Subversion Repositories HelenOS

Rev

Rev 3186 | Rev 3240 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
2183 jermar 60
#include <preemption.h>
703 jermar 61
#include <synch/spinlock.h>
1380 jermar 62
#include <synch/mutex.h>
788 jermar 63
#include <adt/list.h>
1147 jermar 64
#include <adt/btree.h>
1235 jermar 65
#include <proc/task.h>
1288 jermar 66
#include <proc/thread.h>
1235 jermar 67
#include <arch/asm.h>
703 jermar 68
#include <panic.h>
69
#include <debug.h>
1235 jermar 70
#include <print.h>
703 jermar 71
#include <memstr.h>
1070 jermar 72
#include <macros.h>
703 jermar 73
#include <arch.h>
1235 jermar 74
#include <errno.h>
75
#include <config.h>
1387 jermar 76
#include <align.h>
1235 jermar 77
#include <arch/types.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
2125 decky 85
#ifndef __OBJC__
1757 jermar 86
/**
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
89
 */
756 jermar 90
as_operations_t *as_operations = NULL;
703 jermar 91
 
1890 jermar 92
/**
93
 * Slab for as_t objects.
94
 */
95
static slab_cache_t *as_slab;
2126 decky 96
#endif
1890 jermar 97
 
2087 jermar 98
/**
2170 jermar 99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
2087 jermar 104
 */
2170 jermar 105
SPINLOCK_INITIALIZE(asidlock);
823 jermar 106
 
107
/**
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
757 jermar 113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
115
 
1235 jermar 116
static int area_flags_to_page_flags(int aflags);
1780 jermar 117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
2087 jermar 118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
1409 jermar 120
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 121
 
2126 decky 122
#ifndef __OBJC__
1891 jermar 123
static int as_constructor(void *obj, int flags)
124
{
125
	as_t *as = (as_t *) obj;
126
	int rc;
127
 
128
	link_initialize(&as->inactive_as_with_asid_link);
3186 jermar 129
	mutex_initialize(&as->lock, MUTEX_PASSIVE);	
1891 jermar 130
 
131
	rc = as_constructor_arch(as, flags);
132
 
133
	return rc;
134
}
135
 
136
static int as_destructor(void *obj)
137
{
138
	as_t *as = (as_t *) obj;
139
 
140
	return as_destructor_arch(as);
141
}
2126 decky 142
#endif
1891 jermar 143
 
756 jermar 144
/** Initialize address space subsystem. */
145
void as_init(void)
146
{
147
	as_arch_init();
2126 decky 148
 
149
#ifndef __OBJC__
1891 jermar 150
	as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 151
	    as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
2126 decky 152
#endif
1890 jermar 153
 
789 palkovsky 154
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 155
	if (!AS_KERNEL)
156
		panic("can't create kernel address space\n");
157
 
756 jermar 158
}
159
 
757 jermar 160
/** Create address space.
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
756 jermar 164
as_t *as_create(int flags)
703 jermar 165
{
166
	as_t *as;
167
 
2126 decky 168
#ifdef __OBJC__
169
	as = [as_t new];
170
	link_initialize(&as->inactive_as_with_asid_link);
3186 jermar 171
	mutex_initialize(&as->lock, MUTEX_PASSIVE);	
2126 decky 172
	(void) as_constructor_arch(as, flags);
173
#else
1890 jermar 174
	as = (as_t *) slab_alloc(as_slab, 0);
2126 decky 175
#endif
1891 jermar 176
	(void) as_create_arch(as, 0);
177
 
1147 jermar 178
	btree_create(&as->as_area_btree);
822 palkovsky 179
 
180
	if (flags & FLAG_AS_KERNEL)
181
		as->asid = ASID_KERNEL;
182
	else
183
		as->asid = ASID_INVALID;
184
 
2183 jermar 185
	atomic_set(&as->refcount, 0);
1415 jermar 186
	as->cpu_refcount = 0;
2089 decky 187
#ifdef AS_PAGE_TABLE
2106 jermar 188
	as->genarch.page_table = page_table_create(flags);
2089 decky 189
#else
190
	page_table_create(flags);
191
#endif
703 jermar 192
 
193
	return as;
194
}
195
 
1468 jermar 196
/** Destroy adress space.
197
 *
2087 jermar 198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
2183 jermar 200
 *
201
 * We know that we don't hold any spinlock.
1468 jermar 202
 */
203
void as_destroy(as_t *as)
973 palkovsky 204
{
1468 jermar 205
	ipl_t ipl;
1594 jermar 206
	bool cond;
2183 jermar 207
	DEADLOCK_PROBE_INIT(p_asidlock);
973 palkovsky 208
 
