Rev 1702 | Rev 1708 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1702 | cejka | 29 | |
1705 | cejka | 30 | /** @addtogroup genericproc |
1702 | cejka | 31 | * @{ |
32 | */ |
||
33 | |||
1248 | jermar | 34 | /** |
1702 | cejka | 35 | * @file |
1248 | jermar | 36 | * @brief Scheduler and load balancing. |
37 | * |
||
1264 | jermar | 38 | * This file contains the scheduler and kcpulb kernel thread which |
1248 | jermar | 39 | * performs load-balancing of per-CPU run queues. |
40 | */ |
||
41 | |||
1 | jermar | 42 | #include <proc/scheduler.h> |
43 | #include <proc/thread.h> |
||
44 | #include <proc/task.h> |
||
378 | jermar | 45 | #include <mm/frame.h> |
46 | #include <mm/page.h> |
||
703 | jermar | 47 | #include <mm/as.h> |
1571 | jermar | 48 | #include <time/delay.h> |
378 | jermar | 49 | #include <arch/asm.h> |
50 | #include <arch/faddr.h> |
||
1104 | jermar | 51 | #include <atomic.h> |
378 | jermar | 52 | #include <synch/spinlock.h> |
1 | jermar | 53 | #include <config.h> |
54 | #include <context.h> |
||
55 | #include <func.h> |
||
56 | #include <arch.h> |
||
788 | jermar | 57 | #include <adt/list.h> |
68 | decky | 58 | #include <panic.h> |
1 | jermar | 59 | #include <typedefs.h> |
378 | jermar | 60 | #include <cpu.h> |
195 | vana | 61 | #include <print.h> |
227 | jermar | 62 | #include <debug.h> |
1 | jermar | 63 | |
1187 | jermar | 64 | static void before_task_runs(void); |
65 | static void before_thread_runs(void); |
||
66 | static void after_thread_ran(void); |
||
898 | jermar | 67 | static void scheduler_separated_stack(void); |
195 | vana | 68 | |
898 | jermar | 69 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
70 | |||
1187 | jermar | 71 | /** Carry out actions before new task runs. */ |
72 | void before_task_runs(void) |
||
73 | { |
||
74 | before_task_runs_arch(); |
||
75 | } |
||
76 | |||
897 | jermar | 77 | /** Take actions before new thread runs. |
107 | decky | 78 | * |
118 | jermar | 79 | * Perform actions that need to be |
80 | * taken before the newly selected |
||
81 | * tread is passed control. |
||
107 | decky | 82 | * |
827 | palkovsky | 83 | * THREAD->lock is locked on entry |
84 | * |
||
107 | decky | 85 | */ |
52 | vana | 86 | void before_thread_runs(void) |
87 | { |
||
309 | palkovsky | 88 | before_thread_runs_arch(); |
906 | palkovsky | 89 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 90 | if(THREAD==CPU->fpu_owner) |
91 | fpu_enable(); |
||
92 | else |
||
93 | fpu_disable(); |
||
906 | palkovsky | 94 | #else |
309 | palkovsky | 95 | fpu_enable(); |
96 | if (THREAD->fpu_context_exists) |
||
906 | palkovsky | 97 | fpu_context_restore(THREAD->saved_fpu_context); |
309 | palkovsky | 98 | else { |
906 | palkovsky | 99 | fpu_init(); |
309 | palkovsky | 100 | THREAD->fpu_context_exists=1; |
101 | } |
||
906 | palkovsky | 102 | #endif |
52 | vana | 103 | } |
104 | |||
898 | jermar | 105 | /** Take actions after THREAD had run. |
897 | jermar | 106 | * |
107 | * Perform actions that need to be |
||
108 | * taken after the running thread |
||
898 | jermar | 109 | * had been preempted by the scheduler. |
897 | jermar | 110 | * |
111 | * THREAD->lock is locked on entry |
||
112 | * |
||
113 | */ |
||
114 | void after_thread_ran(void) |
||
115 | { |
||
116 | after_thread_ran_arch(); |
||
117 | } |
||
118 | |||
