Subversion Repositories HelenOS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file	as.c
31
 * @brief	Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
	as_arch_init();
789 palkovsky 100
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
	if (!AS_KERNEL)
102
		panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
	as_t *as;
113
 
822 palkovsky 114
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
	mutex_initialize(&as->lock);
1147 jermar 117
	btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
	if (flags & FLAG_AS_KERNEL)
120
		as->asid = ASID_KERNEL;
121
	else
122
		as->asid = ASID_INVALID;
123
 
1415 jermar 124
	as->cpu_refcount = 0;
822 palkovsky 125
	as->page_table = page_table_create(flags);
703 jermar 126
 
127
	return as;
128
}
129
 
973 palkovsky 130
/** Free Adress space */
131
void as_free(as_t *as)
132
{
1415 jermar 133
	ASSERT(as->cpu_refcount == 0);
973 palkovsky 134
 
135
	/* TODO: free as_areas and other resources held by as */
136
	/* TODO: free page table */
137
	free(as);
138
}
139
 
703 jermar 140
/** Create address space area of common attributes.
141
 *
142
 * The created address space area is added to the target address space.
143
 *
144
 * @param as Target address space.
1239 jermar 145
 * @param flags Flags of the area memory.
1048 jermar 146
 * @param size Size of area.
703 jermar 147
 * @param base Base address of area.
1239 jermar 148
 * @param attrs Attributes of the area.
1409 jermar 149
 * @param backend Address space area backend. NULL if no backend is used.
150
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 151
 *
152
 * @return Address space area on success or NULL on failure.
153
 */
1409 jermar 154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 155
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 156
{
157
	ipl_t ipl;
158
	as_area_t *a;
159
 
160
	if (base % PAGE_SIZE)
1048 jermar 161
		return NULL;
162
 
1233 jermar 163
	if (!size)
164
		return NULL;
165
 
1048 jermar 166
	/* Writeable executable areas are not supported. */
167
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
168
		return NULL;
703 jermar 169
 
170
	ipl = interrupts_disable();
1380 jermar 171
	mutex_lock(&as->lock);
703 jermar 172
 
1048 jermar 173
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 174
		mutex_unlock(&as->lock);
1048 jermar 175
		interrupts_restore(ipl);
176
		return NULL;
177
	}
703 jermar 178
 
822 palkovsky 179
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 180
 
1380 jermar 181
	mutex_initialize(&a->lock);
822 palkovsky 182
 
1424 jermar 183
	a->as = as;
1026 jermar 184
	a->flags = flags;
1239 jermar 185
	a->attributes = attrs;
1048 jermar 186
	a->pages = SIZE2FRAMES(size);
822 palkovsky 187
	a->base = base;
1409 jermar 188
	a->sh_info = NULL;
189
	a->backend = backend;
1424 jermar 190
	if (backend_data)
191
		a->backend_data = *backend_data;
192
	else
193
		memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
194
 
1387 jermar 195
	btree_create(&a->used_space);
822 palkovsky 196
 
1147 jermar 197
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 198
 
1380 jermar 199
	mutex_unlock(&as->lock);
703 jermar 200
	interrupts_restore(ipl);
704 jermar 201
 
703 jermar 202
	return a;
203
}
204
 
1235 jermar 205
/** Find address space area and change it.
206
 *
207
 * @param as Address space.
208
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
209
 * @param size New size of the virtual memory block starting at address. 
210
 * @param flags Flags influencing the remap operation. Currently unused.
211
 *
1306 jermar 212
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 213
 */ 
1306 jermar 214
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 215
{
1306 jermar 216
	as_area_t *area;
1235 jermar 217
	ipl_t ipl;
218
	size_t pages;
219
 
220
	ipl = interrupts_disable();
1380 jermar 221
	mutex_lock(&as->lock);
1235 jermar 222
 
223
	/*
224
	 * Locate the area.
225
	 */
226
	area = find_area_and_lock(as, address);
227
	if (!area) {
1380 jermar 228
		mutex_unlock(&as->lock);
1235 jermar 229
		interrupts_restore(ipl);
1306 jermar 230
		return ENOENT;
1235 jermar 231
	}
232
 
1424 jermar 233
	if (area->backend == &phys_backend) {
1235 jermar 234
		/*
235
		 * Remapping of address space areas associated
236
		 * with memory mapped devices is not supported.
237
		 */
1380 jermar 238
		mutex_unlock(&area->lock);
239
		mutex_unlock(&as->lock);
1235 jermar 240
		interrupts_restore(ipl);
1306 jermar 241
		return ENOTSUP;
1235 jermar 242
	}
1409 jermar 243
	if (area->sh_info) {
244
		/*
245
		 * Remapping of shared address space areas 
246
		 * is not supported.
247
		 */
248
		mutex_unlock(&area->lock);
249
		mutex_unlock(&as->lock);
250
		interrupts_restore(ipl);
251
		return ENOTSUP;
252
	}
1235 jermar 253
 
254
	pages = SIZE2FRAMES((address - area->base) + size);
255
	if (!pages) {
256
		/*
257
		 * Zero size address space areas are not allowed.
258
		 */
1380 jermar 259
		mutex_unlock(&area->lock);
260
		mutex_unlock(&as->lock);
1235 jermar 261
		interrupts_restore(ipl);
1306 jermar 262
		return EPERM;
1235 jermar 263
	}
264
 
265
	if (pages < area->pages) {
1403 jermar 266
		bool cond;
267
		__address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 268
 
269
		/*
270
		 * Shrinking the area.
271
		 * No need to check for overlaps.
272
		 */
1403 jermar 273
 
