Subversion Repositories HelenOS

Rev

Rev 3384 | Rev 3707 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
2183 jermar 60
#include <preemption.h>
703 jermar 61
#include <synch/spinlock.h>
1380 jermar 62
#include <synch/mutex.h>
788 jermar 63
#include <adt/list.h>
1147 jermar 64
#include <adt/btree.h>
1235 jermar 65
#include <proc/task.h>
1288 jermar 66
#include <proc/thread.h>
1235 jermar 67
#include <arch/asm.h>
703 jermar 68
#include <panic.h>
69
#include <debug.h>
1235 jermar 70
#include <print.h>
703 jermar 71
#include <memstr.h>
1070 jermar 72
#include <macros.h>
703 jermar 73
#include <arch.h>
1235 jermar 74
#include <errno.h>
75
#include <config.h>
1387 jermar 76
#include <align.h>
1235 jermar 77
#include <arch/types.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
1757 jermar 85
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 */
756 jermar 89
as_operations_t *as_operations = NULL;
703 jermar 90
 
1890 jermar 91
/**
92
 * Slab for as_t objects.
93
 */
94
static slab_cache_t *as_slab;
95
 
2087 jermar 96
/**
2170 jermar 97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
2087 jermar 102
 */
2170 jermar 103
SPINLOCK_INITIALIZE(asidlock);
823 jermar 104
 
105
/**
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
757 jermar 111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
113
 
3384 jermar 114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
703 jermar 118
 
1891 jermar 119
static int as_constructor(void *obj, int flags)
120
{
121
	as_t *as = (as_t *) obj;
122
	int rc;
123
 
124
	link_initialize(&as->inactive_as_with_asid_link);
3186 jermar 125
	mutex_initialize(&as->lock, MUTEX_PASSIVE);	
1891 jermar 126
 
127
	rc = as_constructor_arch(as, flags);
128
 
129
	return rc;
130
}
131
 
132
static int as_destructor(void *obj)
133
{
134
	as_t *as = (as_t *) obj;
135
 
136
	return as_destructor_arch(as);
137
}
138
 
756 jermar 139
/** Initialize address space subsystem. */
140
void as_init(void)
141
{
142
	as_arch_init();
2126 decky 143
 
1891 jermar 144
	as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 145
	    as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 146
 
789 palkovsky 147
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 148
	if (!AS_KERNEL)
149
		panic("can't create kernel address space\n");
150
 
756 jermar 151
}
152
 
757 jermar 153
/** Create address space.
154
 *
3384 jermar 155
 * @param flags		Flags that influence the way in wich the address space
156
 * 			is created.
757 jermar 157
 */
756 jermar 158
as_t *as_create(int flags)
703 jermar 159
{
160
	as_t *as;
161
 
1890 jermar 162
	as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 163
	(void) as_create_arch(as, 0);
164
 
1147 jermar 165
	btree_create(&as->as_area_btree);
822 palkovsky 166
 
167
	if (flags & FLAG_AS_KERNEL)
168
		as->asid = ASID_KERNEL;
169
	else
170
		as->asid = ASID_INVALID;
171
 
2183 jermar 172
	atomic_set(&as->refcount, 0);
1415 jermar 173
	as->cpu_refcount = 0;
2089 decky 174
#ifdef AS_PAGE_TABLE
2106 jermar 175
	as->genarch.page_table = page_table_create(flags);
2089 decky 176
#else
177
	page_table_create(flags);
178
#endif
703 jermar 179
 
180
	return as;
181
}
182
 
1468 jermar 183
/** Destroy adress space.
184
 *
2087 jermar 185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
2183 jermar 187
 *
188
 * We know that we don't hold any spinlock.
3384 jermar 189
 *
190
 * @param as		Address space to be destroyed.
1468 jermar 191
 */
192
void as_destroy(as_t *as)
973 palkovsky 193
{
1468 jermar 194
	ipl_t ipl;
1594 jermar 195
	bool cond;
2183 jermar 196
	DEADLOCK_PROBE_INIT(p_asidlock);
973 palkovsky 197
 
2183 jermar 198
	ASSERT(atomic_get(&as->refcount) == 0);
1468 jermar 199
 
200
	/*
201
	 * Since there is no reference to this area,
202
	 * it is safe not to lock its mutex.
203
	 */
2170 jermar 204
 
2183 jermar 205
	/*
206
	 * We need to avoid deadlock between TLB shootdown and asidlock.
207
	 * We therefore try to take asid conditionally and if we don't succeed,
208
	 * we enable interrupts and try again. This is done while preemption is
209
	 * disabled to prevent nested context switches. We also depend on the
210
	 * fact that so far no spinlocks are held.
211
	 */
212
	preemption_disable();
213
	ipl = interrupts_read();
214
retry:
215
	interrupts_disable();
216
	if (!spinlock_trylock(&asidlock)) {
217
		interrupts_enable();
218
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
		goto retry;
220
	}
221
	preemption_enable();	/* Interrupts disabled, enable preemption */
1587 jermar 222
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 223
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 224
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 225
		asid_put(as->asid);
226
	}
2170 jermar 227
	spinlock_unlock(&asidlock);
1468 jermar 228
 
229
	/*
230
	 * Destroy address space areas of the address space.
1954 jermar 231
	 * The B+tree must be walked carefully because it is
1594 jermar 232
	 * also being destroyed.
1468 jermar 233
	 */	
1594 jermar 234
	for (cond = true; cond; ) {
1468 jermar 235
		btree_node_t *node;
1594 jermar 236
 
237
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 238
		node = list_get_instance(as->as_area_btree.leaf_head.next,
239
		    btree_node_t, leaf_link);
1594 jermar 240
 
241
		if ((cond = node->keys)) {
242
			as_area_destroy(as, node->key[0]);
243
		}
1468 jermar 244
	}
1495 jermar 245
 
1483 jermar 246
	btree_destroy(&as->as_area_btree);
2089 decky 247
#ifdef AS_PAGE_TABLE
2106 jermar 248
	page_table_destroy(as->genarch.page_table);
2089 decky 249
#else
250
	page_table_destroy(NULL);
251
#endif
1468 jermar 252
 
253
	interrupts_restore(ipl);
2126 decky 254
 
1890 jermar 255
	slab_free(as_slab, as);
973 palkovsky 256
}
257
 
703 jermar 258
/** Create address space area of common attributes.
259
 *
260
 * The created address space area is added to the target address space.
261
 *
3384 jermar 262
 * @param as		Target address space.
263
 * @param flags		Flags of the area memory.
264
 * @param size		Size of area.
265
 * @param base		Base address of area.
266
 * @param attrs		Attributes of the area.
267
 * @param backend	Address space area backend. NULL if no backend is used.
268
 * @param backend_data	NULL or a pointer to an array holding two void *.
703 jermar 269
 *
3384 jermar 270
 * @return		Address space area on success or NULL on failure.
703 jermar 271
 */
2069 jermar 272
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
3384 jermar 274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 275
{
276
	ipl_t ipl;
277
	as_area_t *a;
278
 
279
	if (base % PAGE_SIZE)
1048 jermar 280
		return NULL;
281
 
1233 jermar 282
	if (!size)
283
		return NULL;
284
 
1048 jermar 285
	/* Writeable executable areas are not supported. */
286
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
		return NULL;
703 jermar 288
 
289
	ipl = interrupts_disable();
1380 jermar 290
	mutex_lock(&as->lock);
703 jermar 291
 
1048 jermar 292
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 293
		mutex_unlock(&as->lock);
1048 jermar 294
		interrupts_restore(ipl);
295
		return NULL;
296
	}
703 jermar 297
 
822 palkovsky 298
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 299
 
3186 jermar 300
	mutex_initialize(&a->lock, MUTEX_PASSIVE);
822 palkovsky 301
 
1424 jermar 302
	a->as = as;
1026 jermar 303
	a->flags = flags;
1239 jermar 304
	a->attributes = attrs;
1048 jermar 305
	a->pages = SIZE2FRAMES(size);
822 palkovsky 306
	a->base = base;
1409 jermar 307
	a->sh_info = NULL;
308
	a->backend = backend;
1424 jermar 309
	if (backend_data)
310
		a->backend_data = *backend_data;
311
	else
3104 svoboda 312
		memsetb(&a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 313
 