458 | decky | 119 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 120 | void scheduler_fpu_lazy_request(void) |
121 | { |
||
907 | palkovsky | 122 | restart: |
309 | palkovsky | 123 | fpu_enable(); |
827 | palkovsky | 124 | spinlock_lock(&CPU->lock); |
125 | |||
126 | /* Save old context */ |
||
309 | palkovsky | 127 | if (CPU->fpu_owner != NULL) { |
827 | palkovsky | 128 | spinlock_lock(&CPU->fpu_owner->lock); |
906 | palkovsky | 129 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
309 | palkovsky | 130 | /* don't prevent migration */ |
131 | CPU->fpu_owner->fpu_context_engaged=0; |
||
827 | palkovsky | 132 | spinlock_unlock(&CPU->fpu_owner->lock); |
907 | palkovsky | 133 | CPU->fpu_owner = NULL; |
309 | palkovsky | 134 | } |
827 | palkovsky | 135 | |
136 | spinlock_lock(&THREAD->lock); |
||
898 | jermar | 137 | if (THREAD->fpu_context_exists) { |
906 | palkovsky | 138 | fpu_context_restore(THREAD->saved_fpu_context); |
898 | jermar | 139 | } else { |
906 | palkovsky | 140 | /* Allocate FPU context */ |
141 | if (!THREAD->saved_fpu_context) { |
||
142 | /* Might sleep */ |
||
143 | spinlock_unlock(&THREAD->lock); |
||
907 | palkovsky | 144 | spinlock_unlock(&CPU->lock); |
906 | palkovsky | 145 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, |
146 | 0); |
||
907 | palkovsky | 147 | /* We may have switched CPUs during slab_alloc */ |
148 | goto restart; |
||
906 | palkovsky | 149 | } |
150 | fpu_init(); |
||
309 | palkovsky | 151 | THREAD->fpu_context_exists=1; |
152 | } |
||
153 | CPU->fpu_owner=THREAD; |
||
154 | THREAD->fpu_context_engaged = 1; |
||
898 | jermar | 155 | spinlock_unlock(&THREAD->lock); |
827 | palkovsky | 156 | |
157 | spinlock_unlock(&CPU->lock); |
||
309 | palkovsky | 158 | } |
159 | #endif |
||
52 | vana | 160 | |
107 | decky | 161 | /** Initialize scheduler |
162 | * |
||
163 | * Initialize kernel scheduler. |
||
164 | * |
||
165 | */ |
||
1 | jermar | 166 | void scheduler_init(void) |
167 | { |
||
168 | } |
||
169 | |||
107 | decky | 170 | /** Get thread to be scheduled |
171 | * |
||
172 | * Get the optimal thread to be scheduled |
||
109 | jermar | 173 | * according to thread accounting and scheduler |
107 | decky | 174 | * policy. |
175 | * |
||
176 | * @return Thread to be scheduled. |
||
177 | * |
||
178 | */ |
||
483 | jermar | 179 | static thread_t *find_best_thread(void) |
1 | jermar | 180 | { |
181 | thread_t *t; |
||
182 | runq_t *r; |
||
783 | palkovsky | 183 | int i; |
1 | jermar | 184 | |
227 | jermar | 185 | ASSERT(CPU != NULL); |
186 | |||
1 | jermar | 187 | loop: |
413 | jermar | 188 | interrupts_enable(); |
1 | jermar | 189 | |
783 | palkovsky | 190 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 191 | /* |
192 | * For there was nothing to run, the CPU goes to sleep |
||
193 | * until a hardware interrupt or an IPI comes. |
||
194 | * This improves energy saving and hyperthreading. |
||
195 | */ |
||
785 | jermar | 196 | |
197 | /* |
||
198 | * An interrupt might occur right now and wake up a thread. |
||
199 | * In such case, the CPU will continue to go to sleep |
||
200 | * even though there is a runnable thread. |
||
201 | */ |
||
202 | |||
1 | jermar | 203 | cpu_sleep(); |
204 | goto loop; |
||
205 | } |
||
206 | |||
413 | jermar | 207 | interrupts_disable(); |
114 | jermar | 208 | |
898 | jermar | 209 | for (i = 0; i<RQ_COUNT; i++) { |
15 | jermar | 210 | r = &CPU->rq[i]; |