274
		/*
275
		 * Remove frames belonging to used space starting from
276
		 * the highest addresses downwards until an overlap with
277
		 * the resized address space area is found. Note that this
278
		 * is also the right way to remove part of the used_space
279
		 * B+tree leaf list.
280
		 */		
281
		for (cond = true; cond;) {
282
			btree_node_t *node;
283
 
284
			ASSERT(!list_empty(&area->used_space.leaf_head));
285
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
286
			if ((cond = (bool) node->keys)) {
287
				__address b = node->key[node->keys - 1];
288
				count_t c = (count_t) node->value[node->keys - 1];
289
				int i = 0;
1235 jermar 290
 
1403 jermar 291
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
292
 
293
					if (b + c*PAGE_SIZE <= start_free) {
294
						/*
295
						 * The whole interval fits completely
296
						 * in the resized address space area.
297
						 */
298
						break;
299
					}
300
 
301
					/*
302
					 * Part of the interval corresponding to b and c
303
					 * overlaps with the resized address space area.
304
					 */
305
 
306
					cond = false;	/* we are almost done */
307
					i = (start_free - b) >> PAGE_WIDTH;
308
					if (!used_space_remove(area, start_free, c - i))
309
						panic("Could not remove used space.");
310
				} else {
311
					/*
312
					 * The interval of used space can be completely removed.
313
					 */
314
					if (!used_space_remove(area, b, c))
315
						panic("Could not remove used space.\n");
316
				}
317
 
318
				for (; i < c; i++) {
319
					pte_t *pte;
320
 
321
					page_table_lock(as, false);
322
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
323
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 324
					if (area->backend && area->backend->frame_free) {
325
						area->backend->frame_free(area,
1409 jermar 326
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
327
					}
1403 jermar 328
					page_mapping_remove(as, b + i*PAGE_SIZE);
329
					page_table_unlock(as, false);
330
				}
1235 jermar 331
			}
332
		}
333
		/*
334
		 * Invalidate TLB's.
335
		 */
336
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
337
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
338
		tlb_shootdown_finalize();
339
	} else {
340
		/*
341
		 * Growing the area.
342
		 * Check for overlaps with other address space areas.
343
		 */
344
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 345
			mutex_unlock(&area->lock);
346
			mutex_unlock(&as->lock);		
1235 jermar 347
			interrupts_restore(ipl);
1306 jermar 348
			return EADDRNOTAVAIL;
1235 jermar 349
		}
350
	} 
351
 
352
	area->pages = pages;
353
 
1380 jermar 354
	mutex_unlock(&area->lock);
355
	mutex_unlock(&as->lock);
1235 jermar 356
	interrupts_restore(ipl);
357
 
1306 jermar 358
	return 0;
1235 jermar 359
}
360
 
1306 jermar 361
/** Destroy address space area.
362
 *
363
 * @param as Address space.
364
 * @param address Address withing the area to be deleted.
365
 *
366
 * @return Zero on success or a value from @ref errno.h on failure. 
367
 */
368
int as_area_destroy(as_t *as, __address address)
369
{
370
	as_area_t *area;
371
	__address base;
372
	ipl_t ipl;
1411 jermar 373
	bool cond;
1306 jermar 374
 
375
	ipl = interrupts_disable();
1380 jermar 376
	mutex_lock(&as->lock);
1306 jermar 377
 
378
	area = find_area_and_lock(as, address);
379
	if (!area) {
1380 jermar 380
		mutex_unlock(&as->lock);
1306 jermar 381
		interrupts_restore(ipl);
382
		return ENOENT;
383
	}
384
 
1403 jermar 385
	base = area->base;
386
 
1411 jermar 387
	/*
388
	 * Visit only the pages mapped by used_space B+tree.
389
	 * Note that we must be very careful when walking the tree
390
	 * leaf list and removing used space as the leaf list changes
391
	 * unpredictibly after each remove. The solution is to actually
392
	 * not walk the tree at all, but to remove items from the head
393
	 * of the leaf list until there are some keys left.
394
	 */
395
	for (cond = true; cond;) {
396
		btree_node_t *node;
1403 jermar 397
 
1411 jermar 398
		ASSERT(!list_empty(&area->used_space.leaf_head));
399
		node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
400
		if ((cond = (bool) node->keys)) {
401
			__address b = node->key[0];
402
			count_t i;
403
			pte_t *pte;
1403 jermar 404
 
1411 jermar 405
			for (i = 0; i < (count_t) node->value[0]; i++) {
406
				page_table_lock(as, false);
407
				pte = page_mapping_find(as, b + i*PAGE_SIZE);
408
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 409
				if (area->backend && area->backend->frame_free) {
410
					area->backend->frame_free(area,
1411 jermar 411
						b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 412
				}
1411 jermar 413
				page_mapping_remove(as, b + i*PAGE_SIZE);
414
				page_table_unlock(as, false);
1306 jermar 415
			}
1411 jermar 416
			if (!used_space_remove(area, b, i))
417
				panic("Could not remove used space.\n");
1306 jermar 418
		}
419
	}
1403 jermar 420
	btree_destroy(&area->used_space);
421
 
1306 jermar 422
	/*
423
	 * Invalidate TLB's.
424
	 */
425
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
426
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
427
	tlb_shootdown_finalize();
428
 
1309 jermar 429
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 430
 
431
	if (area->sh_info)
432
		sh_info_remove_reference(area->sh_info);
433
 
1380 jermar 434
	mutex_unlock(&area->lock);
1306 jermar 435
 
436
	/*
437
	 * Remove the empty area from address space.
438
	 */
439
	btree_remove(&AS->as_area_btree, base, NULL);
440
 