1387 jermar 314
	btree_create(&a->used_space);
822 palkovsky 315
 
1147 jermar 316
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 317
 
1380 jermar 318
	mutex_unlock(&as->lock);
703 jermar 319
	interrupts_restore(ipl);
704 jermar 320
 
703 jermar 321
	return a;
322
}
323
 
1235 jermar 324
/** Find address space area and change it.
325
 *
3384 jermar 326
 * @param as		Address space.
327
 * @param address	Virtual address belonging to the area to be changed.
328
 * 			Must be page-aligned.
329
 * @param size		New size of the virtual memory block starting at
330
 * 			address. 
331
 * @param flags		Flags influencing the remap operation. Currently unused.
1235 jermar 332
 *
3384 jermar 333
 * @return		Zero on success or a value from @ref errno.h otherwise.
1235 jermar 334
 */ 
1780 jermar 335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 336
{
1306 jermar 337
	as_area_t *area;
1235 jermar 338
	ipl_t ipl;
339
	size_t pages;
340
 
341
	ipl = interrupts_disable();
1380 jermar 342
	mutex_lock(&as->lock);
1235 jermar 343
 
344
	/*
345
	 * Locate the area.
346
	 */
347
	area = find_area_and_lock(as, address);
348
	if (!area) {
1380 jermar 349
		mutex_unlock(&as->lock);
1235 jermar 350
		interrupts_restore(ipl);
1306 jermar 351
		return ENOENT;
1235 jermar 352
	}
353
 
1424 jermar 354
	if (area->backend == &phys_backend) {
1235 jermar 355
		/*
356
		 * Remapping of address space areas associated
357
		 * with memory mapped devices is not supported.
358
		 */
1380 jermar 359
		mutex_unlock(&area->lock);
360
		mutex_unlock(&as->lock);
1235 jermar 361
		interrupts_restore(ipl);
1306 jermar 362
		return ENOTSUP;
1235 jermar 363
	}
1409 jermar 364
	if (area->sh_info) {
365
		/*
366
		 * Remapping of shared address space areas 
367
		 * is not supported.
368
		 */
369
		mutex_unlock(&area->lock);
370
		mutex_unlock(&as->lock);
371
		interrupts_restore(ipl);
372
		return ENOTSUP;
373
	}
1235 jermar 374
 
375
	pages = SIZE2FRAMES((address - area->base) + size);
376
	if (!pages) {
377
		/*
378
		 * Zero size address space areas are not allowed.
379
		 */
1380 jermar 380
		mutex_unlock(&area->lock);
381
		mutex_unlock(&as->lock);
1235 jermar 382
		interrupts_restore(ipl);
1306 jermar 383
		return EPERM;
1235 jermar 384
	}
385
 
386
	if (pages < area->pages) {
1403 jermar 387
		bool cond;
3422 jermar 388
		uintptr_t start_free = area->base + pages * PAGE_SIZE;
1235 jermar 389
 
390
		/*
391
		 * Shrinking the area.
392
		 * No need to check for overlaps.
393
		 */
1403 jermar 394
 
395
		/*
1436 jermar 396
		 * Start TLB shootdown sequence.
397
		 */
3422 jermar 398
		tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
2087 jermar 399
		    pages * PAGE_SIZE, area->pages - pages);
1436 jermar 400
 
401
		/*
1403 jermar 402
		 * Remove frames belonging to used space starting from
403
		 * the highest addresses downwards until an overlap with
404
		 * the resized address space area is found. Note that this
405
		 * is also the right way to remove part of the used_space
406
		 * B+tree leaf list.
407
		 */		
408
		for (cond = true; cond;) {
409
			btree_node_t *node;
410
 
411
			ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 412
			node = 
413
			    list_get_instance(area->used_space.leaf_head.prev,
414
			    btree_node_t, leaf_link);
1403 jermar 415
			if ((cond = (bool) node->keys)) {
1780 jermar 416
				uintptr_t b = node->key[node->keys - 1];
2087 jermar 417
				count_t c =
418
				    (count_t) node->value[node->keys - 1];
2745 decky 419
				unsigned int i = 0;
1235 jermar 420
 
2087 jermar 421
				if (overlaps(b, c * PAGE_SIZE, area->base,
2133 jermar 422
				    pages * PAGE_SIZE)) {
1403 jermar 423
 
2087 jermar 424
					if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 425
						/*
2087 jermar 426
						 * The whole interval fits
427
						 * completely in the resized
428
						 * address space area.
1403 jermar 429
						 */
430
						break;
431
					}
432
 
433
					/*
2087 jermar 434
					 * Part of the interval corresponding
435
					 * to b and c overlaps with the resized
436
					 * address space area.
1403 jermar 437
					 */
438
 
439
					cond = false;	/* we are almost done */
440
					i = (start_free - b) >> PAGE_WIDTH;
3384 jermar 441
					if (!used_space_remove(area, start_free,
442
					    c - i))
443
						panic("Could not remove used "
444
						    "space.\n");
1403 jermar 445
				} else {
446
					/*
2087 jermar 447
					 * The interval of used space can be
448
					 * completely removed.
1403 jermar 449
					 */
450
					if (!used_space_remove(area, b, c))
3384 jermar 451
						panic("Could not remove used "
452
						    "space.\n");
1403 jermar 453
				}
454
 
455
				for (; i < c; i++) {
456
					pte_t *pte;
457
 
458
					page_table_lock(as, false);
2087 jermar 459
					pte = page_mapping_find(as, b +
460
					    i * PAGE_SIZE);
461
					ASSERT(pte && PTE_VALID(pte) &&
462
					    PTE_PRESENT(pte));
463
					if (area->backend &&
464
					    area->backend->frame_free) {
1424 jermar 465
						area->backend->frame_free(area,
2087 jermar 466
						    b + i * PAGE_SIZE,
467
						    PTE_GET_FRAME(pte));
1409 jermar 468
					}
2087 jermar 469
					page_mapping_remove(as, b +
470
					    i * PAGE_SIZE);
1403 jermar 471
					page_table_unlock(as, false);
472
				}
1235 jermar 473
			}
474
		}
1436 jermar 475
 
1235 jermar 476
		/*
1436 jermar 477
		 * Finish TLB shootdown sequence.
1235 jermar 478
		 */
2183 jermar 479
 
2087 jermar 480
		tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
		    area->pages - pages);
1889 jermar 482
		/*
483
		 * Invalidate software translation caches (e.g. TSB on sparc64).
484
		 */
2087 jermar 485
		as_invalidate_translation_cache(as, area->base +
486
		    pages * PAGE_SIZE, area->pages - pages);
2183 jermar 487
		tlb_shootdown_finalize();
488
 
1235 jermar 489
	} else {
490
		/*
491
		 * Growing the area.
492
		 * Check for overlaps with other address space areas.
493
		 */
2087 jermar 494
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
		    area)) {
1380 jermar 496
			mutex_unlock(&area->lock);
497
			mutex_unlock(&as->lock);		
1235 jermar 498
			interrupts_restore(ipl);
1306 jermar 499
			return EADDRNOTAVAIL;
1235 jermar 500
		}
501
	} 
502
 
503
	area->pages = pages;
504
 
1380 jermar 505
	mutex_unlock(&area->lock);
506
	mutex_unlock(&as->lock);
1235 jermar 507
	interrupts_restore(ipl);
508
 
1306 jermar 509
	return 0;
1235 jermar 510
}
511
 
1306 jermar 512
/** Destroy address space area.
513
 *
3384 jermar 514
 * @param as		Address space.
515
 * @param address	Address within the area to be deleted.
1306 jermar 516
 *
3384 jermar 517
 * @return		Zero on success or a value from @ref errno.h on failure.
1306 jermar 518
 */
1780 jermar 519
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 520
{
521
	as_area_t *area;
1780 jermar 522
	uintptr_t base;
1495 jermar 523
	link_t *cur;
1306 jermar 524
	ipl_t ipl;
525
 
526
	ipl = interrupts_disable();
1380 jermar 527
	mutex_lock(&as->lock);
1306 jermar 528
 
529
	area = find_area_and_lock(as, address);
530
	if (!area) {
1380 jermar 531
		mutex_unlock(&as->lock);
1306 jermar 532
		interrupts_restore(ipl);
533
		return ENOENT;
534
	}
535
 
1403 jermar 536
	base = area->base;
537
 
1411 jermar 538
	/*
1436 jermar 539
	 * Start TLB shootdown sequence.
540
	 */
1889 jermar 541
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 542
 