1 | jermar | 211 | spinlock_lock(&r->lock); |
212 | if (r->n == 0) { |
||
213 | /* |
||
214 | * If this queue is empty, try a lower-priority queue. |
||
215 | */ |
||
216 | spinlock_unlock(&r->lock); |
||
217 | continue; |
||
218 | } |
||
213 | jermar | 219 | |
783 | palkovsky | 220 | atomic_dec(&CPU->nrdy); |
475 | jermar | 221 | atomic_dec(&nrdy); |
1 | jermar | 222 | r->n--; |
223 | |||
224 | /* |
||
225 | * Take the first thread from the queue. |
||
226 | */ |
||
227 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
228 | list_remove(&t->rq_link); |
||
229 | |||
230 | spinlock_unlock(&r->lock); |
||
231 | |||
232 | spinlock_lock(&t->lock); |
||
15 | jermar | 233 | t->cpu = CPU; |
1 | jermar | 234 | |
235 | t->ticks = us2ticks((i+1)*10000); |
||
898 | jermar | 236 | t->priority = i; /* correct rq index */ |
1 | jermar | 237 | |
238 | /* |
||
239 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
240 | */ |
||
241 | t->flags &= ~X_STOLEN; |
||
242 | spinlock_unlock(&t->lock); |
||
243 | |||
244 | return t; |
||
245 | } |
||
246 | goto loop; |
||
247 | |||
248 | } |
||
249 | |||
107 | decky | 250 | /** Prevent rq starvation |
251 | * |
||
252 | * Prevent low priority threads from starving in rq's. |
||
253 | * |
||
254 | * When the function decides to relink rq's, it reconnects |
||
255 | * respective pointers so that in result threads with 'pri' |
||
1229 | jermar | 256 | * greater or equal @start are moved to a higher-priority queue. |
107 | decky | 257 | * |
258 | * @param start Threshold priority. |
||
259 | * |
||
1 | jermar | 260 | */ |
452 | decky | 261 | static void relink_rq(int start) |
1 | jermar | 262 | { |
263 | link_t head; |
||
264 | runq_t *r; |
||
265 | int i, n; |
||
266 | |||
267 | list_initialize(&head); |
||
15 | jermar | 268 | spinlock_lock(&CPU->lock); |
269 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 270 | for (i = start; i<RQ_COUNT-1; i++) { |
271 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 272 | r = &CPU->rq[i + 1]; |
1 | jermar | 273 | spinlock_lock(&r->lock); |
274 | list_concat(&head, &r->rq_head); |
||
275 | n = r->n; |
||
276 | r->n = 0; |
||
277 | spinlock_unlock(&r->lock); |
||
278 | |||
279 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 280 | r = &CPU->rq[i]; |
1 | jermar | 281 | spinlock_lock(&r->lock); |
282 | list_concat(&r->rq_head, &head); |
||
283 | r->n += n; |
||
284 | spinlock_unlock(&r->lock); |
||
285 | } |
||
15 | jermar | 286 | CPU->needs_relink = 0; |
1 | jermar | 287 | } |
784 | palkovsky | 288 | spinlock_unlock(&CPU->lock); |
1 | jermar | 289 | |
290 | } |
||
291 | |||
898 | jermar | 292 | /** The scheduler |
293 | * |
||
294 | * The thread scheduling procedure. |
||
295 | * Passes control directly to |
||
296 | * scheduler_separated_stack(). |
||
297 | * |
||
298 | */ |
||
299 | void scheduler(void) |
||
300 | { |
||
301 | volatile ipl_t ipl; |
||
107 | decky | 302 | |
898 | jermar | 303 | ASSERT(CPU != NULL); |
304 | |||
305 | ipl = interrupts_disable(); |
||
306 | |||
307 | if (atomic_get(&haltstate)) |
||
308 | halt(); |
||
1007 | decky | 309 | |
898 | jermar | 310 | if (THREAD) { |
311 | spinlock_lock(&THREAD->lock); |
||
906 | palkovsky | 312 | #ifndef CONFIG_FPU_LAZY |
313 | fpu_context_save(THREAD->saved_fpu_context); |
||
314 | #endif |
||
898 | jermar | 315 | if (!context_save(&THREAD->saved_context)) { |
316 | /* |
