Rev 784 | Rev 787 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <proc/scheduler.h> |
||
30 | #include <proc/thread.h> |
||
31 | #include <proc/task.h> |
||
378 | jermar | 32 | #include <mm/heap.h> |
33 | #include <mm/frame.h> |
||
34 | #include <mm/page.h> |
||
703 | jermar | 35 | #include <mm/as.h> |
378 | jermar | 36 | #include <arch/asm.h> |
37 | #include <arch/faddr.h> |
||
38 | #include <arch/atomic.h> |
||
39 | #include <synch/spinlock.h> |
||
1 | jermar | 40 | #include <config.h> |
41 | #include <context.h> |
||
42 | #include <func.h> |
||
43 | #include <arch.h> |
||
44 | #include <list.h> |
||
68 | decky | 45 | #include <panic.h> |
1 | jermar | 46 | #include <typedefs.h> |
378 | jermar | 47 | #include <cpu.h> |
195 | vana | 48 | #include <print.h> |
227 | jermar | 49 | #include <debug.h> |
1 | jermar | 50 | |
475 | jermar | 51 | atomic_t nrdy; |
195 | vana | 52 | |
118 | jermar | 53 | /** Take actions before new thread runs |
107 | decky | 54 | * |
118 | jermar | 55 | * Perform actions that need to be |
56 | * taken before the newly selected |
||
57 | * tread is passed control. |
||
107 | decky | 58 | * |
59 | */ |
||
52 | vana | 60 | void before_thread_runs(void) |
61 | { |
||
309 | palkovsky | 62 | before_thread_runs_arch(); |
458 | decky | 63 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 64 | if(THREAD==CPU->fpu_owner) |
65 | fpu_enable(); |
||
66 | else |
||
67 | fpu_disable(); |
||
68 | #else |
||
69 | fpu_enable(); |
||
70 | if (THREAD->fpu_context_exists) |
||
71 | fpu_context_restore(&(THREAD->saved_fpu_context)); |
||
72 | else { |
||
73 | fpu_init(); |
||
74 | THREAD->fpu_context_exists=1; |
||
75 | } |
||
76 | #endif |
||
52 | vana | 77 | } |
78 | |||
458 | decky | 79 | #ifdef CONFIG_FPU_LAZY |
309 | palkovsky | 80 | void scheduler_fpu_lazy_request(void) |
81 | { |
||
82 | fpu_enable(); |
||
83 | if (CPU->fpu_owner != NULL) { |
||
84 | fpu_context_save(&CPU->fpu_owner->saved_fpu_context); |
||
85 | /* don't prevent migration */ |
||
86 | CPU->fpu_owner->fpu_context_engaged=0; |
||
87 | } |
||
88 | if (THREAD->fpu_context_exists) |
||
89 | fpu_context_restore(&THREAD->saved_fpu_context); |
||
90 | else { |
||
91 | fpu_init(); |
||
92 | THREAD->fpu_context_exists=1; |
||
93 | } |
||
94 | CPU->fpu_owner=THREAD; |
||
95 | THREAD->fpu_context_engaged = 1; |
||
96 | } |
||
97 | #endif |
||
52 | vana | 98 | |
107 | decky | 99 | /** Initialize scheduler |
100 | * |
||
101 | * Initialize kernel scheduler. |
||
102 | * |
||
103 | */ |
||
1 | jermar | 104 | void scheduler_init(void) |
105 | { |
||
106 | } |
||
107 | |||
107 | decky | 108 | |
109 | /** Get thread to be scheduled |
||
110 | * |
||
111 | * Get the optimal thread to be scheduled |
||
109 | jermar | 112 | * according to thread accounting and scheduler |
107 | decky | 113 | * policy. |
114 | * |
||
115 | * @return Thread to be scheduled. |
||
116 | * |
||
117 | */ |
||
483 | jermar | 118 | static thread_t *find_best_thread(void) |
1 | jermar | 119 | { |
120 | thread_t *t; |
||
121 | runq_t *r; |
||
783 | palkovsky | 122 | int i; |
1 | jermar | 123 | |
227 | jermar | 124 | ASSERT(CPU != NULL); |
125 | |||
1 | jermar | 126 | loop: |
413 | jermar | 127 | interrupts_enable(); |
1 | jermar | 128 | |
783 | palkovsky | 129 | if (atomic_get(&CPU->nrdy) == 0) { |
1 | jermar | 130 | /* |