1309 jermar 441
	free(area);
442
 
1380 jermar 443
	mutex_unlock(&AS->lock);
1306 jermar 444
	interrupts_restore(ipl);
445
	return 0;
446
}
447
 
1413 jermar 448
/** Share address space area with another or the same address space.
1235 jermar 449
 *
1424 jermar 450
 * Address space area mapping is shared with a new address space area.
451
 * If the source address space area has not been shared so far,
452
 * a new sh_info is created. The new address space area simply gets the
453
 * sh_info of the source area. The process of duplicating the
454
 * mapping is done through the backend share function.
1413 jermar 455
 * 
1417 jermar 456
 * @param src_as Pointer to source address space.
1239 jermar 457
 * @param src_base Base address of the source address space area.
1417 jermar 458
 * @param acc_size Expected size of the source area.
459
 * @param dst_base Target base address.
460
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 461
 *
1306 jermar 462
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 463
 *	   if there is no such address space area,
464
 *	   EPERM if there was a problem in accepting the area or
465
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 466
 *	   address space area. ENOTSUP is returned if an attempt
467
 *	   to share non-anonymous address space area is detected.
1235 jermar 468
 */
1413 jermar 469
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1417 jermar 470
		  __address dst_base, int dst_flags_mask)
1235 jermar 471
{
472
	ipl_t ipl;
1239 jermar 473
	int src_flags;
474
	size_t src_size;
475
	as_area_t *src_area, *dst_area;
1413 jermar 476
	share_info_t *sh_info;
1424 jermar 477
	mem_backend_t *src_backend;
478
	mem_backend_data_t src_backend_data;
1329 palkovsky 479
 
1235 jermar 480
	ipl = interrupts_disable();
1380 jermar 481
	mutex_lock(&src_as->lock);
1329 palkovsky 482
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 483
	if (!src_area) {
1238 jermar 484
		/*
485
		 * Could not find the source address space area.
486
		 */
1380 jermar 487
		mutex_unlock(&src_as->lock);
1238 jermar 488
		interrupts_restore(ipl);
489
		return ENOENT;
490
	}
1413 jermar 491
 
1424 jermar 492
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 493
		/*
1424 jermar 494
		 * There is now backend or the backend does not
495
		 * know how to share the area.
1413 jermar 496
		 */
497
		mutex_unlock(&src_area->lock);
498
		mutex_unlock(&src_as->lock);
499
		interrupts_restore(ipl);
500
		return ENOTSUP;
501
	}
502
 
1239 jermar 503
	src_size = src_area->pages * PAGE_SIZE;
504
	src_flags = src_area->flags;
1424 jermar 505
	src_backend = src_area->backend;
506
	src_backend_data = src_area->backend_data;
1413 jermar 507
 
1329 palkovsky 508
	if (src_size != acc_size) {
1413 jermar 509
		mutex_unlock(&src_area->lock);
510
		mutex_unlock(&src_as->lock);
1235 jermar 511
		interrupts_restore(ipl);
512
		return EPERM;
513
	}
1413 jermar 514
 
1235 jermar 515
	/*
1413 jermar 516
	 * Now we are committed to sharing the area.
517
	 * First prepare the area for sharing.
518
	 * Then it will be safe to unlock it.
519
	 */
520
	sh_info = src_area->sh_info;
521
	if (!sh_info) {
522
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
523
		mutex_initialize(&sh_info->lock);
524
		sh_info->refcount = 2;
525
		btree_create(&sh_info->pagemap);
526
		src_area->sh_info = sh_info;
527
	} else {
528
		mutex_lock(&sh_info->lock);
529
		sh_info->refcount++;
530
		mutex_unlock(&sh_info->lock);
531
	}
532
 
1424 jermar 533
	src_area->backend->share(src_area);
1413 jermar 534
 
535
	mutex_unlock(&src_area->lock);
536
	mutex_unlock(&src_as->lock);
537
 
538
	/*
1239 jermar 539
	 * Create copy of the source address space area.
540
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
541
	 * attribute set which prevents race condition with
542
	 * preliminary as_page_fault() calls.
1417 jermar 543
	 * The flags of the source area are masked against dst_flags_mask
544
	 * to support sharing in less privileged mode.
1235 jermar 545
	 */
1417 jermar 546
	dst_area = as_area_create(AS, src_flags & dst_flags_mask, src_size, dst_base,
1424 jermar 547
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 548
	if (!dst_area) {
1235 jermar 549
		/*
550
		 * Destination address space area could not be created.
551
		 */
1413 jermar 552
		sh_info_remove_reference(sh_info);
553
 
1235 jermar 554
		interrupts_restore(ipl);
555
		return ENOMEM;
556
	}
557
 
558
	/*
1239 jermar 559
	 * Now the destination address space area has been
560
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 561
	 * attribute and set the sh_info.
1239 jermar 562
	 */	
1380 jermar 563
	mutex_lock(&dst_area->lock);
1239 jermar 564
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 565
	dst_area->sh_info = sh_info;
1380 jermar 566
	mutex_unlock(&dst_area->lock);
1235 jermar 567
 
568
	interrupts_restore(ipl);
569
 
570
	return 0;
571
}
572
 
1423 jermar 573
/** Check access mode for address space area.
574
 *
575
 * The address space area must be locked prior to this call.
576
 *
577
 * @param area Address space area.
578
 * @param access Access mode.
579
 *
580
 * @return False if access violates area's permissions, true otherwise.
581
 */
582
bool as_area_check_access(as_area_t *area, pf_access_t access)
583
{
584
	int flagmap[] = {
585
		[PF_ACCESS_READ] = AS_AREA_READ,
586
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
587
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
588
	};
589
 