||
317 | * This is the place where threads leave scheduler(); |
||
318 | */ |
||
319 | spinlock_unlock(&THREAD->lock); |
||
320 | interrupts_restore(THREAD->saved_context.ipl); |
||
1007 | decky | 321 | |
898 | jermar | 322 | return; |
323 | } |
||
324 | |||
325 | /* |
||
326 | * Interrupt priority level of preempted thread is recorded here |
||
327 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
328 | * code (e.g. waitq_sleep_timeout()). |
||
329 | */ |
||
330 | THREAD->saved_context.ipl = ipl; |
||
331 | } |
||
332 | |||
333 | /* |
||
334 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
335 | * and preemption counter. At this point THE could be coming either |
||
336 | * from THREAD's or CPU's stack. |
||
337 | */ |
||
338 | the_copy(THE, (the_t *) CPU->stack); |
||
339 | |||
340 | /* |
||
341 | * We may not keep the old stack. |
||
342 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
343 | * find_best_thread(), the old thread could get rescheduled by another |
||
344 | * CPU and overwrite the part of its own stack that was also used by |
||
345 | * the scheduler on this CPU. |
||
346 | * |
||
347 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
348 | * which is fooled by SP being set to the very top of the stack. |
||
349 | * Therefore the scheduler() function continues in |
||
350 | * scheduler_separated_stack(). |
||
351 | */ |
||
352 | context_save(&CPU->saved_context); |
||
353 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
354 | context_restore(&CPU->saved_context); |
||
355 | /* not reached */ |
||
356 | } |
||
357 | |||
107 | decky | 358 | /** Scheduler stack switch wrapper |
359 | * |
||
360 | * Second part of the scheduler() function |
||
361 | * using new stack. Handling the actual context |
||
362 | * switch to a new thread. |
||
363 | * |
||
787 | palkovsky | 364 | * Assume THREAD->lock is held. |
107 | decky | 365 | */ |
898 | jermar | 366 | void scheduler_separated_stack(void) |
1 | jermar | 367 | { |
368 | int priority; |
||
1007 | decky | 369 | |
227 | jermar | 370 | ASSERT(CPU != NULL); |
1007 | decky | 371 | |
15 | jermar | 372 | if (THREAD) { |
898 | jermar | 373 | /* must be run after the switch to scheduler stack */ |
897 | jermar | 374 | after_thread_ran(); |
375 | |||
15 | jermar | 376 | switch (THREAD->state) { |
1 | jermar | 377 | case Running: |
125 | jermar | 378 | spinlock_unlock(&THREAD->lock); |
379 | thread_ready(THREAD); |
||
380 | break; |
||
1 | jermar | 381 | |
382 | case Exiting: |
||
1571 | jermar | 383 | repeat: |
384 | if (THREAD->detached) { |
||
385 | thread_destroy(THREAD); |
||
386 | } else { |
||
387 | /* |
||
388 | * The thread structure is kept allocated until somebody |
||
389 | * calls thread_detach() on it. |
||
390 | */ |
||
391 | if (!spinlock_trylock(&THREAD->join_wq.lock)) { |
||
392 | /* |
||
393 | * Avoid deadlock. |
||
394 | */ |
||
395 | spinlock_unlock(&THREAD->lock); |
||
396 | delay(10); |
||
397 | spinlock_lock(&THREAD->lock); |
||
398 | goto repeat; |
||
399 | } |
||
400 | _waitq_wakeup_unsafe(&THREAD->join_wq, false); |
||
401 | spinlock_unlock(&THREAD->join_wq.lock); |
||
402 | |||
403 | THREAD->state = Undead; |
||
404 | spinlock_unlock(&THREAD->lock); |
||
405 | } |
||
125 | jermar | 406 | break; |
787 | palkovsky | 407 | |
1 | jermar | 408 | case Sleeping: |
125 | jermar | 409 | /* |