543
	/*
1411 jermar 544
	 * Visit only the pages mapped by used_space B+tree.
545
	 */
2087 jermar 546
	for (cur = area->used_space.leaf_head.next;
547
	    cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 548
		btree_node_t *node;
2745 decky 549
		unsigned int i;
1403 jermar 550
 
1495 jermar 551
		node = list_get_instance(cur, btree_node_t, leaf_link);
552
		for (i = 0; i < node->keys; i++) {
1780 jermar 553
			uintptr_t b = node->key[i];
1495 jermar 554
			count_t j;
1411 jermar 555
			pte_t *pte;
1403 jermar 556
 
1495 jermar 557
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 558
				page_table_lock(as, false);
2087 jermar 559
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
				ASSERT(pte && PTE_VALID(pte) &&
561
				    PTE_PRESENT(pte));
562
				if (area->backend &&
563
				    area->backend->frame_free) {
564
					area->backend->frame_free(area,	b +
2133 jermar 565
					    j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 566
				}
2087 jermar 567
				page_mapping_remove(as, b + j * PAGE_SIZE);				
1411 jermar 568
				page_table_unlock(as, false);
1306 jermar 569
			}
570
		}
571
	}
1403 jermar 572
 
1306 jermar 573
	/*
1436 jermar 574
	 * Finish TLB shootdown sequence.
1306 jermar 575
	 */
2183 jermar 576
 
1889 jermar 577
	tlb_invalidate_pages(as->asid, area->base, area->pages);
578
	/*
2087 jermar 579
	 * Invalidate potential software translation caches (e.g. TSB on
580
	 * sparc64).
1889 jermar 581
	 */
582
	as_invalidate_translation_cache(as, area->base, area->pages);
2183 jermar 583
	tlb_shootdown_finalize();
1889 jermar 584
 
1436 jermar 585
	btree_destroy(&area->used_space);
1306 jermar 586
 
1309 jermar 587
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 588
 
589
	if (area->sh_info)
590
		sh_info_remove_reference(area->sh_info);
591
 
1380 jermar 592
	mutex_unlock(&area->lock);
1306 jermar 593
 
594
	/*
595
	 * Remove the empty area from address space.
596
	 */
1889 jermar 597
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 598
 
1309 jermar 599
	free(area);
600
 
1889 jermar 601
	mutex_unlock(&as->lock);
1306 jermar 602
	interrupts_restore(ipl);
603
	return 0;
604
}
605
 
1413 jermar 606
/** Share address space area with another or the same address space.
1235 jermar 607
 *
1424 jermar 608
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
1413 jermar 613
 * 
3384 jermar 614
 * @param src_as	Pointer to source address space.
615
 * @param src_base	Base address of the source address space area.
616
 * @param acc_size	Expected size of the source area.
617
 * @param dst_as	Pointer to destination address space.
618
 * @param dst_base	Target base address.
1417 jermar 619
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 620
 *
3384 jermar 621
 * @return		Zero on success or ENOENT if there is no such task or if
622
 * 			there is no such address space area, EPERM if there was
623
 * 			a problem in accepting the area or ENOMEM if there was a
624
 * 			problem in allocating destination address space area.
625
 * 			ENOTSUP is returned if the address space area backend
626
 * 			does not support sharing.
1235 jermar 627
 */
1780 jermar 628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
2647 jermar 629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 630
{
631
	ipl_t ipl;
1239 jermar 632
	int src_flags;
633
	size_t src_size;
634
	as_area_t *src_area, *dst_area;
1413 jermar 635
	share_info_t *sh_info;
1424 jermar 636
	mem_backend_t *src_backend;
637
	mem_backend_data_t src_backend_data;
1434 palkovsky 638
 
1235 jermar 639
	ipl = interrupts_disable();
1380 jermar 640
	mutex_lock(&src_as->lock);
1329 palkovsky 641
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 642
	if (!src_area) {
1238 jermar 643
		/*
644
		 * Could not find the source address space area.
645
		 */
1380 jermar 646
		mutex_unlock(&src_as->lock);
1238 jermar 647
		interrupts_restore(ipl);
648
		return ENOENT;
649
	}
2007 jermar 650
 
1424 jermar 651
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 652
		/*
1851 jermar 653
		 * There is no backend or the backend does not
1424 jermar 654
		 * know how to share the area.
1413 jermar 655
		 */
656
		mutex_unlock(&src_area->lock);
657
		mutex_unlock(&src_as->lock);
658
		interrupts_restore(ipl);
659
		return ENOTSUP;
660
	}
661
 
1239 jermar 662
	src_size = src_area->pages * PAGE_SIZE;
663
	src_flags = src_area->flags;
1424 jermar 664
	src_backend = src_area->backend;
665
	src_backend_data = src_area->backend_data;
1544 palkovsky 666
 
667
	/* Share the cacheable flag from the original mapping */
668
	if (src_flags & AS_AREA_CACHEABLE)
669
		dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
2087 jermar 671
	if (src_size != acc_size ||
672
	    (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 673
		mutex_unlock(&src_area->lock);
674
		mutex_unlock(&src_as->lock);
1235 jermar 675
		interrupts_restore(ipl);
676
		return EPERM;
677
	}
1413 jermar 678
 
1235 jermar 679
	/*
1413 jermar 680
	 * Now we are committed to sharing the area.
1954 jermar 681
	 * First, prepare the area for sharing.
1413 jermar 682
	 * Then it will be safe to unlock it.
683
	 */
684
	sh_info = src_area->sh_info;
685
	if (!sh_info) {
686
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
3186 jermar 687
		mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
1413 jermar 688
		sh_info->refcount = 2;
689
		btree_create(&sh_info->pagemap);
690
		src_area->sh_info = sh_info;
2647 jermar 691
		/*
692
		 * Call the backend to setup sharing.
693
		 */
694
		src_area->backend->share(src_area);
1413 jermar 695
	} else {
696
		mutex_lock(&sh_info->lock);
697
		sh_info->refcount++;
698
		mutex_unlock(&sh_info->lock);
699
	}
700
 
701
	mutex_unlock(&src_area->lock);
702
	mutex_unlock(&src_as->lock);
703
 
704
	/*
1239 jermar 705
	 * Create copy of the source address space area.
706
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
707
	 * attribute set which prevents race condition with
708
	 * preliminary as_page_fault() calls.
1417 jermar 709
	 * The flags of the source area are masked against dst_flags_mask
710
	 * to support sharing in less privileged mode.
1235 jermar 711
	 */
1461 palkovsky 712
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 713
	    AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 714
	if (!dst_area) {
1235 jermar 715
		/*
716
		 * Destination address space area could not be created.
717
		 */
1413 jermar 718
		sh_info_remove_reference(sh_info);
719
 
1235 jermar 720
		interrupts_restore(ipl);
721
		return ENOMEM;
722
	}
2009 jermar 723
 
1235 jermar 724
	/*
1239 jermar 725
	 * Now the destination address space area has been
726
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 727
	 * attribute and set the sh_info.
1239 jermar 728
	 */	
2009 jermar 729
	mutex_lock(&dst_as->lock);	
1380 jermar 730
	mutex_lock(&dst_area->lock);
1239 jermar 731
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 732
	dst_area->sh_info = sh_info;
1380 jermar 733
	mutex_unlock(&dst_area->lock);
2009 jermar 734
	mutex_unlock(&dst_as->lock);	
735
 
1235 jermar 736
	interrupts_restore(ipl);
737
 
738
	return 0;
739
}
740
 
1423 jermar 741
/** Check access mode for address space area.
742
 *
743
 * The address space area must be locked prior to this call.
744
 *
3384 jermar 745
 * @param area		Address space area.
746
 * @param access	Access mode.
1423 jermar 747
 *
3384 jermar 748
 * @return		False if access violates area's permissions, true
749
 * 			otherwise.
1423 jermar 750
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
753
	int flagmap[] = {
754
		[PF_ACCESS_READ] = AS_AREA_READ,
755
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
757
	};
758
 