590
	if (!(area->flags & flagmap[access]))
591
		return false;
592
 
593
	return true;
594
}
595
 
703 jermar 596
/** Handle page fault within the current address space.
597
 *
1409 jermar 598
 * This is the high-level page fault handler. It decides
599
 * whether the page fault can be resolved by any backend
600
 * and if so, it invokes the backend to resolve the page
601
 * fault.
602
 *
703 jermar 603
 * Interrupts are assumed disabled.
604
 *
605
 * @param page Faulting page.
1411 jermar 606
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 607
 * @param istate Pointer to interrupted state.
703 jermar 608
 *
1409 jermar 609
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
610
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 611
 */
1411 jermar 612
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 613
{
1044 jermar 614
	pte_t *pte;
977 jermar 615
	as_area_t *area;
703 jermar 616
 
1380 jermar 617
	if (!THREAD)
1409 jermar 618
		return AS_PF_FAULT;
1380 jermar 619
 
703 jermar 620
	ASSERT(AS);
1044 jermar 621
 
1380 jermar 622
	mutex_lock(&AS->lock);
977 jermar 623
	area = find_area_and_lock(AS, page);	
703 jermar 624
	if (!area) {
625
		/*
626
		 * No area contained mapping for 'page'.
627
		 * Signal page fault to low-level handler.
628
		 */
1380 jermar 629
		mutex_unlock(&AS->lock);
1288 jermar 630
		goto page_fault;
703 jermar 631
	}
632
 
1239 jermar 633
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
634
		/*
635
		 * The address space area is not fully initialized.
636
		 * Avoid possible race by returning error.
637
		 */
1380 jermar 638
		mutex_unlock(&area->lock);
639
		mutex_unlock(&AS->lock);
1288 jermar 640
		goto page_fault;		
1239 jermar 641
	}
642
 
1424 jermar 643
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 644
		/*
645
		 * The address space area is not backed by any backend
646
		 * or the backend cannot handle page faults.
647
		 */
648
		mutex_unlock(&area->lock);
649
		mutex_unlock(&AS->lock);
650
		goto page_fault;		
651
	}
1179 jermar 652
 
1044 jermar 653
	page_table_lock(AS, false);
654
 
703 jermar 655
	/*
1044 jermar 656
	 * To avoid race condition between two page faults
657
	 * on the same address, we need to make sure
658
	 * the mapping has not been already inserted.
659
	 */
660
	if ((pte = page_mapping_find(AS, page))) {
661
		if (PTE_PRESENT(pte)) {
1423 jermar 662
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
663
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
664
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
665
				page_table_unlock(AS, false);
666
				mutex_unlock(&area->lock);
667
				mutex_unlock(&AS->lock);
668
				return AS_PF_OK;
669
			}
1044 jermar 670
		}
671
	}
1409 jermar 672
 
1044 jermar 673
	/*
1409 jermar 674
	 * Resort to the backend page fault handler.
703 jermar 675
	 */
1424 jermar 676
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 677
		page_table_unlock(AS, false);
678
		mutex_unlock(&area->lock);
679
		mutex_unlock(&AS->lock);
680
		goto page_fault;
681
	}
703 jermar 682
 
1044 jermar 683
	page_table_unlock(AS, false);
1380 jermar 684
	mutex_unlock(&area->lock);
685
	mutex_unlock(&AS->lock);
1288 jermar 686
	return AS_PF_OK;
687
 
688
page_fault:
689
	if (THREAD->in_copy_from_uspace) {
690
		THREAD->in_copy_from_uspace = false;
691
		istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
692
	} else if (THREAD->in_copy_to_uspace) {
693
		THREAD->in_copy_to_uspace = false;
694
		istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
695
	} else {
696
		return AS_PF_FAULT;
697
	}
698
 
699
	return AS_PF_DEFER;
703 jermar 700
}
701
 
823 jermar 702
/** Switch address spaces.
703 jermar 703
 *
1380 jermar 704
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 705
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 706
 *
823 jermar 707
 * @param old Old address space or NULL.
708
 * @param new New address space.
703 jermar 709
 */
823 jermar 710
void as_switch(as_t *old, as_t *new)
703 jermar 711
{
712
	ipl_t ipl;
823 jermar 713
	bool needs_asid = false;
703 jermar 714
 
715
	ipl = interrupts_disable();
1415 jermar 716
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 717
 
718
	/*
823 jermar 719
	 * First, take care of the old address space.
720
	 */	
721
	if (old) {
1380 jermar 722
		mutex_lock_active(&old->lock);
1415 jermar 723
		ASSERT(old->cpu_refcount);
724
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 725
			/*
726
			 * The old address space is no longer active on
727
			 * any processor. It can be appended to the
728
			 * list of inactive address spaces with assigned
729
			 * ASID.
730
			 */
731
			 ASSERT(old->asid != ASID_INVALID);
732
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
733
		}
1380 jermar 734
		mutex_unlock(&old->lock);
823 jermar 735
	}
736
 
737
	/*
738
	 * Second, prepare the new address space.
739
	 */
1380 jermar 740
	mutex_lock_active(&new->lock);
1415 jermar 741
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 742
		if (new->asid != ASID_INVALID)
743
			list_remove(&new->inactive_as_with_asid_link);
744
		else
745
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
746
	}
747
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 748
	mutex_unlock(&new->lock);
823 jermar 749
 