410 | * Prefer the thread after it's woken up. |
||
411 | */ |
||
413 | jermar | 412 | THREAD->priority = -1; |
1 | jermar | 413 | |
125 | jermar | 414 | /* |
415 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
416 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
417 | */ |
||
418 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 419 | |
125 | jermar | 420 | /* |
421 | * Check for possible requests for out-of-context invocation. |
||
422 | */ |
||
423 | if (THREAD->call_me) { |
||
424 | THREAD->call_me(THREAD->call_me_with); |
||
425 | THREAD->call_me = NULL; |
||
426 | THREAD->call_me_with = NULL; |
||
427 | } |
||
1 | jermar | 428 | |
125 | jermar | 429 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 430 | |
125 | jermar | 431 | break; |
432 | |||
1 | jermar | 433 | default: |
125 | jermar | 434 | /* |
435 | * Entering state is unexpected. |
||
436 | */ |
||
437 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
438 | break; |
||
1 | jermar | 439 | } |
897 | jermar | 440 | |
15 | jermar | 441 | THREAD = NULL; |
1 | jermar | 442 | } |
198 | jermar | 443 | |
15 | jermar | 444 | THREAD = find_best_thread(); |
1 | jermar | 445 | |
15 | jermar | 446 | spinlock_lock(&THREAD->lock); |
413 | jermar | 447 | priority = THREAD->priority; |
15 | jermar | 448 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 449 | |
1 | jermar | 450 | relink_rq(priority); |
451 | |||
452 | /* |
||
453 | * If both the old and the new task are the same, lots of work is avoided. |
||
454 | */ |
||
15 | jermar | 455 | if (TASK != THREAD->task) { |
703 | jermar | 456 | as_t *as1 = NULL; |
457 | as_t *as2; |
||
1 | jermar | 458 | |
15 | jermar | 459 | if (TASK) { |
460 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 461 | as1 = TASK->as; |
15 | jermar | 462 | spinlock_unlock(&TASK->lock); |
1 | jermar | 463 | } |
464 | |||
15 | jermar | 465 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 466 | as2 = THREAD->task->as; |
15 | jermar | 467 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 468 | |
469 | /* |
||
703 | jermar | 470 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 471 | */ |
703 | jermar | 472 | if (as1 != as2) { |
1 | jermar | 473 | /* |
703 | jermar | 474 | * Both tasks and address spaces are different. |
1 | jermar | 475 | * Replace the old one with the new one. |
476 | */ |
||
823 | jermar | 477 | as_switch(as1, as2); |
1 | jermar | 478 | } |
906 | palkovsky | 479 | TASK = THREAD->task; |
1187 | jermar | 480 | before_task_runs(); |
1 | jermar | 481 | } |
482 | |||
1380 | jermar | 483 | spinlock_lock(&THREAD->lock); |
15 | jermar | 484 | THREAD->state = Running; |
1 | jermar | 485 | |
906 | palkovsky | 486 | #ifdef SCHEDULER_VERBOSE |
1196 | cejka | 487 | printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
906 | palkovsky | 488 | #endif |
1 | jermar | 489 | |
213 | jermar | 490 | /* |
897 | jermar | 491 | * Some architectures provide late kernel PA2KA(identity) |
492 | * mapping in a page fault handler. However, the page fault |
||
493 | * handler uses the kernel stack of the running thread and |
||
494 | * therefore cannot be used to map it. The kernel stack, if |
||
495 | * necessary, is to be mapped in before_thread_runs(). This |
||
496 | * function must be executed before the switch to the new stack. |
||
497 | */ |
||
498 | before_thread_runs(); |
||
499 | |||
500 | /* |