131 | * For there was nothing to run, the CPU goes to sleep |
||
132 | * until a hardware interrupt or an IPI comes. |
||
133 | * This improves energy saving and hyperthreading. |
||
134 | */ |
||
785 | jermar | 135 | |
136 | /* |
||
137 | * An interrupt might occur right now and wake up a thread. |
||
138 | * In such case, the CPU will continue to go to sleep |
||
139 | * even though there is a runnable thread. |
||
140 | */ |
||
141 | |||
1 | jermar | 142 | cpu_sleep(); |
143 | goto loop; |
||
144 | } |
||
145 | |||
413 | jermar | 146 | interrupts_disable(); |
114 | jermar | 147 | |
148 | i = 0; |
||
149 | for (; i<RQ_COUNT; i++) { |
||
15 | jermar | 150 | r = &CPU->rq[i]; |
1 | jermar | 151 | spinlock_lock(&r->lock); |
152 | if (r->n == 0) { |
||
153 | /* |
||
154 | * If this queue is empty, try a lower-priority queue. |
||
155 | */ |
||
156 | spinlock_unlock(&r->lock); |
||
157 | continue; |
||
158 | } |
||
213 | jermar | 159 | |
783 | palkovsky | 160 | atomic_dec(&CPU->nrdy); |
475 | jermar | 161 | atomic_dec(&nrdy); |
1 | jermar | 162 | r->n--; |
163 | |||
164 | /* |
||
165 | * Take the first thread from the queue. |
||
166 | */ |
||
167 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
168 | list_remove(&t->rq_link); |
||
169 | |||
170 | spinlock_unlock(&r->lock); |
||
171 | |||
172 | spinlock_lock(&t->lock); |
||
15 | jermar | 173 | t->cpu = CPU; |
1 | jermar | 174 | |
175 | t->ticks = us2ticks((i+1)*10000); |
||
413 | jermar | 176 | t->priority = i; /* eventually correct rq index */ |
1 | jermar | 177 | |
178 | /* |
||
179 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
180 | */ |
||
181 | t->flags &= ~X_STOLEN; |
||
182 | spinlock_unlock(&t->lock); |
||
183 | |||
184 | return t; |
||
185 | } |
||
186 | goto loop; |
||
187 | |||
188 | } |
||
189 | |||
107 | decky | 190 | |
191 | /** Prevent rq starvation |
||
192 | * |
||
193 | * Prevent low priority threads from starving in rq's. |
||
194 | * |
||
195 | * When the function decides to relink rq's, it reconnects |
||
196 | * respective pointers so that in result threads with 'pri' |
||
197 | * greater or equal 'start' are moved to a higher-priority queue. |
||
198 | * |
||
199 | * @param start Threshold priority. |
||
200 | * |
||
1 | jermar | 201 | */ |
452 | decky | 202 | static void relink_rq(int start) |
1 | jermar | 203 | { |
204 | link_t head; |
||
205 | runq_t *r; |
||
206 | int i, n; |
||
207 | |||
208 | list_initialize(&head); |
||
15 | jermar | 209 | spinlock_lock(&CPU->lock); |
210 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 211 | for (i = start; i<RQ_COUNT-1; i++) { |
212 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 213 | r = &CPU->rq[i + 1]; |
1 | jermar | 214 | spinlock_lock(&r->lock); |
215 | list_concat(&head, &r->rq_head); |
||
216 | n = r->n; |
||
217 | r->n = 0; |
||
218 | spinlock_unlock(&r->lock); |
||
219 | |||
220 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 221 | r = &CPU->rq[i]; |
1 | jermar | 222 | spinlock_lock(&r->lock); |
223 | list_concat(&r->rq_head, &head); |
||
224 | r->n += n; |
||
225 | spinlock_unlock(&r->lock); |
||
226 | } |
||
15 | jermar | 227 | CPU->needs_relink = 0; |
1 | jermar | 228 | } |
784 | palkovsky | 229 | spinlock_unlock(&CPU->lock); |
1 | jermar | 230 | |
231 | } |
||
232 | |||
107 | decky | 233 | |
234 | /** Scheduler stack switch wrapper |