750
	if (needs_asid) {
751
		/*
752
		 * Allocation of new ASID was deferred
753
		 * until now in order to avoid deadlock.
754
		 */
755
		asid_t asid;
756
 
757
		asid = asid_get();
1380 jermar 758
		mutex_lock_active(&new->lock);
823 jermar 759
		new->asid = asid;
1380 jermar 760
		mutex_unlock(&new->lock);
823 jermar 761
	}
1415 jermar 762
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 763
	interrupts_restore(ipl);
764
 
765
	/*
703 jermar 766
	 * Perform architecture-specific steps.
727 jermar 767
	 * (e.g. write ASID to hardware register etc.)
703 jermar 768
	 */
823 jermar 769
	as_install_arch(new);
703 jermar 770
 
823 jermar 771
	AS = new;
703 jermar 772
}
754 jermar 773
 
1235 jermar 774
/** Convert address space area flags to page flags.
754 jermar 775
 *
1235 jermar 776
 * @param aflags Flags of some address space area.
754 jermar 777
 *
1235 jermar 778
 * @return Flags to be passed to page_mapping_insert().
754 jermar 779
 */
1235 jermar 780
int area_flags_to_page_flags(int aflags)
754 jermar 781
{
782
	int flags;
783
 
1178 jermar 784
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 785
 
1235 jermar 786
	if (aflags & AS_AREA_READ)
1026 jermar 787
		flags |= PAGE_READ;
788
 
1235 jermar 789
	if (aflags & AS_AREA_WRITE)
1026 jermar 790
		flags |= PAGE_WRITE;
791
 
1235 jermar 792
	if (aflags & AS_AREA_EXEC)
1026 jermar 793
		flags |= PAGE_EXEC;
794
 
1424 jermar 795
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 796
		flags |= PAGE_CACHEABLE;
797
 
754 jermar 798
	return flags;
799
}
756 jermar 800
 
1235 jermar 801
/** Compute flags for virtual address translation subsytem.
802
 *
803
 * The address space area must be locked.
804
 * Interrupts must be disabled.
805
 *
806
 * @param a Address space area.
807
 *
808
 * @return Flags to be used in page_mapping_insert().
809
 */
1409 jermar 810
int as_area_get_flags(as_area_t *a)
1235 jermar 811
{
812
	return area_flags_to_page_flags(a->flags);
813
}
814
 
756 jermar 815
/** Create page table.
816
 *
817
 * Depending on architecture, create either address space
818
 * private or global page table.
819
 *
820
 * @param flags Flags saying whether the page table is for kernel address space.
821
 *
822
 * @return First entry of the page table.
823
 */
824
pte_t *page_table_create(int flags)
825
{
826
        ASSERT(as_operations);
827
        ASSERT(as_operations->page_table_create);
828
 
829
        return as_operations->page_table_create(flags);
830
}
977 jermar 831
 
1044 jermar 832
/** Lock page table.
833
 *
834
 * This function should be called before any page_mapping_insert(),
835
 * page_mapping_remove() and page_mapping_find().
836
 * 
837
 * Locking order is such that address space areas must be locked
838
 * prior to this call. Address space can be locked prior to this
839
 * call in which case the lock argument is false.
840
 *
841
 * @param as Address space.
1248 jermar 842
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 843
 */
844
void page_table_lock(as_t *as, bool lock)
845
{
846
	ASSERT(as_operations);
847
	ASSERT(as_operations->page_table_lock);
848
 
849
	as_operations->page_table_lock(as, lock);
850
}
851
 
852
/** Unlock page table.
853
 *
854
 * @param as Address space.
1248 jermar 855
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 856
 */
857
void page_table_unlock(as_t *as, bool unlock)
858
{
859
	ASSERT(as_operations);
860
	ASSERT(as_operations->page_table_unlock);
861
 
862
	as_operations->page_table_unlock(as, unlock);
863
}
864
 
977 jermar 865
 
866
/** Find address space area and lock it.
867
 *
868
 * The address space must be locked and interrupts must be disabled.
869
 *
870
 * @param as Address space.
871
 * @param va Virtual address.
872
 *
873
 * @return Locked address space area containing va on success or NULL on failure.
874
 */
875
as_area_t *find_area_and_lock(as_t *as, __address va)
876
{
877
	as_area_t *a;
1147 jermar 878
	btree_node_t *leaf, *lnode;
879
	int i;
977 jermar 880
 
1147 jermar 881
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
882
	if (a) {
883
		/* va is the base address of an address space area */
1380 jermar 884
		mutex_lock(&a->lock);
1147 jermar 885
		return a;
886
	}
887
 
888
	/*
1150 jermar 889
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 890
	 * to find out whether this is a miss or va belongs to an address
891
	 * space area found there.
892
	 */
893
 
894
	/* First, search the leaf node itself. */
895
	for (i = 0; i < leaf->keys; i++) {
896
		a = (as_area_t *) leaf->value[i];
1380 jermar 897
		mutex_lock(&a->lock);
1147 jermar 898
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
899
			return a;
900
		}
1380 jermar 901
		mutex_unlock(&a->lock);
1147 jermar 902
	}
977 jermar 903
 
1147 jermar 904
	/*
1150 jermar 905
	 * Second, locate the left neighbour and test its last record.
1148 jermar 906
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 907
	 */
1150 jermar 908
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 909
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 910
		mutex_lock(&a->lock);
1147 jermar 911
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 912
			return a;
1147 jermar 913
		}
1380 jermar 914
		mutex_unlock(&a->lock);
977 jermar 915
	}
916
 