759
	if (!(area->flags & flagmap[access]))
760
		return false;
761
 
762
	return true;
763
}
764
 
3384 jermar 765
/** Change adress space area flags.
3222 svoboda 766
 *
767
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
771
 *
3384 jermar 772
 * @param as		Address space.
773
 * @param flags		Flags of the area memory.
774
 * @param address	Address withing the area to be changed.
3222 svoboda 775
 *
3384 jermar 776
 * @return		Zero on success or a value from @ref errno.h on failure.
3222 svoboda 777
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
780
	as_area_t *area;
781
	uintptr_t base;
782
	link_t *cur;
783
	ipl_t ipl;
784
	int page_flags;
785
	uintptr_t *old_frame;
786
	index_t frame_idx;
787
	count_t used_pages;
788
 
789
	/* Flags for the new memory mapping */
790
	page_flags = area_flags_to_page_flags(flags);
791
 
792
	ipl = interrupts_disable();
793
	mutex_lock(&as->lock);
794
 
795
	area = find_area_and_lock(as, address);
796
	if (!area) {
797
		mutex_unlock(&as->lock);
798
		interrupts_restore(ipl);
799
		return ENOENT;
800
	}
801
 
802
	if (area->sh_info || area->backend != &anon_backend) {
803
		/* Copying shared areas not supported yet */
804
		/* Copying non-anonymous memory not supported yet */
805
		mutex_unlock(&area->lock);
806
		mutex_unlock(&as->lock);
807
		interrupts_restore(ipl);
808
		return ENOTSUP;
809
	}
810
 
811
	base = area->base;
812
 
813
	/*
814
	 * Compute total number of used pages in the used_space B+tree
815
	 */
816
	used_pages = 0;
817
 
818
	for (cur = area->used_space.leaf_head.next;
819
	    cur != &area->used_space.leaf_head; cur = cur->next) {
820
		btree_node_t *node;
821
		unsigned int i;
822
 
823
		node = list_get_instance(cur, btree_node_t, leaf_link);
824
		for (i = 0; i < node->keys; i++) {
825
			used_pages += (count_t) node->value[i];
826
		}
827
	}
828
 
829
	/* An array for storing frame numbers */
830
	old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
832
	/*
833
	 * Start TLB shootdown sequence.
834
	 */
835
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
837
	/*
838
	 * Remove used pages from page tables and remember their frame
839
	 * numbers.
840
	 */
841
	frame_idx = 0;
842
 
843
	for (cur = area->used_space.leaf_head.next;
844
	    cur != &area->used_space.leaf_head; cur = cur->next) {
845
		btree_node_t *node;
846
		unsigned int i;
847
 
848
		node = list_get_instance(cur, btree_node_t, leaf_link);
849
		for (i = 0; i < node->keys; i++) {
850
			uintptr_t b = node->key[i];
851
			count_t j;
852
			pte_t *pte;
853
 
854
			for (j = 0; j < (count_t) node->value[i]; j++) {
855
				page_table_lock(as, false);
856
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
				ASSERT(pte && PTE_VALID(pte) &&
858
				    PTE_PRESENT(pte));
859
				old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
861
				/* Remove old mapping */
862
				page_mapping_remove(as, b + j * PAGE_SIZE);
863
				page_table_unlock(as, false);
864
			}
865
		}
866
	}
867
 
868
	/*
869
	 * Finish TLB shootdown sequence.
870
	 */
871
 
872
	tlb_invalidate_pages(as->asid, area->base, area->pages);
873
	/*
874
	 * Invalidate potential software translation caches (e.g. TSB on
875
	 * sparc64).
876
	 */
877
	as_invalidate_translation_cache(as, area->base, area->pages);
878
	tlb_shootdown_finalize();
879
 
880
	/*
3383 svoboda 881
	 * Set the new flags.
882
	 */
883
	area->flags = flags;
884
 
885
	/*
3222 svoboda 886
	 * Map pages back in with new flags. This step is kept separate
3384 jermar 887
	 * so that the memory area could not be accesed with both the old and
888
	 * the new flags at once.
3222 svoboda 889
	 */
890
	frame_idx = 0;
891
 
892
	for (cur = area->used_space.leaf_head.next;
893
	    cur != &area->used_space.leaf_head; cur = cur->next) {
894
		btree_node_t *node;
895
		unsigned int i;
896
 
897
		node = list_get_instance(cur, btree_node_t, leaf_link);
898
		for (i = 0; i < node->keys; i++) {
899
			uintptr_t b = node->key[i];
900
			count_t j;
901
 
902
			for (j = 0; j < (count_t) node->value[i]; j++) {
903
				page_table_lock(as, false);
904
 
905
				/* Insert the new mapping */
906
				page_mapping_insert(as, b + j * PAGE_SIZE,
907
				    old_frame[frame_idx++], page_flags);
908
 
909
				page_table_unlock(as, false);
910
			}
911
		}
912
	}
913
 
914
	free(old_frame);
915
 
916
	mutex_unlock(&area->lock);
917
	mutex_unlock(&as->lock);
918
	interrupts_restore(ipl);
919
 
920
	return 0;
921
}
922
 
923
 
703 jermar 924
/** Handle page fault within the current address space.
925
 *
3384 jermar 926
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
1409 jermar 929
 *
703 jermar 930
 * Interrupts are assumed disabled.
931
 *
3384 jermar 932
 * @param page		Faulting page.
933
 * @param access	Access mode that caused the page fault (i.e.
934
 * 			read/write/exec).
935
 * @param istate	Pointer to the interrupted state.
703 jermar 936
 *
3384 jermar 937
 * @return		AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 * 			AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 * 			or copy_from_uspace().
703 jermar 940
 */
1780 jermar 941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 942
{
1044 jermar 943
	pte_t *pte;
977 jermar 944
	as_area_t *area;
703 jermar 945
 
1380 jermar 946
	if (!THREAD)
1409 jermar 947
		return AS_PF_FAULT;
1380 jermar 948
 
703 jermar 949
	ASSERT(AS);
1044 jermar 950
 
1380 jermar 951
	mutex_lock(&AS->lock);
977 jermar 952
	area = find_area_and_lock(AS, page);	
703 jermar 953
	if (!area) {
954
		/*
955
		 * No area contained mapping for 'page'.
956
		 * Signal page fault to low-level handler.
957
		 */
1380 jermar 958
		mutex_unlock(&AS->lock);
1288 jermar 959
		goto page_fault;
703 jermar 960
	}
961
 
1239 jermar 962
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
		/*
964
		 * The address space area is not fully initialized.
965
		 * Avoid possible race by returning error.
966
		 */
1380 jermar 967
		mutex_unlock(&area->lock);
968
		mutex_unlock(&AS->lock);
1288 jermar 969
		goto page_fault;		
1239 jermar 970
	}
971
 
1424 jermar 972
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 973
		/*
974
		 * The address space area is not backed by any backend
975
		 * or the backend cannot handle page faults.
976
		 */
977
		mutex_unlock(&area->lock);
978
		mutex_unlock(&AS->lock);
979
		goto page_fault;		
980
	}
1179 jermar 981
 
1044 jermar 982
	page_table_lock(AS, false);
983
 
703 jermar 984
	/*
3384 jermar 985
	 * To avoid race condition between two page faults on the same address,
986
	 * we need to make sure the mapping has not been already inserted.
1044 jermar 987
	 */
988
	if ((pte = page_mapping_find(AS, page))) {
989
		if (PTE_PRESENT(pte)) {
1423 jermar 990
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 991
			    (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
			    (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 993
				page_table_unlock(AS, false);
994
				mutex_unlock(&area->lock);
995
				mutex_unlock(&AS->lock);
996
				return AS_PF_OK;
997
			}
1044 jermar 998
		}
999
	}
1409 jermar 1000
 
1044 jermar 1001
	/*
1409 jermar 1002
	 * Resort to the backend page fault handler.
703 jermar 1003
	 */
1424 jermar 1004
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 1005
		page_table_unlock(AS, false);
1006
		mutex_unlock(&area->lock);
1007
		mutex_unlock(&AS->lock);
1008
		goto page_fault;
1009
	}
703 jermar 1010
 
1044 jermar 1011
	page_table_unlock(AS, false);
1380 jermar 1012
	mutex_unlock(&area->lock);
1013
	mutex_unlock(&AS->lock);
1288 jermar 1014
	return AS_PF_OK;
1015
 
