, (the_t *) CPU->stack); |
||
432 | |||
433 | /* |
||
434 | * We may not keep the old stack. |
||
435 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
436 | * find_best_thread(), the old thread could get rescheduled by another |
||
437 | * CPU and overwrite the part of its own stack that was also used by |
||
438 | * the scheduler on this CPU. |
||
439 | * |
||
440 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
441 | * which is fooled by SP being set to the very top of the stack. |
||
442 | * Therefore the scheduler() function continues in |
||
443 | * scheduler_separated_stack(). |
||
444 | */ |
||
445 | context_save(&CPU->saved_context); |
||
446 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
447 | context_restore(&CPU->saved_context); |
||
448 | /* not reached */ |
||
449 | } |
||
450 | |||
451 | |||
452 | |||
453 | |||
454 | |||
458 | decky | 455 | #ifdef CONFIG_SMP |
107 | decky | 456 | /** Load balancing thread |
457 | * |
||
458 | * SMP load balancing thread, supervising thread supplies |
||
459 | * for the CPU it's wired to. |
||
460 | * |
||
461 | * @param arg Generic thread argument (unused). |
||
462 | * |
||
1 | jermar | 463 | */ |
464 | void kcpulb(void *arg) |
||
465 | { |
||
466 | thread_t *t; |
||
467 | int count, i, j, k = 0; |
||
413 | jermar | 468 | ipl_t ipl; |
1 | jermar | 469 | |
470 | loop: |
||
471 | /* |
||
779 | jermar | 472 | * Work in 1s intervals. |
1 | jermar | 473 | */ |
779 | jermar | 474 | thread_sleep(1); |
1 | jermar | 475 | |
476 | not_satisfied: |
||
477 | /* |
||
478 | * Calculate the number of threads that will be migrated/stolen from |
||
479 | * other CPU's. Note that situation can have changed between two |
||
480 | * passes. Each time get the most up to date counts. |
||
481 | */ |
||
413 | jermar | 482 | ipl = interrupts_disable(); |
15 | jermar | 483 | spinlock_lock(&CPU->lock); |
625 | palkovsky | 484 | count = atomic_get(&nrdy) / config.cpu_active; |
15 | jermar | 485 | count -= CPU->nrdy; |
486 | spinlock_unlock(&CPU->lock); |
||
413 | jermar | 487 | interrupts_restore(ipl); |
1 | jermar | 488 | |
489 | if (count <= 0) |
||
490 | goto satisfied; |
||
491 | |||
492 | /* |
||
493 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
494 | */ |
||
495 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
496 | for (i=0; i < config.cpu_active; i++) { |
||
497 | link_t *l; |
||
498 | runq_t *r; |
||
499 | cpu_t *cpu; |
||
500 | |||
501 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
502 | |||
503 | /* |
||
504 | * Not interested in ourselves. |
||
505 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
506 | */ |
||
15 | jermar | 507 | if (CPU == cpu) |
115 | jermar | 508 | continue; |
1 | jermar | 509 | |
413 | jermar | 510 | restart: ipl = interrupts_disable(); |
115 | jermar | 511 | r = &cpu->rq[j]; |
1 | jermar | 512 | spinlock_lock(&r->lock); |
513 | if (r->n == 0) { |
||
514 | spinlock_unlock(&r->lock); |
||
413 | jermar | 515 | interrupts_restore(ipl); |
1 | jermar | 516 | continue; |
517 | } |
||
518 | |||
519 | t = NULL; |
||
520 | l = r->rq_head.prev; /* search rq from the back */ |
||
521 | while (l != &r->rq_head) { |
||
522 | t = list_get_instance(l, thread_t, rq_link); |
||
523 | /* |
||
125 | jermar | 524 | * We don't want to steal CPU-wired threads neither threads already stolen. |
1 | jermar | 525 | * The latter prevents threads from migrating between CPU's without ever being run. |
125 | jermar | 526 | * We don't want to steal threads whose FPU context is still in CPU. |
73 | vana | 527 | */ |
1 | jermar | 528 | spinlock_lock(&t->lock); |
73 | vana | 529 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
115 | jermar | 530 | |
1 | jermar | 531 | /* |