917
	return NULL;
918
}
1048 jermar 919
 
920
/** Check area conflicts with other areas.
921
 *
922
 * The address space must be locked and interrupts must be disabled.
923
 *
924
 * @param as Address space.
925
 * @param va Starting virtual address of the area being tested.
926
 * @param size Size of the area being tested.
927
 * @param avoid_area Do not touch this area. 
928
 *
929
 * @return True if there is no conflict, false otherwise.
930
 */
931
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
932
{
933
	as_area_t *a;
1147 jermar 934
	btree_node_t *leaf, *node;
935
	int i;
1048 jermar 936
 
1070 jermar 937
	/*
938
	 * We don't want any area to have conflicts with NULL page.
939
	 */
940
	if (overlaps(va, size, NULL, PAGE_SIZE))
941
		return false;
942
 
1147 jermar 943
	/*
944
	 * The leaf node is found in O(log n), where n is proportional to
945
	 * the number of address space areas belonging to as.
946
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 947
	 * record in the left neighbour, the leftmost record in the right
948
	 * neighbour and all records in the leaf node itself.
1147 jermar 949
	 */
1048 jermar 950
 
1147 jermar 951
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
952
		if (a != avoid_area)
953
			return false;
954
	}
955
 
956
	/* First, check the two border cases. */
1150 jermar 957
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 958
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 959
		mutex_lock(&a->lock);
1147 jermar 960
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 961
			mutex_unlock(&a->lock);
1147 jermar 962
			return false;
963
		}
1380 jermar 964
		mutex_unlock(&a->lock);
1147 jermar 965
	}
1150 jermar 966
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 967
		a = (as_area_t *) node->value[0];
1380 jermar 968
		mutex_lock(&a->lock);
1147 jermar 969
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 970
			mutex_unlock(&a->lock);
1147 jermar 971
			return false;
972
		}
1380 jermar 973
		mutex_unlock(&a->lock);
1147 jermar 974
	}
975
 
976
	/* Second, check the leaf node. */
977
	for (i = 0; i < leaf->keys; i++) {
978
		a = (as_area_t *) leaf->value[i];
979
 
1048 jermar 980
		if (a == avoid_area)
981
			continue;
1147 jermar 982
 
1380 jermar 983
		mutex_lock(&a->lock);
1147 jermar 984
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 985
			mutex_unlock(&a->lock);
1147 jermar 986
			return false;
987
		}
1380 jermar 988
		mutex_unlock(&a->lock);
1048 jermar 989
	}
990
 
1070 jermar 991
	/*
992
	 * So far, the area does not conflict with other areas.
993
	 * Check if it doesn't conflict with kernel address space.
994
	 */	 
995
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
996
		return !overlaps(va, size, 
997
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
998
	}
999
 
1048 jermar 1000
	return true;
1001
}
1235 jermar 1002
 
1380 jermar 1003
/** Return size of the address space area with given base.  */
1329 palkovsky 1004
size_t as_get_size(__address base)
1005
{
1006
	ipl_t ipl;
1007
	as_area_t *src_area;
1008
	size_t size;
1009
 
1010
	ipl = interrupts_disable();
1011
	src_area = find_area_and_lock(AS, base);
1012
	if (src_area){
1013
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1014
		mutex_unlock(&src_area->lock);
1329 palkovsky 1015
	} else {
1016
		size = 0;
1017
	}
1018
	interrupts_restore(ipl);
1019
	return size;
1020
}
1021
 
1387 jermar 1022
/** Mark portion of address space area as used.
1023
 *
1024
 * The address space area must be already locked.
1025
 *
1026
 * @param a Address space area.
1027
 * @param page First page to be marked.
1028
 * @param count Number of page to be marked.
1029
 *
1030
 * @return 0 on failure and 1 on success.
1031
 */
1032
int used_space_insert(as_area_t *a, __address page, count_t count)
1033
{
1034
	btree_node_t *leaf, *node;
1035
	count_t pages;
1036
	int i;
1037
 
1038
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1039
	ASSERT(count);
1040
 
1041
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1042
	if (pages) {
1043
		/*
1044
		 * We hit the beginning of some used space.
1045
		 */
1046
		return 0;
1047
	}
1048
 
1049
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1050
	if (node) {
1051
		__address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1052
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1053
 
1054
		/*
1055
		 * Examine the possibility that the interval fits
1056
		 * somewhere between the rightmost interval of
1057
		 * the left neigbour and the first interval of the leaf.
1058
		 */
1059
 
1060
		if (page >= right_pg) {
1061
			/* Do nothing. */
1062
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1063
			/* The interval intersects with the left interval. */
1064
			return 0;
1065
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1066
			/* The interval intersects with the right interval. */
1067
			return 0;			
1068
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1069
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1070
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1071
			btree_remove(&a->used_space, right_pg, leaf);
1072
			return 1; 
1073
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1074
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1075
			node->value[node->keys - 1] += count;
1387 jermar 1076
			return 1;
1077
		} else if (page + count*PAGE_SIZE == right_pg) {
1078
			/*
1079
			 * The interval can be addded by simply moving base of the right
1080
			 * interval down and increasing its size accordingly.
1081
			 */
1403 jermar 1082
			leaf->value[0] += count;
1387 jermar 1083
			leaf->key[0] = page;
1084
			return 1;
1085
		} else {
1086
			/*
1087
			 * The interval is between both neigbouring intervals,
1088
			 * but cannot be merged with any of them.
1089
			 */
1090
			btree_insert(&a->used_space, page, (void *) count, leaf);
1091
			return 1;
1092
		}
1093
	} else if (page < leaf->key[0]) {
1094
		__address right_pg = leaf->key[0];
1095
		count_t right_cnt = (count_t) leaf->value[0];
1096
 