||
235 | * |
||
236 | * Second part of the scheduler() function |
||
237 | * using new stack. Handling the actual context |
||
238 | * switch to a new thread. |
||
239 | * |
||
240 | */ |
||
452 | decky | 241 | static void scheduler_separated_stack(void) |
1 | jermar | 242 | { |
243 | int priority; |
||
244 | |||
227 | jermar | 245 | ASSERT(CPU != NULL); |
246 | |||
15 | jermar | 247 | if (THREAD) { |
248 | switch (THREAD->state) { |
||
1 | jermar | 249 | case Running: |
125 | jermar | 250 | THREAD->state = Ready; |
251 | spinlock_unlock(&THREAD->lock); |
||
252 | thread_ready(THREAD); |
||
253 | break; |
||
1 | jermar | 254 | |
255 | case Exiting: |
||
125 | jermar | 256 | frame_free((__address) THREAD->kstack); |
257 | if (THREAD->ustack) { |
||
258 | frame_free((__address) THREAD->ustack); |
||
259 | } |
||
1 | jermar | 260 | |
125 | jermar | 261 | /* |
262 | * Detach from the containing task. |
||
263 | */ |
||
264 | spinlock_lock(&TASK->lock); |
||
265 | list_remove(&THREAD->th_link); |
||
266 | spinlock_unlock(&TASK->lock); |
||
73 | vana | 267 | |
125 | jermar | 268 | spinlock_unlock(&THREAD->lock); |
269 | |||
270 | spinlock_lock(&threads_lock); |
||
271 | list_remove(&THREAD->threads_link); |
||
272 | spinlock_unlock(&threads_lock); |
||
73 | vana | 273 | |
125 | jermar | 274 | spinlock_lock(&CPU->lock); |
650 | jermar | 275 | if(CPU->fpu_owner==THREAD) |
276 | CPU->fpu_owner=NULL; |
||
125 | jermar | 277 | spinlock_unlock(&CPU->lock); |
278 | |||
279 | free(THREAD); |
||
280 | |||
281 | break; |
||
282 | |||
1 | jermar | 283 | case Sleeping: |
125 | jermar | 284 | /* |
285 | * Prefer the thread after it's woken up. |
||
286 | */ |
||
413 | jermar | 287 | THREAD->priority = -1; |
1 | jermar | 288 | |
125 | jermar | 289 | /* |
290 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
291 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
292 | */ |
||
293 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
1 | jermar | 294 | |
125 | jermar | 295 | /* |
296 | * Check for possible requests for out-of-context invocation. |
||
297 | */ |
||
298 | if (THREAD->call_me) { |
||
299 | THREAD->call_me(THREAD->call_me_with); |
||
300 | THREAD->call_me = NULL; |
||
301 | THREAD->call_me_with = NULL; |
||
302 | } |
||
1 | jermar | 303 | |
125 | jermar | 304 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 305 | |
125 | jermar | 306 | break; |
307 | |||
1 | jermar | 308 | default: |
125 | jermar | 309 | /* |
310 | * Entering state is unexpected. |
||
311 | */ |
||
312 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
313 | break; |
||
1 | jermar | 314 | } |
15 | jermar | 315 | THREAD = NULL; |
1 | jermar | 316 | } |
198 | jermar | 317 | |
214 | vana | 318 | |
15 | jermar | 319 | THREAD = find_best_thread(); |
1 | jermar | 320 | |
15 | jermar | 321 | spinlock_lock(&THREAD->lock); |
413 | jermar | 322 | priority = THREAD->priority; |
15 | jermar | 323 | spinlock_unlock(&THREAD->lock); |
192 | jermar | 324 | |
1 | jermar | 325 | relink_rq(priority); |
326 | |||
15 | jermar | 327 | spinlock_lock(&THREAD->lock); |
1 | jermar | 328 | |
329 | /* |
||
330 | * If both the old and the new task are the same, lots of work is avoided. |
||
331 | */ |
||
15 | jermar | 332 | if (TASK != THREAD->task) { |
703 | jermar | 333 | as_t *as1 = NULL; |