1016
page_fault:
1017
	if (THREAD->in_copy_from_uspace) {
1018
		THREAD->in_copy_from_uspace = false;
2087 jermar 1019
		istate_set_retaddr(istate,
1020
		    (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 1021
	} else if (THREAD->in_copy_to_uspace) {
1022
		THREAD->in_copy_to_uspace = false;
2087 jermar 1023
		istate_set_retaddr(istate,
1024
		    (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 1025
	} else {
1026
		return AS_PF_FAULT;
1027
	}
1028
 
1029
	return AS_PF_DEFER;
703 jermar 1030
}
1031
 
823 jermar 1032
/** Switch address spaces.
703 jermar 1033
 *
1380 jermar 1034
 * Note that this function cannot sleep as it is essentially a part of
2170 jermar 1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1380 jermar 1037
 *
2183 jermar 1038
 * When this function is enetered, no spinlocks may be held.
1039
 *
3384 jermar 1040
 * @param old		Old address space or NULL.
1041
 * @param new		New address space.
703 jermar 1042
 */
2106 jermar 1043
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 1044
{
2183 jermar 1045
	DEADLOCK_PROBE_INIT(p_asidlock);
1046
	preemption_disable();
1047
retry:
1048
	(void) interrupts_disable();
1049
	if (!spinlock_trylock(&asidlock)) {
1050
		/* 
1051
		 * Avoid deadlock with TLB shootdown.
1052
		 * We can enable interrupts here because
1053
		 * preemption is disabled. We should not be
1054
		 * holding any other lock.
1055
		 */
1056
		(void) interrupts_enable();
1057
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
		goto retry;
1059
	}
1060
	preemption_enable();
703 jermar 1061
 
1062
	/*
823 jermar 1063
	 * First, take care of the old address space.
1064
	 */	
2106 jermar 1065
	if (old_as) {
1066
		ASSERT(old_as->cpu_refcount);
1067
		if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 1068
			/*
1069
			 * The old address space is no longer active on
1070
			 * any processor. It can be appended to the
1071
			 * list of inactive address spaces with assigned
1072
			 * ASID.
1073
			 */
2141 jermar 1074
			ASSERT(old_as->asid != ASID_INVALID);
1075
			list_append(&old_as->inactive_as_with_asid_link,
1076
			    &inactive_as_with_asid_head);
823 jermar 1077
		}
1890 jermar 1078
 
1079
		/*
1080
		 * Perform architecture-specific tasks when the address space
1081
		 * is being removed from the CPU.
1082
		 */
2106 jermar 1083
		as_deinstall_arch(old_as);
823 jermar 1084
	}
1085
 
1086
	/*
1087
	 * Second, prepare the new address space.
1088
	 */
2106 jermar 1089
	if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
2170 jermar 1090
		if (new_as->asid != ASID_INVALID)
2106 jermar 1091
			list_remove(&new_as->inactive_as_with_asid_link);
2170 jermar 1092
		else
1093
			new_as->asid = asid_get();
823 jermar 1094
	}
2106 jermar 1095
#ifdef AS_PAGE_TABLE
1096
	SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
823 jermar 1098
 
1099
	/*
703 jermar 1100
	 * Perform architecture-specific steps.
727 jermar 1101
	 * (e.g. write ASID to hardware register etc.)
703 jermar 1102
	 */
2106 jermar 1103
	as_install_arch(new_as);
2170 jermar 1104
 
1105
	spinlock_unlock(&asidlock);
703 jermar 1106
 
2106 jermar 1107
	AS = new_as;
703 jermar 1108
}
754 jermar 1109
 
1235 jermar 1110
/** Convert address space area flags to page flags.
754 jermar 1111
 *
3384 jermar 1112
 * @param aflags	Flags of some address space area.
754 jermar 1113
 *
3384 jermar 1114
 * @return		Flags to be passed to page_mapping_insert().
754 jermar 1115
 */
1235 jermar 1116
int area_flags_to_page_flags(int aflags)
754 jermar 1117
{
1118
	int flags;
1119
 
1178 jermar 1120
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 1121
 
1235 jermar 1122
	if (aflags & AS_AREA_READ)
1026 jermar 1123
		flags |= PAGE_READ;
1124
 
1235 jermar 1125
	if (aflags & AS_AREA_WRITE)
1026 jermar 1126
		flags |= PAGE_WRITE;
1127
 
1235 jermar 1128
	if (aflags & AS_AREA_EXEC)
1026 jermar 1129
		flags |= PAGE_EXEC;
1130
 
1424 jermar 1131
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 1132
		flags |= PAGE_CACHEABLE;
1133
 
754 jermar 1134
	return flags;
1135
}
756 jermar 1136
 
1235 jermar 1137
/** Compute flags for virtual address translation subsytem.
1138
 *
1139
 * The address space area must be locked.
1140
 * Interrupts must be disabled.
1141
 *
3384 jermar 1142
 * @param a		Address space area.
1235 jermar 1143
 *
3384 jermar 1144
 * @return		Flags to be used in page_mapping_insert().
1235 jermar 1145
 */
1409 jermar 1146
int as_area_get_flags(as_area_t *a)
1235 jermar 1147
{
1148
	return area_flags_to_page_flags(a->flags);
1149
}
1150
 
756 jermar 1151
/** Create page table.
1152
 *
3384 jermar 1153
 * Depending on architecture, create either address space private or global page
1154
 * table.
756 jermar 1155
 *
3384 jermar 1156
 * @param flags		Flags saying whether the page table is for the kernel
1157
 * 			address space.
756 jermar 1158
 *
3384 jermar 1159
 * @return		First entry of the page table.
756 jermar 1160
 */
1161
pte_t *page_table_create(int flags)
1162
{
2125 decky 1163
	ASSERT(as_operations);
1164
	ASSERT(as_operations->page_table_create);
1165
 
1166
	return as_operations->page_table_create(flags);
756 jermar 1167
}
977 jermar 1168
 
1468 jermar 1169
/** Destroy page table.
1170
 *
1171
 * Destroy page table in architecture specific way.
1172
 *
3384 jermar 1173
 * @param page_table	Physical address of PTL0.
1468 jermar 1174
 */
1175
void page_table_destroy(pte_t *page_table)
1176
{
2125 decky 1177
	ASSERT(as_operations);
1178
	ASSERT(as_operations->page_table_destroy);
1179
 
1180
	as_operations->page_table_destroy(page_table);
1468 jermar 1181
}
1182
 
1044 jermar 1183
/** Lock page table.
1184
 *
1185
 * This function should be called before any page_mapping_insert(),
1186
 * page_mapping_remove() and page_mapping_find().
1187
 * 
1188
 * Locking order is such that address space areas must be locked
1189
 * prior to this call. Address space can be locked prior to this
1190
 * call in which case the lock argument is false.
1191
 *
3384 jermar 1192
 * @param as		Address space.
1193
 * @param lock		If false, do not attempt to lock as->lock.
1044 jermar 1194
 */
1195
void page_table_lock(as_t *as, bool lock)
1196
{
1197
	ASSERT(as_operations);
1198
	ASSERT(as_operations->page_table_lock);
2125 decky 1199
 
1044 jermar 1200
	as_operations->page_table_lock(as, lock);
1201
}
1202
 
1203
/** Unlock page table.
1204
 *
3384 jermar 1205
 * @param as		Address space.
1206
 * @param unlock	If false, do not attempt to unlock as->lock.
1044 jermar 1207
 */
1208
void page_table_unlock(as_t *as, bool unlock)
1209
{
1210
	ASSERT(as_operations);
1211
	ASSERT(as_operations->page_table_unlock);
2125 decky 1212
 
1044 jermar 1213
	as_operations->page_table_unlock(as, unlock);
1214
}
1215
 
977 jermar 1216
 
1217
/** Find address space area and lock it.
1218
 *
1219
 * The address space must be locked and interrupts must be disabled.
1220
 *
3384 jermar 1221
 * @param as		Address space.
1222
 * @param va		Virtual address.
977 jermar 1223
 *
3384 jermar 1224
 * @return		Locked address space area containing va on success or
1225
 * 			NULL on failure.
977 jermar 1226
 */
1780 jermar 1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1228
{
1229
	as_area_t *a;
1147 jermar 1230
	btree_node_t *leaf, *lnode;
2745 decky 1231
	unsigned int i;
977 jermar 1232
 
1147 jermar 1233
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1234
	if (a) {
1235
		/* va is the base address of an address space area */
1380 jermar 1236
		mutex_lock(&a->lock);
1147 jermar 1237
		return a;
1238
	}
1239
 