2183 jermar 209
	ASSERT(atomic_get(&as->refcount) == 0);
1468 jermar 210
 
211
	/*
212
	 * Since there is no reference to this area,
213
	 * it is safe not to lock its mutex.
214
	 */
2170 jermar 215
 
2183 jermar 216
	/*
217
	 * We need to avoid deadlock between TLB shootdown and asidlock.
218
	 * We therefore try to take asid conditionally and if we don't succeed,
219
	 * we enable interrupts and try again. This is done while preemption is
220
	 * disabled to prevent nested context switches. We also depend on the
221
	 * fact that so far no spinlocks are held.
222
	 */
223
	preemption_disable();
224
	ipl = interrupts_read();
225
retry:
226
	interrupts_disable();
227
	if (!spinlock_trylock(&asidlock)) {
228
		interrupts_enable();
229
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
		goto retry;
231
	}
232
	preemption_enable();	/* Interrupts disabled, enable preemption */
1587 jermar 233
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 234
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 235
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 236
		asid_put(as->asid);
237
	}
2170 jermar 238
	spinlock_unlock(&asidlock);
1468 jermar 239
 
240
	/*
241
	 * Destroy address space areas of the address space.
1954 jermar 242
	 * The B+tree must be walked carefully because it is
1594 jermar 243
	 * also being destroyed.
1468 jermar 244
	 */	
1594 jermar 245
	for (cond = true; cond; ) {
1468 jermar 246
		btree_node_t *node;
1594 jermar 247
 
248
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 249
		node = list_get_instance(as->as_area_btree.leaf_head.next,
250
		    btree_node_t, leaf_link);
1594 jermar 251
 
252
		if ((cond = node->keys)) {
253
			as_area_destroy(as, node->key[0]);
254
		}
1468 jermar 255
	}
1495 jermar 256
 
1483 jermar 257
	btree_destroy(&as->as_area_btree);
2089 decky 258
#ifdef AS_PAGE_TABLE
2106 jermar 259
	page_table_destroy(as->genarch.page_table);
2089 decky 260
#else
261
	page_table_destroy(NULL);
262
#endif
1468 jermar 263
 
264
	interrupts_restore(ipl);
2126 decky 265
 
266
#ifdef __OBJC__
267
	[as free];
268
#else
1890 jermar 269
	slab_free(as_slab, as);
2126 decky 270
#endif
973 palkovsky 271
}
272
 
703 jermar 273
/** Create address space area of common attributes.
274
 *
275
 * The created address space area is added to the target address space.
276
 *
277
 * @param as Target address space.
1239 jermar 278
 * @param flags Flags of the area memory.
1048 jermar 279
 * @param size Size of area.
703 jermar 280
 * @param base Base address of area.
1239 jermar 281
 * @param attrs Attributes of the area.
1409 jermar 282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 284
 *
285
 * @return Address space area on success or NULL on failure.
286
 */
2069 jermar 287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 289
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 290
{
291
	ipl_t ipl;
292
	as_area_t *a;
293
 
294
	if (base % PAGE_SIZE)
1048 jermar 295
		return NULL;
296
 
1233 jermar 297
	if (!size)
298
		return NULL;
299
 
1048 jermar 300
	/* Writeable executable areas are not supported. */
301
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
		return NULL;
703 jermar 303
 
304
	ipl = interrupts_disable();
1380 jermar 305
	mutex_lock(&as->lock);
703 jermar 306
 
1048 jermar 307
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 308
		mutex_unlock(&as->lock);
1048 jermar 309
		interrupts_restore(ipl);
310
		return NULL;
311
	}
703 jermar 312
 
822 palkovsky 313
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 314
 
3186 jermar 315
	mutex_initialize(&a->lock, MUTEX_PASSIVE);
822 palkovsky 316
 
1424 jermar 317
	a->as = as;
1026 jermar 318
	a->flags = flags;
1239 jermar 319
	a->attributes = attrs;
1048 jermar 320
	a->pages = SIZE2FRAMES(size);
822 palkovsky 321
	a->base = base;
1409 jermar 322
	a->sh_info = NULL;
323
	a->backend = backend;
1424 jermar 324
	if (backend_data)
325
		a->backend_data = *backend_data;
326
	else
3104 svoboda 327
		memsetb(&a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 328
 
1387 jermar 329
	btree_create(&a->used_space);
822 palkovsky 330
 
1147 jermar 331
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 332
 
1380 jermar 333
	mutex_unlock(&as->lock);
703 jermar 334
	interrupts_restore(ipl);
704 jermar 335
 