334 | as_t *as2; |
||
1 | jermar | 335 | |
15 | jermar | 336 | if (TASK) { |
337 | spinlock_lock(&TASK->lock); |
||
703 | jermar | 338 | as1 = TASK->as; |
15 | jermar | 339 | spinlock_unlock(&TASK->lock); |
1 | jermar | 340 | } |
341 | |||
15 | jermar | 342 | spinlock_lock(&THREAD->task->lock); |
703 | jermar | 343 | as2 = THREAD->task->as; |
15 | jermar | 344 | spinlock_unlock(&THREAD->task->lock); |
1 | jermar | 345 | |
346 | /* |
||
703 | jermar | 347 | * Note that it is possible for two tasks to share one address space. |
1 | jermar | 348 | */ |
703 | jermar | 349 | if (as1 != as2) { |
1 | jermar | 350 | /* |
703 | jermar | 351 | * Both tasks and address spaces are different. |
1 | jermar | 352 | * Replace the old one with the new one. |
353 | */ |
||
703 | jermar | 354 | as_install(as2); |
1 | jermar | 355 | } |
15 | jermar | 356 | TASK = THREAD->task; |
1 | jermar | 357 | } |
358 | |||
15 | jermar | 359 | THREAD->state = Running; |
1 | jermar | 360 | |
361 | #ifdef SCHEDULER_VERBOSE |
||
413 | jermar | 362 | printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, CPU->nrdy); |
1 | jermar | 363 | #endif |
364 | |||
213 | jermar | 365 | /* |
366 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
||
367 | */ |
||
184 | jermar | 368 | the_copy(THE, (the_t *) THREAD->kstack); |
369 | |||
15 | jermar | 370 | context_restore(&THREAD->saved_context); |
1 | jermar | 371 | /* not reached */ |
372 | } |
||
373 | |||
107 | decky | 374 | |
452 | decky | 375 | /** The scheduler |
376 | * |
||
377 | * The thread scheduling procedure. |
||
675 | jermar | 378 | * Passes control directly to |
379 | * scheduler_separated_stack(). |
||
452 | decky | 380 | * |
381 | */ |
||
382 | void scheduler(void) |
||
383 | { |
||
384 | volatile ipl_t ipl; |
||
385 | |||
386 | ASSERT(CPU != NULL); |
||
387 | |||
388 | ipl = interrupts_disable(); |
||
389 | |||
631 | palkovsky | 390 | if (atomic_get(&haltstate)) |
452 | decky | 391 | halt(); |
392 | |||
393 | if (THREAD) { |
||
394 | spinlock_lock(&THREAD->lock); |
||
458 | decky | 395 | #ifndef CONFIG_FPU_LAZY |
452 | decky | 396 | fpu_context_save(&(THREAD->saved_fpu_context)); |
397 | #endif |
||
398 | if (!context_save(&THREAD->saved_context)) { |
||
399 | /* |
||
400 | * This is the place where threads leave scheduler(); |
||
401 | */ |
||
402 | before_thread_runs(); |
||
403 | spinlock_unlock(&THREAD->lock); |
||
404 | interrupts_restore(THREAD->saved_context.ipl); |
||
405 | return; |
||
406 | } |
||
407 | |||
408 | /* |
||
409 | * Interrupt priority level of preempted thread is recorded here |
||
410 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
411 | * code (e.g. waitq_sleep_timeout()). |
||
412 | */ |
||
413 | THREAD->saved_context.ipl = ipl; |
||
414 | } |
||
415 | |||
416 | /* |
||
557 | jermar | 417 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
452 | decky | 418 | * and preemption counter. At this point THE could be coming either |
419 | * from THREAD's or CPU's stack. |
||
420 | */ |
||
421 | the_copy(THE, (the_t *) CPU->stack); |
||
422 | |||
423 | /* |
||
424 | * We may not keep the old stack. |
||
425 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
426 | * find_best_thread(), the old thread could get rescheduled by another |
||
427 | * CPU and overwrite the part of its own stack that was also used by |
||