1240
	/*
1150 jermar 1241
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1242
	 * to find out whether this is a miss or va belongs to an address
1243
	 * space area found there.
1244
	 */
1245
 
1246
	/* First, search the leaf node itself. */
1247
	for (i = 0; i < leaf->keys; i++) {
1248
		a = (as_area_t *) leaf->value[i];
1380 jermar 1249
		mutex_lock(&a->lock);
1147 jermar 1250
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1251
			return a;
1252
		}
1380 jermar 1253
		mutex_unlock(&a->lock);
1147 jermar 1254
	}
977 jermar 1255
 
1147 jermar 1256
	/*
1150 jermar 1257
	 * Second, locate the left neighbour and test its last record.
1148 jermar 1258
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 1259
	 */
2087 jermar 1260
	lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1261
	if (lnode) {
1147 jermar 1262
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1263
		mutex_lock(&a->lock);
1147 jermar 1264
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1265
			return a;
1147 jermar 1266
		}
1380 jermar 1267
		mutex_unlock(&a->lock);
977 jermar 1268
	}
1269
 
1270
	return NULL;
1271
}
1048 jermar 1272
 
1273
/** Check area conflicts with other areas.
1274
 *
1275
 * The address space must be locked and interrupts must be disabled.
1276
 *
3384 jermar 1277
 * @param as		Address space.
1278
 * @param va		Starting virtual address of the area being tested.
1279
 * @param size		Size of the area being tested.
1280
 * @param avoid_area	Do not touch this area. 
1048 jermar 1281
 *
3384 jermar 1282
 * @return		True if there is no conflict, false otherwise.
1048 jermar 1283
 */
3384 jermar 1284
bool
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1286
{
1287
	as_area_t *a;
1147 jermar 1288
	btree_node_t *leaf, *node;
2745 decky 1289
	unsigned int i;
1048 jermar 1290
 
1070 jermar 1291
	/*
1292
	 * We don't want any area to have conflicts with NULL page.
1293
	 */
1294
	if (overlaps(va, size, NULL, PAGE_SIZE))
1295
		return false;
1296
 
1147 jermar 1297
	/*
1298
	 * The leaf node is found in O(log n), where n is proportional to
1299
	 * the number of address space areas belonging to as.
1300
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1301
	 * record in the left neighbour, the leftmost record in the right
1302
	 * neighbour and all records in the leaf node itself.
1147 jermar 1303
	 */
1048 jermar 1304
 
1147 jermar 1305
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1306
		if (a != avoid_area)
1307
			return false;
1308
	}
1309
 
1310
	/* First, check the two border cases. */
1150 jermar 1311
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1312
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1313
		mutex_lock(&a->lock);
1147 jermar 1314
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1315
			mutex_unlock(&a->lock);
1147 jermar 1316
			return false;
1317
		}
1380 jermar 1318
		mutex_unlock(&a->lock);
1147 jermar 1319
	}
2087 jermar 1320
	node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1321
	if (node) {
1147 jermar 1322
		a = (as_area_t *) node->value[0];
1380 jermar 1323
		mutex_lock(&a->lock);
1147 jermar 1324
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1325
			mutex_unlock(&a->lock);
1147 jermar 1326
			return false;
1327
		}
1380 jermar 1328
		mutex_unlock(&a->lock);
1147 jermar 1329
	}
1330
 
1331
	/* Second, check the leaf node. */
1332
	for (i = 0; i < leaf->keys; i++) {
1333
		a = (as_area_t *) leaf->value[i];
1334
 
1048 jermar 1335
		if (a == avoid_area)
1336
			continue;
1147 jermar 1337
 
1380 jermar 1338
		mutex_lock(&a->lock);
1147 jermar 1339
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1340
			mutex_unlock(&a->lock);
1147 jermar 1341
			return false;
1342
		}
1380 jermar 1343
		mutex_unlock(&a->lock);
1048 jermar 1344
	}
1345
 
1070 jermar 1346
	/*
1347
	 * So far, the area does not conflict with other areas.
1348
	 * Check if it doesn't conflict with kernel address space.
1349
	 */	 
1350
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1351
		return !overlaps(va, size, 
2087 jermar 1352
		    KERNEL_ADDRESS_SPACE_START,
1353
		    KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1354
	}
1355
 
1048 jermar 1356
	return true;
1357
}
1235 jermar 1358
 
2556 jermar 1359
/** Return size of the address space area with given base.
1360
 *
1361
 * @param base		Arbitrary address insede the address space area.
1362
 *
1363
 * @return		Size of the address space area in bytes or zero if it
1364
 *			does not exist.
1365
 */
1366
size_t as_area_get_size(uintptr_t base)
1329 palkovsky 1367
{
1368
	ipl_t ipl;
1369
	as_area_t *src_area;
1370
	size_t size;
1371
 
1372
	ipl = interrupts_disable();
1373
	src_area = find_area_and_lock(AS, base);
3384 jermar 1374
	if (src_area) {
1329 palkovsky 1375
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1376
		mutex_unlock(&src_area->lock);
1329 palkovsky 1377
	} else {
1378
		size = 0;
1379
	}
1380
	interrupts_restore(ipl);
1381
	return size;
1382
}
1383
 
1387 jermar 1384
/** Mark portion of address space area as used.
1385
 *
1386
 * The address space area must be already locked.
1387
 *
3384 jermar 1388
 * @param a		Address space area.
1389
 * @param page		First page to be marked.
1390
 * @param count		Number of page to be marked.
1387 jermar 1391
 *
3384 jermar 1392
 * @return		Zero on failure and non-zero on success.
1387 jermar 1393
 */
1780 jermar 1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1395
{
1396
	btree_node_t *leaf, *node;
1397
	count_t pages;
2745 decky 1398
	unsigned int i;
1387 jermar 1399
 
1400
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1401
	ASSERT(count);
1402
 
1403
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1404
	if (pages) {
1405
		/*
1406
		 * We hit the beginning of some used space.
1407
		 */
1408
		return 0;
1409
	}
1410
 
1437 jermar 1411
	if (!leaf->keys) {
1412
		btree_insert(&a->used_space, page, (void *) count, leaf);
1413
		return 1;
1414
	}
1415
 
1387 jermar 1416
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1417
	if (node) {
2087 jermar 1418
		uintptr_t left_pg = node->key[node->keys - 1];
1419
		uintptr_t right_pg = leaf->key[0];
1420
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1421
		count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1422
 
1423
		/*
1424
		 * Examine the possibility that the interval fits
1425
		 * somewhere between the rightmost interval of
1426
		 * the left neigbour and the first interval of the leaf.
1427
		 */
1428
 
1429
		if (page >= right_pg) {
1430
			/* Do nothing. */
2087 jermar 1431
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1432
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1433
			/* The interval intersects with the left interval. */
1434
			return 0;
2087 jermar 1435
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1436
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1437
			/* The interval intersects with the right interval. */
1438
			return 0;			
2087 jermar 1439
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1440
		    (page + count * PAGE_SIZE == right_pg)) {
1441
			/*
1442
			 * The interval can be added by merging the two already
1443
			 * present intervals.
1444
			 */
1403 jermar 1445
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1446
			btree_remove(&a->used_space, right_pg, leaf);
1447
			return 1; 
2087 jermar 1448
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1449
			/* 
1450
			 * The interval can be added by simply growing the left
1451
			 * interval.
1452
			 */
1403 jermar 1453
			node->value[node->keys - 1] += count;
1387 jermar 1454
			return 1;
2087 jermar 1455
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1456
			/*
2087 jermar 1457
			 * The interval can be addded by simply moving base of
1458
			 * the right interval down and increasing its size
1459
			 * accordingly.
1387 jermar 1460
			 */
1403 jermar 1461
			leaf->value[0] += count;
1387 jermar 1462
			leaf->key[0] = page;
1463
			return 1;
1464
		} else {
1465
			/*
1466
			 * The interval is between both neigbouring intervals,
1467
			 * but cannot be merged with any of them.
1468
			 */
2087 jermar 1469
			btree_insert(&a->used_space, page, (void *) count,
1470
			    leaf);
1387 jermar 1471
			return 1;
1472
		}
1473
	} else if (page < leaf->key[0]) {
1780 jermar 1474
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1475
		count_t right_cnt = (count_t) leaf->value[0];
1476
 