703 jermar 336
	return a;
337
}
338
 
1235 jermar 339
/** Find address space area and change it.
340
 *
341
 * @param as Address space.
2087 jermar 342
 * @param address Virtual address belonging to the area to be changed. Must be
343
 *     page-aligned.
1235 jermar 344
 * @param size New size of the virtual memory block starting at address. 
345
 * @param flags Flags influencing the remap operation. Currently unused.
346
 *
1306 jermar 347
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 348
 */ 
1780 jermar 349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 350
{
1306 jermar 351
	as_area_t *area;
1235 jermar 352
	ipl_t ipl;
353
	size_t pages;
354
 
355
	ipl = interrupts_disable();
1380 jermar 356
	mutex_lock(&as->lock);
1235 jermar 357
 
358
	/*
359
	 * Locate the area.
360
	 */
361
	area = find_area_and_lock(as, address);
362
	if (!area) {
1380 jermar 363
		mutex_unlock(&as->lock);
1235 jermar 364
		interrupts_restore(ipl);
1306 jermar 365
		return ENOENT;
1235 jermar 366
	}
367
 
1424 jermar 368
	if (area->backend == &phys_backend) {
1235 jermar 369
		/*
370
		 * Remapping of address space areas associated
371
		 * with memory mapped devices is not supported.
372
		 */
1380 jermar 373
		mutex_unlock(&area->lock);
374
		mutex_unlock(&as->lock);
1235 jermar 375
		interrupts_restore(ipl);
1306 jermar 376
		return ENOTSUP;
1235 jermar 377
	}
1409 jermar 378
	if (area->sh_info) {
379
		/*
380
		 * Remapping of shared address space areas 
381
		 * is not supported.
382
		 */
383
		mutex_unlock(&area->lock);
384
		mutex_unlock(&as->lock);
385
		interrupts_restore(ipl);
386
		return ENOTSUP;
387
	}
1235 jermar 388
 
389
	pages = SIZE2FRAMES((address - area->base) + size);
390
	if (!pages) {
391
		/*
392
		 * Zero size address space areas are not allowed.
393
		 */
1380 jermar 394
		mutex_unlock(&area->lock);
395
		mutex_unlock(&as->lock);
1235 jermar 396
		interrupts_restore(ipl);
1306 jermar 397
		return EPERM;
1235 jermar 398
	}
399
 
400
	if (pages < area->pages) {
1403 jermar 401
		bool cond;
1780 jermar 402
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 403
 
404
		/*
405
		 * Shrinking the area.
406
		 * No need to check for overlaps.
407
		 */
1403 jermar 408
 
409
		/*
1436 jermar 410
		 * Start TLB shootdown sequence.
411
		 */
2087 jermar 412
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
		    pages * PAGE_SIZE, area->pages - pages);
1436 jermar 414
 
415
		/*
1403 jermar 416
		 * Remove frames belonging to used space starting from
417
		 * the highest addresses downwards until an overlap with
418
		 * the resized address space area is found. Note that this
419
		 * is also the right way to remove part of the used_space
420
		 * B+tree leaf list.
421
		 */		
422
		for (cond = true; cond;) {
423
			btree_node_t *node;
424
 
425
			ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 426
			node = 
427
			    list_get_instance(area->used_space.leaf_head.prev,
428
			    btree_node_t, leaf_link);
1403 jermar 429
			if ((cond = (bool) node->keys)) {
1780 jermar 430
				uintptr_t b = node->key[node->keys - 1];
2087 jermar 431
				count_t c =
432
				    (count_t) node->value[node->keys - 1];
2745 decky 433
				unsigned int i = 0;
1235 jermar 434
 
2087 jermar 435
				if (overlaps(b, c * PAGE_SIZE, area->base,
2133 jermar 436
				    pages * PAGE_SIZE)) {
1403 jermar 437
 
2087 jermar 438
					if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 439
						/*
2087 jermar 440
						 * The whole interval fits
441
						 * completely in the resized
442
						 * address space area.
1403 jermar 443
						 */
444
						break;
445
					}
446
 
447
					/*
2087 jermar 448
					 * Part of the interval corresponding
449
					 * to b and c overlaps with the resized
450
					 * address space area.
1403 jermar 451
					 */
452
 
453
					cond = false;	/* we are almost done */
454
					i = (start_free - b) >> PAGE_WIDTH;
3057 decky 455
					if (!used_space_remove(area, start_free, c - i))
456
						panic("Could not remove used space.\n");
1403 jermar 457
				} else {
458
					/*
2087 jermar 459
					 * The interval of used space can be
460
					 * completely removed.
1403 jermar 461
					 */
462
					if (!used_space_remove(area, b, c))
3057 decky 463
						panic("Could not remove used space.\n");
1403 jermar 464
				}
465
 