1097
		/*
1098
		 * Investigate the border case in which the left neighbour does not
1099
		 * exist but the interval fits from the left.
1100
		 */
1101
 
1102
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1103
			/* The interval intersects with the right interval. */
1104
			return 0;
1105
		} else if (page + count*PAGE_SIZE == right_pg) {
1106
			/*
1107
			 * The interval can be added by moving the base of the right interval down
1108
			 * and increasing its size accordingly.
1109
			 */
1110
			leaf->key[0] = page;
1403 jermar 1111
			leaf->value[0] += count;
1387 jermar 1112
			return 1;
1113
		} else {
1114
			/*
1115
			 * The interval doesn't adjoin with the right interval.
1116
			 * It must be added individually.
1117
			 */
1118
			btree_insert(&a->used_space, page, (void *) count, leaf);
1119
			return 1;
1120
		}
1121
	}
1122
 
1123
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1124
	if (node) {
1125
		__address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1126
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1127
 
1128
		/*
1129
		 * Examine the possibility that the interval fits
1130
		 * somewhere between the leftmost interval of
1131
		 * the right neigbour and the last interval of the leaf.
1132
		 */
1133
 
1134
		if (page < left_pg) {
1135
			/* Do nothing. */
1136
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1137
			/* The interval intersects with the left interval. */
1138
			return 0;
1139
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1140
			/* The interval intersects with the right interval. */
1141
			return 0;			
1142
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1143
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1144
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1145
			btree_remove(&a->used_space, right_pg, node);
1146
			return 1; 
1147
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1148
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1149
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1150
			return 1;
1151
		} else if (page + count*PAGE_SIZE == right_pg) {
1152
			/*
1153
			 * The interval can be addded by simply moving base of the right
1154
			 * interval down and increasing its size accordingly.
1155
			 */
1403 jermar 1156
			node->value[0] += count;
1387 jermar 1157
			node->key[0] = page;
1158
			return 1;
1159
		} else {
1160
			/*
1161
			 * The interval is between both neigbouring intervals,
1162
			 * but cannot be merged with any of them.
1163
			 */
1164
			btree_insert(&a->used_space, page, (void *) count, leaf);
1165
			return 1;
1166
		}
1167
	} else if (page >= leaf->key[leaf->keys - 1]) {
1168
		__address left_pg = leaf->key[leaf->keys - 1];
1169
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1170
 
1171
		/*
1172
		 * Investigate the border case in which the right neighbour does not
1173
		 * exist but the interval fits from the right.
1174
		 */
1175
 
1176
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1177
			/* The interval intersects with the left interval. */
1387 jermar 1178
			return 0;
1179
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1180
			/* The interval can be added by growing the left interval. */
1403 jermar 1181
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1182
			return 1;
1183
		} else {
1184
			/*
1185
			 * The interval doesn't adjoin with the left interval.
1186
			 * It must be added individually.
1187
			 */
1188
			btree_insert(&a->used_space, page, (void *) count, leaf);
1189
			return 1;
1190
		}
1191
	}
1192
 
1193
	/*
1194
	 * Note that if the algorithm made it thus far, the interval can fit only
1195
	 * between two other intervals of the leaf. The two border cases were already
1196
	 * resolved.
1197
	 */
1198
	for (i = 1; i < leaf->keys; i++) {
1199
		if (page < leaf->key[i]) {
1200
			__address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1201
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1202
 
1203
			/*
1204
			 * The interval fits between left_pg and right_pg.
1205
			 */
1206
 
1207
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1208
				/* The interval intersects with the left interval. */
1209
				return 0;
1210
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1211
				/* The interval intersects with the right interval. */
1212
				return 0;			
1213
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1214
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1215
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1216
				btree_remove(&a->used_space, right_pg, leaf);
1217
				return 1; 
1218
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1219
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1220
				leaf->value[i - 1] += count;
1387 jermar 1221
				return 1;
1222
			} else if (page + count*PAGE_SIZE == right_pg) {
1223
				/*
1224
			         * The interval can be addded by simply moving base of the right
1225
			 	 * interval down and increasing its size accordingly.
1226
			 	 */
1403 jermar 1227
				leaf->value[i] += count;
1387 jermar 1228
				leaf->key[i] = page;
1229
				return 1;
1230
			} else {
1231
				/*
1232
				 * The interval is between both neigbouring intervals,
1233
				 * but cannot be merged with any of them.
1234
				 */
1235
				btree_insert(&a->used_space, page, (void *) count, leaf);
1236
				return 1;
1237
			}
1238
		}
1239
	}
1240
 
1241
	panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1242
}
1243
 
1244
/** Mark portion of address space area as unused.
1245
 *
1246
 * The address space area must be already locked.
1247
 *
1248
 * @param a Address space area.
1249
 * @param page First page to be marked.
1250
 * @param count Number of page to be marked.
1251
 *
1252
 * @return 0 on failure and 1 on success.
1253
 */
1254
int used_space_remove(as_area_t *a, __address page, count_t count)
1255
{
1256
	btree_node_t *leaf, *node;
1257
	count_t pages;
1258
	int i;
1259
 
1260
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1261
	ASSERT(count);
1262
 