1477
		/*
2087 jermar 1478
		 * Investigate the border case in which the left neighbour does
1479
		 * not exist but the interval fits from the left.
1387 jermar 1480
		 */
1481
 
2087 jermar 1482
		if (overlaps(page, count * PAGE_SIZE, right_pg,
1483
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1484
			/* The interval intersects with the right interval. */
1485
			return 0;
2087 jermar 1486
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1487
			/*
2087 jermar 1488
			 * The interval can be added by moving the base of the
1489
			 * right interval down and increasing its size
1490
			 * accordingly.
1387 jermar 1491
			 */
1492
			leaf->key[0] = page;
1403 jermar 1493
			leaf->value[0] += count;
1387 jermar 1494
			return 1;
1495
		} else {
1496
			/*
1497
			 * The interval doesn't adjoin with the right interval.
1498
			 * It must be added individually.
1499
			 */
2087 jermar 1500
			btree_insert(&a->used_space, page, (void *) count,
1501
			    leaf);
1387 jermar 1502
			return 1;
1503
		}
1504
	}
1505
 
1506
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1507
	if (node) {
2087 jermar 1508
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1509
		uintptr_t right_pg = node->key[0];
1510
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1511
		count_t right_cnt = (count_t) node->value[0];
1387 jermar 1512
 
1513
		/*
1514
		 * Examine the possibility that the interval fits
1515
		 * somewhere between the leftmost interval of
1516
		 * the right neigbour and the last interval of the leaf.
1517
		 */
1518
 
1519
		if (page < left_pg) {
1520
			/* Do nothing. */
2087 jermar 1521
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1522
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1523
			/* The interval intersects with the left interval. */
1524
			return 0;
2087 jermar 1525
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1526
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1527
			/* The interval intersects with the right interval. */
1528
			return 0;			
2087 jermar 1529
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1530
		    (page + count * PAGE_SIZE == right_pg)) {
1531
			/*
1532
			 * The interval can be added by merging the two already
1533
			 * present intervals.
1534
			 * */
1403 jermar 1535
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1536
			btree_remove(&a->used_space, right_pg, node);
1537
			return 1; 
2087 jermar 1538
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1539
			/*
1540
			 * The interval can be added by simply growing the left
1541
			 * interval.
1542
			 * */
1403 jermar 1543
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1544
			return 1;
2087 jermar 1545
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1546
			/*
2087 jermar 1547
			 * The interval can be addded by simply moving base of
1548
			 * the right interval down and increasing its size
1549
			 * accordingly.
1387 jermar 1550
			 */
1403 jermar 1551
			node->value[0] += count;
1387 jermar 1552
			node->key[0] = page;
1553
			return 1;
1554
		} else {
1555
			/*
1556
			 * The interval is between both neigbouring intervals,
1557
			 * but cannot be merged with any of them.
1558
			 */
2087 jermar 1559
			btree_insert(&a->used_space, page, (void *) count,
1560
			    leaf);
1387 jermar 1561
			return 1;
1562
		}
1563
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1564
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1565
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1566
 
1567
		/*
2087 jermar 1568
		 * Investigate the border case in which the right neighbour
1569
		 * does not exist but the interval fits from the right.
1387 jermar 1570
		 */
1571
 
2087 jermar 1572
		if (overlaps(page, count * PAGE_SIZE, left_pg,
1573
		    left_cnt * PAGE_SIZE)) {
1403 jermar 1574
			/* The interval intersects with the left interval. */
1387 jermar 1575
			return 0;
2087 jermar 1576
		} else if (left_pg + left_cnt * PAGE_SIZE == page) {
1577
			/*
1578
			 * The interval can be added by growing the left
1579
			 * interval.
1580
			 */
1403 jermar 1581
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1582
			return 1;
1583
		} else {
1584
			/*
1585
			 * The interval doesn't adjoin with the left interval.
1586
			 * It must be added individually.
1587
			 */
2087 jermar 1588
			btree_insert(&a->used_space, page, (void *) count,
1589
			    leaf);
1387 jermar 1590
			return 1;
1591
		}
1592
	}
1593
 
1594
	/*
2087 jermar 1595
	 * Note that if the algorithm made it thus far, the interval can fit
1596
	 * only between two other intervals of the leaf. The two border cases
1597
	 * were already resolved.
1387 jermar 1598
	 */
1599
	for (i = 1; i < leaf->keys; i++) {
1600
		if (page < leaf->key[i]) {
2087 jermar 1601
			uintptr_t left_pg = leaf->key[i - 1];
1602
			uintptr_t right_pg = leaf->key[i];
1603
			count_t left_cnt = (count_t) leaf->value[i - 1];
1604
			count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1605
 
1606
			/*
1607
			 * The interval fits between left_pg and right_pg.
1608
			 */
1609
 
2087 jermar 1610
			if (overlaps(page, count * PAGE_SIZE, left_pg,
1611
			    left_cnt * PAGE_SIZE)) {
1612
				/*
1613
				 * The interval intersects with the left
1614
				 * interval.
1615
				 */
1387 jermar 1616
				return 0;
2087 jermar 1617
			} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1618
			    right_cnt * PAGE_SIZE)) {
1619
				/*
1620
				 * The interval intersects with the right
1621
				 * interval.
1622
				 */
1387 jermar 1623
				return 0;			
2087 jermar 1624
			} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1625
			    (page + count * PAGE_SIZE == right_pg)) {
1626
				/*
1627
				 * The interval can be added by merging the two
1628
				 * already present intervals.
1629
				 */
1403 jermar 1630
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1631
				btree_remove(&a->used_space, right_pg, leaf);
1632
				return 1; 
2087 jermar 1633
			} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1634
				/*
1635
				 * The interval can be added by simply growing
1636
				 * the left interval.
1637
				 */
1403 jermar 1638
				leaf->value[i - 1] += count;
1387 jermar 1639
				return 1;
2087 jermar 1640
			} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1641
				/*
2087 jermar 1642
			         * The interval can be addded by simply moving
1643
				 * base of the right interval down and
1644
				 * increasing its size accordingly.
1387 jermar 1645
			 	 */
1403 jermar 1646
				leaf->value[i] += count;
1387 jermar 1647
				leaf->key[i] = page;
1648
				return 1;
1649
			} else {
1650
				/*
2087 jermar 1651
				 * The interval is between both neigbouring
1652
				 * intervals, but cannot be merged with any of
1653
				 * them.
1387 jermar 1654
				 */
2087 jermar 1655
				btree_insert(&a->used_space, page,
1656
				    (void *) count, leaf);
1387 jermar 1657
				return 1;
1658
			}
1659
		}
1660
	}
1661
 
3384 jermar 1662
	panic("Inconsistency detected while adding %" PRIc " pages of used "
1663
	    "space at %p.\n", count, page);
1387 jermar 1664
}
1665
 
1666
/** Mark portion of address space area as unused.
1667
 *
1668
 * The address space area must be already locked.
1669
 *
3384 jermar 1670
 * @param a		Address space area.
1671
 * @param page		First page to be marked.
1672
 * @param count		Number of page to be marked.
1387 jermar 1673
 *
3384 jermar 1674
 * @return		Zero on failure and non-zero on success.
1387 jermar 1675
 */
1780 jermar 1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1677
{
1678
	btree_node_t *leaf, *node;
1679
	count_t pages;
2745 decky 1680
	unsigned int i;
1387 jermar 1681
 
1682
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1683
	ASSERT(count);
1684
 
1685
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1686
	if (pages) {
1687
		/*
1688
		 * We are lucky, page is the beginning of some interval.
1689
		 */
1690
		if (count > pages) {
1691
			return 0;
1692
		} else if (count == pages) {
1693
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1694
			return 1;
1387 jermar 1695
		} else {
1696
			/*
1697
			 * Find the respective interval.
1698
			 * Decrease its size and relocate its start address.
1699
			 */
1700
			for (i = 0; i < leaf->keys; i++) {
1701
				if (leaf->key[i] == page) {
2087 jermar 1702
					leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1703
					leaf->value[i] -= count;
1387 jermar 1704
					return 1;
1705
				}
1706
			}
1707
			goto error;
1708
		}
1709
	}
1710
 
1711
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1712
	if (node && page < leaf->key[0]) {
1780 jermar 1713
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1714
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1715
 