466
				for (; i < c; i++) {
467
					pte_t *pte;
468
 
469
					page_table_lock(as, false);
2087 jermar 470
					pte = page_mapping_find(as, b +
471
					    i * PAGE_SIZE);
472
					ASSERT(pte && PTE_VALID(pte) &&
473
					    PTE_PRESENT(pte));
474
					if (area->backend &&
475
					    area->backend->frame_free) {
1424 jermar 476
						area->backend->frame_free(area,
2087 jermar 477
						    b + i * PAGE_SIZE,
478
						    PTE_GET_FRAME(pte));
1409 jermar 479
					}
2087 jermar 480
					page_mapping_remove(as, b +
481
					    i * PAGE_SIZE);
1403 jermar 482
					page_table_unlock(as, false);
483
				}
1235 jermar 484
			}
485
		}
1436 jermar 486
 
1235 jermar 487
		/*
1436 jermar 488
		 * Finish TLB shootdown sequence.
1235 jermar 489
		 */
2183 jermar 490
 
2087 jermar 491
		tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
492
		    area->pages - pages);
1889 jermar 493
		/*
494
		 * Invalidate software translation caches (e.g. TSB on sparc64).
495
		 */
2087 jermar 496
		as_invalidate_translation_cache(as, area->base +
497
		    pages * PAGE_SIZE, area->pages - pages);
2183 jermar 498
		tlb_shootdown_finalize();
499
 
1235 jermar 500
	} else {
501
		/*
502
		 * Growing the area.
503
		 * Check for overlaps with other address space areas.
504
		 */
2087 jermar 505
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
506
		    area)) {
1380 jermar 507
			mutex_unlock(&area->lock);
508
			mutex_unlock(&as->lock);		
1235 jermar 509
			interrupts_restore(ipl);
1306 jermar 510
			return EADDRNOTAVAIL;
1235 jermar 511
		}
512
	} 
513
 
514
	area->pages = pages;
515
 
1380 jermar 516
	mutex_unlock(&area->lock);
517
	mutex_unlock(&as->lock);
1235 jermar 518
	interrupts_restore(ipl);
519
 
1306 jermar 520
	return 0;
1235 jermar 521
}
522
 
1306 jermar 523
/** Destroy address space area.
524
 *
525
 * @param as Address space.
526
 * @param address Address withing the area to be deleted.
527
 *
528
 * @return Zero on success or a value from @ref errno.h on failure. 
529
 */
1780 jermar 530
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 531
{
532
	as_area_t *area;
1780 jermar 533
	uintptr_t base;
1495 jermar 534
	link_t *cur;
1306 jermar 535
	ipl_t ipl;
536
 
537
	ipl = interrupts_disable();
1380 jermar 538
	mutex_lock(&as->lock);
1306 jermar 539
 
540
	area = find_area_and_lock(as, address);
541
	if (!area) {
1380 jermar 542
		mutex_unlock(&as->lock);
1306 jermar 543
		interrupts_restore(ipl);
544
		return ENOENT;
545
	}
546
 
1403 jermar 547
	base = area->base;
548
 
1411 jermar 549
	/*
1436 jermar 550
	 * Start TLB shootdown sequence.
551
	 */
1889 jermar 552
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 553
 
554
	/*
1411 jermar 555
	 * Visit only the pages mapped by used_space B+tree.
556
	 */
2087 jermar 557
	for (cur = area->used_space.leaf_head.next;
558
	    cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 559
		btree_node_t *node;
2745 decky 560
		unsigned int i;
1403 jermar 561
 
1495 jermar 562
		node = list_get_instance(cur, btree_node_t, leaf_link);
563
		for (i = 0; i < node->keys; i++) {
1780 jermar 564
			uintptr_t b = node->key[i];
1495 jermar 565
			count_t j;
1411 jermar 566
			pte_t *pte;
1403 jermar 567
 
1495 jermar 568
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 569
				page_table_lock(as, false);
2087 jermar 570
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
571
				ASSERT(pte && PTE_VALID(pte) &&
572
				    PTE_PRESENT(pte));
573
				if (area->backend &&
574
				    area->backend->frame_free) {
575
					area->backend->frame_free(area,	b +
2133 jermar 576
					    j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 577
				}
2087 jermar 578
				page_mapping_remove(as, b + j * PAGE_SIZE);				
1411 jermar 579
				page_table_unlock(as, false);
1306 jermar 580
			}
581
		}
582
	}
1403 jermar 583
 