428 | * the scheduler on this CPU. |
||
429 | * |
||
430 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
431 | * which is fooled by SP being set to the very top of the stack. |
||
432 | * Therefore the scheduler() function continues in |
||
433 | * scheduler_separated_stack(). |
||
434 | */ |
||
435 | context_save(&CPU->saved_context); |
||
436 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
437 | context_restore(&CPU->saved_context); |
||
438 | /* not reached */ |
||
439 | } |
||
440 | |||
441 | |||
442 | |||
443 | |||
444 | |||
458 | decky | 445 | #ifdef CONFIG_SMP |
107 | decky | 446 | /** Load balancing thread |
447 | * |
||
448 | * SMP load balancing thread, supervising thread supplies |
||
449 | * for the CPU it's wired to. |
||
450 | * |
||
451 | * @param arg Generic thread argument (unused). |
||
452 | * |
||
1 | jermar | 453 | */ |
454 | void kcpulb(void *arg) |
||
455 | { |
||
456 | thread_t *t; |
||
783 | palkovsky | 457 | int count, average, i, j, k = 0; |
413 | jermar | 458 | ipl_t ipl; |
1 | jermar | 459 | |
460 | loop: |
||
461 | /* |
||
779 | jermar | 462 | * Work in 1s intervals. |
1 | jermar | 463 | */ |
779 | jermar | 464 | thread_sleep(1); |
1 | jermar | 465 | |
466 | not_satisfied: |
||
467 | /* |
||
468 | * Calculate the number of threads that will be migrated/stolen from |
||
469 | * other CPU's. Note that situation can have changed between two |
||
470 | * passes. Each time get the most up to date counts. |
||
471 | */ |
||
784 | palkovsky | 472 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
783 | palkovsky | 473 | count = average - atomic_get(&CPU->nrdy); |
1 | jermar | 474 | |
784 | palkovsky | 475 | if (count <= 0) |
1 | jermar | 476 | goto satisfied; |
477 | |||
478 | /* |
||
479 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
480 | */ |
||
481 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
482 | for (i=0; i < config.cpu_active; i++) { |
||
483 | link_t *l; |
||
484 | runq_t *r; |
||
485 | cpu_t *cpu; |
||
486 | |||
487 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
488 | |||
489 | /* |
||
490 | * Not interested in ourselves. |
||
491 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
492 | */ |
||
15 | jermar | 493 | if (CPU == cpu) |
783 | palkovsky | 494 | continue; |
495 | if (atomic_get(&cpu->nrdy) <= average) |
||
496 | continue; |
||
1 | jermar | 497 | |
784 | palkovsky | 498 | ipl = interrupts_disable(); |
115 | jermar | 499 | r = &cpu->rq[j]; |
1 | jermar | 500 | spinlock_lock(&r->lock); |
501 | if (r->n == 0) { |
||
502 | spinlock_unlock(&r->lock); |
||
413 | jermar | 503 | interrupts_restore(ipl); |
1 | jermar | 504 | continue; |
505 | } |
||
506 | |||
507 | t = NULL; |
||
508 | l = r->rq_head.prev; /* search rq from the back */ |
||
509 | while (l != &r->rq_head) { |
||
510 | t = list_get_instance(l, thread_t, rq_link); |
||
511 | /* |
||
125 | jermar | 512 | * We don't want to steal CPU-wired threads neither threads already stolen. |
1 | jermar | 513 | * The latter prevents threads from migrating between CPU's without ever being run. |
125 | jermar | 514 | * We don't want to steal threads whose FPU context is still in CPU. |
73 | vana | 515 | */ |
1 | jermar | 516 | spinlock_lock(&t->lock); |
73 | vana | 517 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
1 | jermar | 518 | /* |