||
213 | jermar | 501 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
502 | */ |
||
184 | jermar | 503 | the_copy(THE, (the_t *) THREAD->kstack); |
504 | |||
15 | jermar | 505 | context_restore(&THREAD->saved_context); |
1 | jermar | 506 | /* not reached */ |
507 | } |
||
508 | |||
458 | decky | 509 | #ifdef CONFIG_SMP |
107 | decky | 510 | /** Load balancing thread |
511 | * |
||
512 | * SMP load balancing thread, supervising thread supplies |
||
513 | * for the CPU it's wired to. |
||
514 | * |
||
515 | * @param arg Generic thread argument (unused). |
||
516 | * |
||
1 | jermar | 517 | */ |
518 | void kcpulb(void *arg) |
||
519 | { |
||
520 | thread_t *t; |
||
783 | palkovsky | 521 | int count, average, i, j, k = 0; |
413 | jermar | 522 | ipl_t ipl; |
1 | jermar | 523 | |
1576 | jermar | 524 | /* |
525 | * Detach kcpulb as nobody will call thread_join_timeout() on it. |
||
526 | */ |
||
527 | thread_detach(THREAD); |
||
528 | |||
1 | jermar | 529 | loop: |
530 | /* |
||
779 | jermar | 531 | * Work in 1s intervals. |
1 | jermar | 532 | */ |
779 | jermar | 533 | thread_sleep(1); |
1 | jermar | 534 | |
535 | not_satisfied: |
||
536 | /* |
||
537 | * Calculate the number of threads that will be migrated/stolen from |
||
538 | * other CPU's. Note that situation can have changed between two |
||
539 | * passes. Each time get the most up to date counts. |
||
540 | */ |
||
784 | palkovsky | 541 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 542 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 543 | |
784 | palkovsky | 544 | if (count <= 0) |
1 | jermar | 545 | goto satisfied; |
546 | |||
547 | /* |
||
548 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
549 | */ |
||
550 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
551 | for (i=0; i < config.cpu_active; i++) { |
||
552 | link_t *l; |
||
553 | runq_t *r; |
||
554 | cpu_t *cpu; |
||
555 | |||
556 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
557 | |||
558 | /* |
||
559 | * Not interested in ourselves. |
||
560 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
561 | */ |
||
15 | jermar | 562 | if (CPU == cpu) |
783 | palkovsky | 563 | continue; |
564 | if (atomic_get(&cpu->nrdy) <= average) |
||
565 | continue; |
||
1 | jermar | 566 | |
784 | palkovsky | 567 | ipl = interrupts_disable(); |
115 | jermar | 568 | r = &cpu->rq[j]; |
1 | jermar | 569 | spinlock_lock(&r->lock); |
570 | if (r->n == 0) { |
||
571 | spinlock_unlock(&r->lock); |
||
413 | jermar | 572 | interrupts_restore(ipl); |
1 | jermar | 573 | continue; |
574 | } |
||
575 | |||
576 | t = NULL; |
||
577 | l = r->rq_head.prev; /* search rq from the back */ |
||
578 | while (l != &r->rq_head) { |
||
579 | t = list_get_instance(l, thread_t, rq_link); |
||
580 | /* |
||
125 | jermar | 581 | * We don't want to steal CPU-wired threads neither threads already stolen. |
1 | jermar | 582 | * The latter prevents threads from migrating between CPU's without ever being run. |
125 | jermar | 583 | * We don't want to steal threads whose FPU context is still in CPU. |
73 | vana | 584 | */ |
1 | jermar | 585 | spinlock_lock(&t->lock); |
73 | vana | 586 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
1 | jermar | 587 | /* |
588 | * Remove t from r. |
||
589 | */ |
||
590 | spinlock_unlock(&t->lock); |
||
591 | |||
783 | palkovsky | 592 | atomic_dec(&cpu->nrdy); |