1306 jermar 584
	/*
1436 jermar 585
	 * Finish TLB shootdown sequence.
1306 jermar 586
	 */
2183 jermar 587
 
1889 jermar 588
	tlb_invalidate_pages(as->asid, area->base, area->pages);
589
	/*
2087 jermar 590
	 * Invalidate potential software translation caches (e.g. TSB on
591
	 * sparc64).
1889 jermar 592
	 */
593
	as_invalidate_translation_cache(as, area->base, area->pages);
2183 jermar 594
	tlb_shootdown_finalize();
1889 jermar 595
 
1436 jermar 596
	btree_destroy(&area->used_space);
1306 jermar 597
 
1309 jermar 598
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 599
 
600
	if (area->sh_info)
601
		sh_info_remove_reference(area->sh_info);
602
 
1380 jermar 603
	mutex_unlock(&area->lock);
1306 jermar 604
 
605
	/*
606
	 * Remove the empty area from address space.
607
	 */
1889 jermar 608
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 609
 
1309 jermar 610
	free(area);
611
 
1889 jermar 612
	mutex_unlock(&as->lock);
1306 jermar 613
	interrupts_restore(ipl);
614
	return 0;
615
}
616
 
1413 jermar 617
/** Share address space area with another or the same address space.
1235 jermar 618
 *
1424 jermar 619
 * Address space area mapping is shared with a new address space area.
620
 * If the source address space area has not been shared so far,
621
 * a new sh_info is created. The new address space area simply gets the
622
 * sh_info of the source area. The process of duplicating the
623
 * mapping is done through the backend share function.
1413 jermar 624
 * 
1417 jermar 625
 * @param src_as Pointer to source address space.
1239 jermar 626
 * @param src_base Base address of the source address space area.
1417 jermar 627
 * @param acc_size Expected size of the source area.
1428 palkovsky 628
 * @param dst_as Pointer to destination address space.
1417 jermar 629
 * @param dst_base Target base address.
630
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 631
 *
2007 jermar 632
 * @return Zero on success or ENOENT if there is no such task or if there is no
633
 * such address space area, EPERM if there was a problem in accepting the area
634
 * or ENOMEM if there was a problem in allocating destination address space
635
 * area. ENOTSUP is returned if the address space area backend does not support
2141 jermar 636
 * sharing.
1235 jermar 637
 */
1780 jermar 638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
2647 jermar 639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 640
{
641
	ipl_t ipl;
1239 jermar 642
	int src_flags;
643
	size_t src_size;
644
	as_area_t *src_area, *dst_area;
1413 jermar 645
	share_info_t *sh_info;
1424 jermar 646
	mem_backend_t *src_backend;
647
	mem_backend_data_t src_backend_data;
1434 palkovsky 648
 
1235 jermar 649
	ipl = interrupts_disable();
1380 jermar 650
	mutex_lock(&src_as->lock);
1329 palkovsky 651
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 652
	if (!src_area) {
1238 jermar 653
		/*
654
		 * Could not find the source address space area.
655
		 */
1380 jermar 656
		mutex_unlock(&src_as->lock);
1238 jermar 657
		interrupts_restore(ipl);
658
		return ENOENT;
659
	}
2007 jermar 660
 
1424 jermar 661
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 662
		/*
1851 jermar 663
		 * There is no backend or the backend does not
1424 jermar 664
		 * know how to share the area.
1413 jermar 665
		 */
666
		mutex_unlock(&src_area->lock);
667
		mutex_unlock(&src_as->lock);
668
		interrupts_restore(ipl);
669
		return ENOTSUP;
670
	}
671
 
1239 jermar 672
	src_size = src_area->pages * PAGE_SIZE;
673
	src_flags = src_area->flags;
1424 jermar 674
	src_backend = src_area->backend;
675
	src_backend_data = src_area->backend_data;
1544 palkovsky 676
 
677
	/* Share the cacheable flag from the original mapping */
678
	if (src_flags & AS_AREA_CACHEABLE)
679
		dst_flags_mask |= AS_AREA_CACHEABLE;
680
 
2087 jermar 681
	if (src_size != acc_size ||
682
	    (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 683
		mutex_unlock(&src_area->lock);
684
		mutex_unlock(&src_as->lock);
1235 jermar 685
		interrupts_restore(ipl);
686
		return EPERM;
687
	}
1413 jermar 688
 