2087 jermar 1716
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1717
		    count * PAGE_SIZE)) {
1718
			if (page + count * PAGE_SIZE ==
1719
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1720
				/*
2087 jermar 1721
				 * The interval is contained in the rightmost
1722
				 * interval of the left neighbour and can be
1723
				 * removed by updating the size of the bigger
1724
				 * interval.
1387 jermar 1725
				 */
1403 jermar 1726
				node->value[node->keys - 1] -= count;
1387 jermar 1727
				return 1;
2087 jermar 1728
			} else if (page + count * PAGE_SIZE <
1729
			    left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1730
				count_t new_cnt;
1387 jermar 1731
 
1732
				/*
2087 jermar 1733
				 * The interval is contained in the rightmost
1734
				 * interval of the left neighbour but its
1735
				 * removal requires both updating the size of
1736
				 * the original interval and also inserting a
1737
				 * new interval.
1387 jermar 1738
				 */
2087 jermar 1739
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1740
				    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1741
				node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1742
				btree_insert(&a->used_space, page +
1743
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1744
				return 1;
1745
			}
1746
		}
1747
		return 0;
1748
	} else if (page < leaf->key[0]) {
1749
		return 0;
1750
	}
1751
 
1752
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1753
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1754
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1755
 
2087 jermar 1756
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1757
		    count * PAGE_SIZE)) {
1758
			if (page + count * PAGE_SIZE == 
1759
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1760
				/*
2087 jermar 1761
				 * The interval is contained in the rightmost
1762
				 * interval of the leaf and can be removed by
1763
				 * updating the size of the bigger interval.
1387 jermar 1764
				 */
1403 jermar 1765
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1766
				return 1;
2087 jermar 1767
			} else if (page + count * PAGE_SIZE < left_pg +
1768
			    left_cnt * PAGE_SIZE) {
1403 jermar 1769
				count_t new_cnt;
1387 jermar 1770
 
1771
				/*
2087 jermar 1772
				 * The interval is contained in the rightmost
1773
				 * interval of the leaf but its removal
1774
				 * requires both updating the size of the
1775
				 * original interval and also inserting a new
1776
				 * interval.
1387 jermar 1777
				 */
2087 jermar 1778
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1779
				    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1780
				leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1781
				btree_insert(&a->used_space, page +
1782
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1783
				return 1;
1784
			}
1785
		}
1786
		return 0;
1787
	}	
1788
 
1789
	/*
1790
	 * The border cases have been already resolved.
1791
	 * Now the interval can be only between intervals of the leaf. 
1792
	 */
1793
	for (i = 1; i < leaf->keys - 1; i++) {
1794
		if (page < leaf->key[i]) {
1780 jermar 1795
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1796
			count_t left_cnt = (count_t) leaf->value[i - 1];
1797
 
1798
			/*
2087 jermar 1799
			 * Now the interval is between intervals corresponding
1800
			 * to (i - 1) and i.
1387 jermar 1801
			 */
2087 jermar 1802
			if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1803
			    count * PAGE_SIZE)) {
1804
				if (page + count * PAGE_SIZE ==
1805
				    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 1806
					/*
2087 jermar 1807
					 * The interval is contained in the
1808
					 * interval (i - 1) of the leaf and can
1809
					 * be removed by updating the size of
1810
					 * the bigger interval.
1387 jermar 1811
					 */
1403 jermar 1812
					leaf->value[i - 1] -= count;
1387 jermar 1813
					return 1;
2087 jermar 1814
				} else if (page + count * PAGE_SIZE <
1815
				    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 1816
					count_t new_cnt;
1387 jermar 1817
 
1818
					/*
2087 jermar 1819
					 * The interval is contained in the
1820
					 * interval (i - 1) of the leaf but its
1821
					 * removal requires both updating the
1822
					 * size of the original interval and
1387 jermar 1823
					 * also inserting a new interval.
1824
					 */
2087 jermar 1825
					new_cnt = ((left_pg +
1826
					    left_cnt * PAGE_SIZE) -
1827
					    (page + count * PAGE_SIZE)) >>
1828
					    PAGE_WIDTH;
1403 jermar 1829
					leaf->value[i - 1] -= count + new_cnt;
2087 jermar 1830
					btree_insert(&a->used_space, page +
1831
					    count * PAGE_SIZE, (void *) new_cnt,
1832
					    leaf);
1387 jermar 1833
					return 1;
1834
				}
1835
			}
1836
			return 0;
1837
		}
1838
	}
1839
 
1840
error:
3384 jermar 1841
	panic("Inconsistency detected while removing %" PRIc " pages of used "
1842
	    "space from %p.\n", count, page);
1387 jermar 1843
}
1844
 
1409 jermar 1845
/** Remove reference to address space area share info.
1846
 *
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1848
 *
3384 jermar 1849
 * @param sh_info	Pointer to address space area share info.
1409 jermar 1850
 */
1851
void sh_info_remove_reference(share_info_t *sh_info)
1852
{
1853
	bool dealloc = false;
1854
 
1855
	mutex_lock(&sh_info->lock);
1856
	ASSERT(sh_info->refcount);
1857
	if (--sh_info->refcount == 0) {
1858
		dealloc = true;
1495 jermar 1859
		link_t *cur;
1409 jermar 1860
 
1861
		/*
1862
		 * Now walk carefully the pagemap B+tree and free/remove
1863
		 * reference from all frames found there.
1864
		 */
2087 jermar 1865
		for (cur = sh_info->pagemap.leaf_head.next;
1866
		    cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1867
			btree_node_t *node;
2745 decky 1868
			unsigned int i;
1409 jermar 1869
 
1495 jermar 1870
			node = list_get_instance(cur, btree_node_t, leaf_link);
1871
			for (i = 0; i < node->keys; i++) 
1780 jermar 1872
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1873
		}
1874
 
1875
	}
1876
	mutex_unlock(&sh_info->lock);
1877
 
1878
	if (dealloc) {
1879
		btree_destroy(&sh_info->pagemap);
1880
		free(sh_info);
1881
	}
1882
}
1883
 
1235 jermar 1884
/*
1885
 * Address space related syscalls.
1886
 */
1887
 
1888
/** Wrapper for as_area_create(). */
1780 jermar 1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1890
{
2087 jermar 1891
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1892
	    AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1893
		return (unative_t) address;
1235 jermar 1894
	else
1780 jermar 1895
		return (unative_t) -1;
1235 jermar 1896
}
1897
 
1793 jermar 1898
/** Wrapper for as_area_resize(). */
1780 jermar 1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1900
{
1780 jermar 1901
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1902
}
1903
 
3222 svoboda 1904
/** Wrapper for as_area_change_flags(). */
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1906
{
1907
	return (unative_t) as_area_change_flags(AS, flags, address);
1908
}
1909
 
1793 jermar 1910
/** Wrapper for as_area_destroy(). */
1780 jermar 1911
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1912
{
1780 jermar 1913
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1914
}
1702 cejka 1915
 
1914 jermar 1916
/** Print out information about address space.
1917
 *
3384 jermar 1918
 * @param as		Address space.
1914 jermar 1919
 */
1920
void as_print(as_t *as)
1921
{
1922
	ipl_t ipl;
1923
 
1924
	ipl = interrupts_disable();
1925
	mutex_lock(&as->lock);
1926
 
1927
	/* print out info about address space areas */
1928
	link_t *cur;
2087 jermar 1929
	for (cur = as->as_area_btree.leaf_head.next;
1930
	    cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1931
		btree_node_t *node;
1914 jermar 1932
 
2087 jermar 1933
		node = list_get_instance(cur, btree_node_t, leaf_link);
1934
 
2745 decky 1935
		unsigned int i;
1914 jermar 1936
		for (i = 0; i < node->keys; i++) {
1915 jermar 1937
			as_area_t *area = node->value[i];
1914 jermar 1938
 
1939
			mutex_lock(&area->lock);
3384 jermar 1940
			printf("as_area: %p, base=%p, pages=%" PRIc
1941
			    " (%p - %p)\n", area, area->base, area->pages,
1942
			    area->base, area->base + FRAMES2SIZE(area->pages));
1914 jermar 1943
			mutex_unlock(&area->lock);
1944
		}
1945
	}
1946
 
1947
	mutex_unlock(&as->lock);
1948
	interrupts_restore(ipl);
1949
}
1950
 
1757 jermar 1951
/** @}
1702 cejka 1952
 */