475 | jermar | 593 | atomic_dec(&nrdy); |
1 | jermar | 594 | |
125 | jermar | 595 | r->n--; |
1 | jermar | 596 | list_remove(&t->rq_link); |
597 | |||
598 | break; |
||
599 | } |
||
600 | spinlock_unlock(&t->lock); |
||
601 | l = l->prev; |
||
602 | t = NULL; |
||
603 | } |
||
604 | spinlock_unlock(&r->lock); |
||
605 | |||
606 | if (t) { |
||
607 | /* |
||
608 | * Ready t on local CPU |
||
609 | */ |
||
610 | spinlock_lock(&t->lock); |
||
906 | palkovsky | 611 | #ifdef KCPULB_VERBOSE |
1196 | cejka | 612 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
906 | palkovsky | 613 | #endif |
1 | jermar | 614 | t->flags |= X_STOLEN; |
1115 | jermar | 615 | t->state = Entering; |
1 | jermar | 616 | spinlock_unlock(&t->lock); |
617 | |||
618 | thread_ready(t); |
||
619 | |||
413 | jermar | 620 | interrupts_restore(ipl); |
1 | jermar | 621 | |
622 | if (--count == 0) |
||
623 | goto satisfied; |
||
624 | |||
625 | /* |
||
125 | jermar | 626 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 627 | */ |
628 | k++; |
||
629 | |||
630 | continue; |
||
631 | } |
||
413 | jermar | 632 | interrupts_restore(ipl); |
1 | jermar | 633 | } |
634 | } |
||
635 | |||
783 | palkovsky | 636 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 637 | /* |
638 | * Be a little bit light-weight and let migrated threads run. |
||
639 | */ |
||
640 | scheduler(); |
||
779 | jermar | 641 | } else { |
1 | jermar | 642 | /* |
643 | * We failed to migrate a single thread. |
||
779 | jermar | 644 | * Give up this turn. |
1 | jermar | 645 | */ |
779 | jermar | 646 | goto loop; |
1 | jermar | 647 | } |
648 | |||
649 | goto not_satisfied; |
||
125 | jermar | 650 | |
1 | jermar | 651 | satisfied: |
652 | goto loop; |
||
653 | } |
||
654 | |||
458 | decky | 655 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 656 | |
657 | |||
658 | /** Print information about threads & scheduler queues */ |
||
659 | void sched_print_list(void) |
||
660 | { |
||
661 | ipl_t ipl; |
||
662 | int cpu,i; |
||
663 | runq_t *r; |
||
664 | thread_t *t; |
||
665 | link_t *cur; |
||
666 | |||
667 | /* We are going to mess with scheduler structures, |
||
668 | * let's not be interrupted */ |
||
669 | ipl = interrupts_disable(); |
||
670 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
898 | jermar | 671 | |
775 | palkovsky | 672 | if (!cpus[cpu].active) |
673 | continue; |
||
898 | jermar | 674 | |
775 | palkovsky | 675 | spinlock_lock(&cpus[cpu].lock); |
1221 | decky | 676 | printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n", |
1062 | jermar | 677 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
775 | palkovsky | 678 | |
679 | for (i=0; i<RQ_COUNT; i++) { |
||
680 | r = &cpus[cpu].rq[i]; |
||
681 | spinlock_lock(&r->lock); |
||
682 | if (!r->n) { |
||
683 | spinlock_unlock(&r->lock); |
||
684 | continue; |
||
685 | } |
||
898 | jermar | 686 | printf("\trq[%d]: ", i); |
775 | palkovsky | 687 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
688 | t = list_get_instance(cur, thread_t, rq_link); |
||
689 | printf("%d(%s) ", t->tid, |
||
690 | thread_states[t->state]); |
||
691 | } |
||
692 | printf("\n"); |
||
693 | spinlock_unlock(&r->lock); |
||
694 | } |
||
695 | spinlock_unlock(&cpus[cpu].lock); |
||
696 | } |
||
697 | |||
698 | interrupts_restore(ipl); |
||
699 | } |
||
1702 | cejka | 700 | |
701 | /** @} |
||
702 | */ |
||
703 |