1235 jermar 689
	/*
1413 jermar 690
	 * Now we are committed to sharing the area.
1954 jermar 691
	 * First, prepare the area for sharing.
1413 jermar 692
	 * Then it will be safe to unlock it.
693
	 */
694
	sh_info = src_area->sh_info;
695
	if (!sh_info) {
696
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
3186 jermar 697
		mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
1413 jermar 698
		sh_info->refcount = 2;
699
		btree_create(&sh_info->pagemap);
700
		src_area->sh_info = sh_info;
2647 jermar 701
		/*
702
		 * Call the backend to setup sharing.
703
		 */
704
		src_area->backend->share(src_area);
1413 jermar 705
	} else {
706
		mutex_lock(&sh_info->lock);
707
		sh_info->refcount++;
708
		mutex_unlock(&sh_info->lock);
709
	}
710
 
711
	mutex_unlock(&src_area->lock);
712
	mutex_unlock(&src_as->lock);
713
 
714
	/*
1239 jermar 715
	 * Create copy of the source address space area.
716
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
717
	 * attribute set which prevents race condition with
718
	 * preliminary as_page_fault() calls.
1417 jermar 719
	 * The flags of the source area are masked against dst_flags_mask
720
	 * to support sharing in less privileged mode.
1235 jermar 721
	 */
1461 palkovsky 722
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 723
	    AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 724
	if (!dst_area) {
1235 jermar 725
		/*
726
		 * Destination address space area could not be created.
727
		 */
1413 jermar 728
		sh_info_remove_reference(sh_info);
729
 
1235 jermar 730
		interrupts_restore(ipl);
731
		return ENOMEM;
732
	}
2009 jermar 733
 
1235 jermar 734
	/*
1239 jermar 735
	 * Now the destination address space area has been
736
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 737
	 * attribute and set the sh_info.
1239 jermar 738
	 */	
2009 jermar 739
	mutex_lock(&dst_as->lock);	
1380 jermar 740
	mutex_lock(&dst_area->lock);
1239 jermar 741
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 742
	dst_area->sh_info = sh_info;
1380 jermar 743
	mutex_unlock(&dst_area->lock);
2009 jermar 744
	mutex_unlock(&dst_as->lock);	
745
 
1235 jermar 746
	interrupts_restore(ipl);
747
 
748
	return 0;
749
}
750
 
1423 jermar 751
/** Check access mode for address space area.
752
 *
753
 * The address space area must be locked prior to this call.
754
 *
755
 * @param area Address space area.
756
 * @param access Access mode.
757
 *
758
 * @return False if access violates area's permissions, true otherwise.
759
 */
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
761
{
762
	int flagmap[] = {
763
		[PF_ACCESS_READ] = AS_AREA_READ,
764
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
765
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
766
	};
767
 
768
	if (!(area->flags & flagmap[access]))
769
		return false;
770
 
771
	return true;
772
}
773
 
3222 svoboda 774
/** Change adress area flags.
775
 *
776
 * The idea is to have the same data, but with a different access mode.
777
 * This is needed e.g. for writing code into memory and then executing it.
778
 * In order for this to work properly, this may copy the data
779
 * into private anonymous memory (unless it's already there).
780
 *
781
 * @param as Address space.
782
 * @param flags Flags of the area memory.
783
 * @param address Address withing the area to be changed.
784
 *
785
 * @return Zero on success or a value from @ref errno.h on failure. 
786
 */
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
788
{
789
	as_area_t *area;
790
	uintptr_t base;
791
	link_t *cur;
792
	ipl_t ipl;
793
	int page_flags;
794
	uintptr_t *old_frame;
795
	index_t frame_idx;
796
	count_t used_pages;
797
 
798
	/* Flags for the new memory mapping */
799
	page_flags = area_flags_to_page_flags(flags);
800
 
801
	ipl = interrupts_disable();
802
	mutex_lock(&as->lock);
803
 
804
	area = find_area_and_lock(as, address);
805
	if (!area) {
806
		mutex_unlock(&as->lock);
807
		interrupts_restore(ipl);
808
		return ENOENT;
809
	}
810
 
811
	if (area->sh_info || area->backend != &anon_backend) {
812
		/* Copying shared areas not supported yet */
813
		/* Copying non-anonymous memory not supported yet */
814
		mutex_unlock(&area->lock);
815
		mutex_unlock(&as->lock);
816
		interrupts_restore(ipl);
817
		return ENOTSUP;
818
	}
819
 
820
	base = area->base;
821
 
822
	/*
823
	 * Compute total number of used pages in the used_space B+tree
824
	 */
825
	used_pages = 0;
826
 