519 | * Remove t from r. |
||
520 | */ |
||
521 | spinlock_unlock(&t->lock); |
||
522 | |||
783 | palkovsky | 523 | atomic_dec(&cpu->nrdy); |
475 | jermar | 524 | atomic_dec(&nrdy); |
1 | jermar | 525 | |
125 | jermar | 526 | r->n--; |
1 | jermar | 527 | list_remove(&t->rq_link); |
528 | |||
529 | break; |
||
530 | } |
||
531 | spinlock_unlock(&t->lock); |
||
532 | l = l->prev; |
||
533 | t = NULL; |
||
534 | } |
||
535 | spinlock_unlock(&r->lock); |
||
536 | |||
537 | if (t) { |
||
538 | /* |
||
539 | * Ready t on local CPU |
||
540 | */ |
||
541 | spinlock_lock(&t->lock); |
||
542 | #ifdef KCPULB_VERBOSE |
||
783 | palkovsky | 543 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
1 | jermar | 544 | #endif |
545 | t->flags |= X_STOLEN; |
||
546 | spinlock_unlock(&t->lock); |
||
547 | |||
548 | thread_ready(t); |
||
549 | |||
413 | jermar | 550 | interrupts_restore(ipl); |
1 | jermar | 551 | |
552 | if (--count == 0) |
||
553 | goto satisfied; |
||
554 | |||
555 | /* |
||
125 | jermar | 556 | * We are not satisfied yet, focus on another CPU next time. |
1 | jermar | 557 | */ |
558 | k++; |
||
559 | |||
560 | continue; |
||
561 | } |
||
413 | jermar | 562 | interrupts_restore(ipl); |
1 | jermar | 563 | } |
564 | } |
||
565 | |||
783 | palkovsky | 566 | if (atomic_get(&CPU->nrdy)) { |
1 | jermar | 567 | /* |
568 | * Be a little bit light-weight and let migrated threads run. |
||
569 | */ |
||
570 | scheduler(); |
||
779 | jermar | 571 | } else { |
1 | jermar | 572 | /* |
573 | * We failed to migrate a single thread. |
||
779 | jermar | 574 | * Give up this turn. |
1 | jermar | 575 | */ |
779 | jermar | 576 | goto loop; |
1 | jermar | 577 | } |
578 | |||
579 | goto not_satisfied; |
||
125 | jermar | 580 | |
1 | jermar | 581 | satisfied: |
582 | goto loop; |
||
583 | } |
||
584 | |||
458 | decky | 585 | #endif /* CONFIG_SMP */ |
775 | palkovsky | 586 | |
587 | |||
588 | /** Print information about threads & scheduler queues */ |
||
589 | void sched_print_list(void) |
||
590 | { |
||
591 | ipl_t ipl; |
||
592 | int cpu,i; |
||
593 | runq_t *r; |
||
594 | thread_t *t; |
||
595 | link_t *cur; |
||
596 | |||
597 | /* We are going to mess with scheduler structures, |
||
598 | * let's not be interrupted */ |
||
599 | ipl = interrupts_disable(); |
||
600 | printf("*********** Scheduler dump ***********\n"); |
||
601 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
602 | if (!cpus[cpu].active) |
||
603 | continue; |
||
604 | spinlock_lock(&cpus[cpu].lock); |
||
605 | printf("cpu%d: nrdy: %d needs_relink: %d\n", |
||
783 | palkovsky | 606 | cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
775 | palkovsky | 607 | |
608 | for (i=0; i<RQ_COUNT; i++) { |
||
609 | r = &cpus[cpu].rq[i]; |
||
610 | spinlock_lock(&r->lock); |
||
611 | if (!r->n) { |
||
612 | spinlock_unlock(&r->lock); |
||
613 | continue; |
||
614 | } |
||
779 | jermar | 615 | printf("\tRq %d: ", i); |
775 | palkovsky | 616 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
617 | t = list_get_instance(cur, thread_t, rq_link); |
||
618 | printf("%d(%s) ", t->tid, |
||
619 | thread_states[t->state]); |
||
620 | } |
||
621 | printf("\n"); |
||
622 | spinlock_unlock(&r->lock); |
||
623 | } |
||
624 | spinlock_unlock(&cpus[cpu].lock); |
||
625 | } |
||
626 | |||
627 | interrupts_restore(ipl); |
||
628 | } |