1263
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1264
	if (pages) {
1265
		/*
1266
		 * We are lucky, page is the beginning of some interval.
1267
		 */
1268
		if (count > pages) {
1269
			return 0;
1270
		} else if (count == pages) {
1271
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1272
			return 1;
1387 jermar 1273
		} else {
1274
			/*
1275
			 * Find the respective interval.
1276
			 * Decrease its size and relocate its start address.
1277
			 */
1278
			for (i = 0; i < leaf->keys; i++) {
1279
				if (leaf->key[i] == page) {
1280
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1281
					leaf->value[i] -= count;
1387 jermar 1282
					return 1;
1283
				}
1284
			}
1285
			goto error;
1286
		}
1287
	}
1288
 
1289
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1290
	if (node && page < leaf->key[0]) {
1291
		__address left_pg = node->key[node->keys - 1];
1292
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1293
 
1294
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1295
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1296
				/*
1297
				 * The interval is contained in the rightmost interval
1298
				 * of the left neighbour and can be removed by
1299
				 * updating the size of the bigger interval.
1300
				 */
1403 jermar 1301
				node->value[node->keys - 1] -= count;
1387 jermar 1302
				return 1;
1303
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1304
				count_t new_cnt;
1387 jermar 1305
 
1306
				/*
1307
				 * The interval is contained in the rightmost interval
1308
				 * of the left neighbour but its removal requires
1309
				 * both updating the size of the original interval and
1310
				 * also inserting a new interval.
1311
				 */
1403 jermar 1312
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1313
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1314
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1315
				return 1;
1316
			}
1317
		}
1318
		return 0;
1319
	} else if (page < leaf->key[0]) {
1320
		return 0;
1321
	}
1322
 
1323
	if (page > leaf->key[leaf->keys - 1]) {
1324
		__address left_pg = leaf->key[leaf->keys - 1];
1325
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1326
 
1327
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1328
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1329
				/*
1330
				 * The interval is contained in the rightmost interval
1331
				 * of the leaf and can be removed by updating the size
1332
				 * of the bigger interval.
1333
				 */
1403 jermar 1334
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1335
				return 1;
1336
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1337
				count_t new_cnt;
1387 jermar 1338
 
1339
				/*
1340
				 * The interval is contained in the rightmost interval
1341
				 * of the leaf but its removal requires both updating
1342
				 * the size of the original interval and
1343
				 * also inserting a new interval.
1344
				 */
1403 jermar 1345
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1346
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1347
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1348
				return 1;
1349
			}
1350
		}
1351
		return 0;
1352
	}	
1353
 
1354
	/*
1355
	 * The border cases have been already resolved.
1356
	 * Now the interval can be only between intervals of the leaf. 
1357
	 */
1358
	for (i = 1; i < leaf->keys - 1; i++) {
1359
		if (page < leaf->key[i]) {
1360
			__address left_pg = leaf->key[i - 1];
1361
			count_t left_cnt = (count_t) leaf->value[i - 1];
1362
 
1363
			/*
1364
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1365
			 */
1366
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1367
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1368
					/*
1369
				 	* The interval is contained in the interval (i - 1)
1370
					 * of the leaf and can be removed by updating the size
1371
					 * of the bigger interval.
1372
					 */
1403 jermar 1373
					leaf->value[i - 1] -= count;
1387 jermar 1374
					return 1;
1375
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1376
					count_t new_cnt;
1387 jermar 1377
 
1378
					/*
1379
					 * The interval is contained in the interval (i - 1)
1380
					 * of the leaf but its removal requires both updating
1381
					 * the size of the original interval and
1382
					 * also inserting a new interval.
1383
					 */
1403 jermar 1384
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1385
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1386
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1387
					return 1;
1388
				}
1389
			}
1390
			return 0;
1391
		}
1392
	}
1393
 
1394
error:
1395
	panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1396
}
1397
 
1409 jermar 1398
/** Remove reference to address space area share info.
1399
 *
1400
 * If the reference count drops to 0, the sh_info is deallocated.
1401
 *
1402
 * @param sh_info Pointer to address space area share info.
1403
 */
1404
void sh_info_remove_reference(share_info_t *sh_info)
1405
{
1406
	bool dealloc = false;
1407
 
1408
	mutex_lock(&sh_info->lock);
1409
	ASSERT(sh_info->refcount);
1410
	if (--sh_info->refcount == 0) {
1411
		dealloc = true;
1412
		bool cond;
1413
 
1414
		/*
1415
		 * Now walk carefully the pagemap B+tree and free/remove
1416
		 * reference from all frames found there.
1417
		 */
1418
		for (cond = true; cond;) {
1419
			btree_node_t *node;
1420
 
1421
			ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1422
			node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1423
			if ((cond = node->keys)) {
1424
				frame_free(ADDR2PFN((__address) node->value[0]));
1425
				btree_remove(&sh_info->pagemap, node->key[0], node);
1426
			}
1427
		}
1428
 
1429
	}
1430
	mutex_unlock(&sh_info->lock);
1431
 
1432
	if (dealloc) {
1433
		btree_destroy(&sh_info->pagemap);
1434
		free(sh_info);
1435
	}
1436
}
1437
 
1235 jermar 1438
/*
1439
 * Address space related syscalls.
1440
 */
1441
 
1442
/** Wrapper for as_area_create(). */
1443
__native sys_as_area_create(__address address, size_t size, int flags)
1444
{
1424 jermar 1445
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1446
		return (__native) address;
1447
	else
1448
		return (__native) -1;
1449
}
1450
 
1451
/** Wrapper for as_area_resize. */
1452
__native sys_as_area_resize(__address address, size_t size, int flags)
1453
{
1306 jermar 1454
	return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1455
}
1456
 
1306 jermar 1457
/** Wrapper for as_area_destroy. */
1458
__native sys_as_area_destroy(__address address)
1459
{
1460
	return (__native) as_area_destroy(AS, address);
1461
}