827
	for (cur = area->used_space.leaf_head.next;
828
	    cur != &area->used_space.leaf_head; cur = cur->next) {
829
		btree_node_t *node;
830
		unsigned int i;
831
 
832
		node = list_get_instance(cur, btree_node_t, leaf_link);
833
		for (i = 0; i < node->keys; i++) {
834
			used_pages += (count_t) node->value[i];
835
		}
836
	}
837
 
838
	/* An array for storing frame numbers */
839
	old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
840
 
841
	/*
842
	 * Start TLB shootdown sequence.
843
	 */
844
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
845
 
846
	/*
847
	 * Remove used pages from page tables and remember their frame
848
	 * numbers.
849
	 */
850
	frame_idx = 0;
851
 
852
	for (cur = area->used_space.leaf_head.next;
853
	    cur != &area->used_space.leaf_head; cur = cur->next) {
854
		btree_node_t *node;
855
		unsigned int i;
856
 
857
		node = list_get_instance(cur, btree_node_t, leaf_link);
858
		for (i = 0; i < node->keys; i++) {
859
			uintptr_t b = node->key[i];
860
			count_t j;
861
			pte_t *pte;
862
 
863
			for (j = 0; j < (count_t) node->value[i]; j++) {
864
				page_table_lock(as, false);
865
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
866
				ASSERT(pte && PTE_VALID(pte) &&
867
				    PTE_PRESENT(pte));
868
				old_frame[frame_idx++] = PTE_GET_FRAME(pte);
869
 
870
				/* Remove old mapping */
871
				page_mapping_remove(as, b + j * PAGE_SIZE);
872
				page_table_unlock(as, false);
873
			}
874
		}
875
	}
876
 
877
	/*
878
	 * Finish TLB shootdown sequence.
879
	 */
880
 
881
	tlb_invalidate_pages(as->asid, area->base, area->pages);
882
	/*
883
	 * Invalidate potential software translation caches (e.g. TSB on
884
	 * sparc64).
885
	 */
886
	as_invalidate_translation_cache(as, area->base, area->pages);
887
	tlb_shootdown_finalize();
888
 
889
	/*
890
	 * Map pages back in with new flags. This step is kept separate
891
	 * so that there's no instant when the memory area could be
892
	 * accesed with both the old and the new flags at once.
893
	 */
894
	frame_idx = 0;
895
 
896
	for (cur = area->used_space.leaf_head.next;
897
	    cur != &area->used_space.leaf_head; cur = cur->next) {
898
		btree_node_t *node;
899
		unsigned int i;
900
 
901
		node = list_get_instance(cur, btree_node_t, leaf_link);
902
		for (i = 0; i < node->keys; i++) {
903
			uintptr_t b = node->key[i];
904
			count_t j;
905
 
906
			for (j = 0; j < (count_t) node->value[i]; j++) {
907
				page_table_lock(as, false);
908
 
909
				/* Insert the new mapping */
910
				page_mapping_insert(as, b + j * PAGE_SIZE,
911
				    old_frame[frame_idx++], page_flags);
912
 
913
				page_table_unlock(as, false);
914
			}
915
		}
916
	}
917
 
918
	free(old_frame);
919
 
920
	mutex_unlock(&area->lock);
921
	mutex_unlock(&as->lock);
922
	interrupts_restore(ipl);
923
 
924
	return 0;
925
}
926
 
927
 
703 jermar 928
/** Handle page fault within the current address space.
929
 *
1409 jermar 930
 * This is the high-level page fault handler. It decides
931
 * whether the page fault can be resolved by any backend
932
 * and if so, it invokes the backend to resolve the page
933
 * fault.
934
 *
703 jermar 935
 * Interrupts are assumed disabled.
936
 *
937
 * @param page Faulting page.
1411 jermar 938
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 939
 * @param istate Pointer to interrupted state.
703 jermar 940
 *
1409 jermar 941
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
942
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 943
 */
1780 jermar 944
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 945
{
1044 jermar 946
	pte_t *pte;
977 jermar 947
	as_area_t *area;
703 jermar 948
 
1380 jermar 949
	if (!THREAD)
1409 jermar 950
		return AS_PF_FAULT;
1380 jermar 951
 
703 jermar 952
	ASSERT(AS);
1044 jermar 953
 
1380 jermar 954
	mutex_lock(&AS->lock);
977 jermar 955
	area = find_area_and_lock(AS, page);	
703 jermar 956
	if (!area) {
957
		/*
958
		 * No area contained mapping for 'page'.
959
		 * Signal page fault to low-level handler.
960
		 */
1380 jermar 961
		mutex_unlock(&AS->lock);
1288 jermar 962
		goto page_fault;
703 jermar 963
	}
964
 