532 | * Remove t from r. |
||
533 | */ |
||
534 | |||
535 | spinlock_unlock(&t->lock); |
||
536 | |||
537 | /* |
||
538 | * Here we have to avoid deadlock with relink_rq(), |
||
539 | * because it locks cpu and r in a different order than we do. |
||
540 | */ |
||
541 | if (!spinlock_trylock(&cpu->lock)) { |
||
542 | /* Release all locks and try again. */ |
||
543 | spinlock_unlock(&r->lock); |
||
413 | jermar | 544 | interrupts_restore(ipl); |
1 | jermar | 545 | goto restart; |
546 | } |
||
547 | cpu->nrdy--; |
||
548 | spinlock_unlock(&cpu->lock); |
||
549 | |||
475 | jermar | 550 | atomic_dec(&nrdy); |
1 | jermar | 551 | |
125 | jermar | 552 | r->n--; |
1 | jermar | 553 | list_remove(&t->rq_link); |
554 | |||
555 | break; |
||
556 | } |
||
557 | spinlock_unlock(&t->lock); |
||
558 | l = l->prev; |
||
559 | t = NULL; |
||
560 | } |
||
561 | spinlock_unlock(&r->lock); |
||
562 | |||
563 | if (t) { |
||
564 | /* |
||
565 | * Ready t on local CPU |
||
566 | */ |
||
567 | spinlock_lock(&t->lock); |
||
568 | #ifdef KCPULB_VERBOSE |
||
779 | jermar | 569 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, atomic_get(&nrdy) / config.cpu_active); |
1 | jermar | 570 | #endif |
571 | t->flags |= X_STOLEN; |
||
572 | spinlock_unlock(&t->lock); |
||
573 | |||
574 | thread_ready(t); |
||
575 | |||
413 | jermar | 576 | interrupts_restore(ipl); |
1 | jermar | 577 | |
578 | if (--count == 0) |
||
579 | goto satisfied; |
||
580 | |||
581 | /* |
||
125 | jermar | 582 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 583 | */ |
584 | k++; |
||
585 | |||
586 | continue; |
||
587 | } |
||
413 | jermar | 588 | interrupts_restore(ipl); |
1 | jermar | 589 | } |
590 | } |
||
591 | |||
15 | jermar | 592 | if (CPU->nrdy) { |
1 | jermar | 593 | /* |
594 | * Be a little bit light-weight and let migrated threads run. |
||
595 | */ |
||
596 | scheduler(); |
||
779 | jermar | 597 | } else { |
1 | jermar | 598 | /* |
599 | * We failed to migrate a single thread. |
||
779 | jermar | 600 | * Give up this turn. |
1 | jermar | 601 | */ |
779 | jermar | 602 | goto loop; |
1 | jermar | 603 | } |
604 | |||
605 | goto not_satisfied; |
||
125 | jermar | 606 | |
1 | jermar | 607 | satisfied: |
608 | goto loop; |
||
609 | } |
||
610 | |||
458 | decky | 611 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 612 | |
613 | |||
614 | /** Print information about threads & scheduler queues */ |
||
615 | void sched_print_list(void) |
||
616 | { |
||
617 | ipl_t ipl; |
||
618 | int cpu,i; |
||
619 | runq_t *r; |
||
620 | thread_t *t; |
||
621 | link_t *cur; |
||
622 | |||
623 | /* We are going to mess with scheduler structures, |
||
624 | * let's not be interrupted */ |
||
625 | ipl = interrupts_disable(); |
||
626 | printf("*********** Scheduler dump ***********\n"); |
||
627 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
628 | if (!cpus[cpu].active) |
||
629 | continue; |
||
630 | spinlock_lock(&cpus[cpu].lock); |
||
631 | printf("cpu%d: nrdy: %d needs_relink: %d\n", |
||
632 | cpus[cpu].id, cpus[cpu].nrdy, cpus[cpu].needs_relink); |
||
633 | |||
634 | for (i=0; i<RQ_COUNT; i++) { |
||
635 | r = &cpus[cpu].rq[i]; |
||
636 | spinlock_lock(&r->lock); |
||
637 | if (!r->n) { |
||
638 | spinlock_unlock(&r->lock); |
||
639 | continue; |
||
640 | } |
||
779 | jermar | 641 | printf("\tRq %d: ", i); |
775 | palkovsky | 642 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
643 | t = list_get_instance(cur, thread_t, rq_link); |
||
644 | printf("%d(%s) ", t->tid, |
||
645 | thread_states[t->state]); |
||
646 | } |
||
647 | printf("\n"); |
||
648 | spinlock_unlock(&r->lock); |
||
649 | } |
||
650 | spinlock_unlock(&cpus[cpu].lock); |
||
651 | } |
||
652 | |||
653 | interrupts_restore(ipl); |
||
654 | } |