1239 jermar 965
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
966
		/*
967
		 * The address space area is not fully initialized.
968
		 * Avoid possible race by returning error.
969
		 */
1380 jermar 970
		mutex_unlock(&area->lock);
971
		mutex_unlock(&AS->lock);
1288 jermar 972
		goto page_fault;		
1239 jermar 973
	}
974
 
1424 jermar 975
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 976
		/*
977
		 * The address space area is not backed by any backend
978
		 * or the backend cannot handle page faults.
979
		 */
980
		mutex_unlock(&area->lock);
981
		mutex_unlock(&AS->lock);
982
		goto page_fault;		
983
	}
1179 jermar 984
 
1044 jermar 985
	page_table_lock(AS, false);
986
 
703 jermar 987
	/*
1044 jermar 988
	 * To avoid race condition between two page faults
989
	 * on the same address, we need to make sure
990
	 * the mapping has not been already inserted.
991
	 */
992
	if ((pte = page_mapping_find(AS, page))) {
993
		if (PTE_PRESENT(pte)) {
1423 jermar 994
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 995
			    (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
996
			    (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 997
				page_table_unlock(AS, false);
998
				mutex_unlock(&area->lock);
999
				mutex_unlock(&AS->lock);
1000
				return AS_PF_OK;
1001
			}
1044 jermar 1002
		}
1003
	}
1409 jermar 1004
 
1044 jermar 1005
	/*
1409 jermar 1006
	 * Resort to the backend page fault handler.
703 jermar 1007
	 */
1424 jermar 1008
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 1009
		page_table_unlock(AS, false);
1010
		mutex_unlock(&area->lock);
1011
		mutex_unlock(&AS->lock);
1012
		goto page_fault;
1013
	}
703 jermar 1014
 
1044 jermar 1015
	page_table_unlock(AS, false);
1380 jermar 1016
	mutex_unlock(&area->lock);
1017
	mutex_unlock(&AS->lock);
1288 jermar 1018
	return AS_PF_OK;
1019
 
1020
page_fault:
1021
	if (THREAD->in_copy_from_uspace) {
1022
		THREAD->in_copy_from_uspace = false;
2087 jermar 1023
		istate_set_retaddr(istate,
1024
		    (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 1025
	} else if (THREAD->in_copy_to_uspace) {
1026
		THREAD->in_copy_to_uspace = false;
2087 jermar 1027
		istate_set_retaddr(istate,
1028
		    (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 1029
	} else {
1030
		return AS_PF_FAULT;
1031
	}
1032
 
1033
	return AS_PF_DEFER;
703 jermar 1034
}
1035
 
823 jermar 1036
/** Switch address spaces.
703 jermar 1037
 *
1380 jermar 1038
 * Note that this function cannot sleep as it is essentially a part of
2170 jermar 1039
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1040
 * thing which is forbidden in this context is locking the address space.
1380 jermar 1041
 *
2183 jermar 1042
 * When this function is enetered, no spinlocks may be held.
1043
 *
823 jermar 1044
 * @param old Old address space or NULL.
1045
 * @param new New address space.
703 jermar 1046
 */
2106 jermar 1047
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 1048
{
2183 jermar 1049
	DEADLOCK_PROBE_INIT(p_asidlock);
1050
	preemption_disable();
1051
retry:
1052
	(void) interrupts_disable();
1053
	if (!spinlock_trylock(&asidlock)) {
1054
		/* 
1055
		 * Avoid deadlock with TLB shootdown.
1056
		 * We can enable interrupts here because
1057
		 * preemption is disabled. We should not be
1058
		 * holding any other lock.
1059
		 */
1060
		(void) interrupts_enable();
1061
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1062
		goto retry;
1063
	}
1064
	preemption_enable();
703 jermar 1065
 
1066
	/*
823 jermar 1067
	 * First, take care of the old address space.
1068
	 */	
2106 jermar 1069
	if (old_as) {
1070
		ASSERT(old_as->cpu_refcount);
1071
		if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 1072
			/*
1073
			 * The old address space is no longer active on
1074
			 * any processor. It can be appended to the
1075
			 * list of inactive address spaces with assigned
1076
			 * ASID.
1077
			 */
2141 jermar 1078
			ASSERT(old_as->asid != ASID_INVALID);
1079
			list_append(&old_as->inactive_as_with_asid_link,
1080
			    &inactive_as_with_asid_head);
823 jermar 1081
		}
1890 jermar 1082
 
1083
		/*
1084
		 * Perform architecture-specific tasks when the address space
1085
		 * is being removed from the CPU.
1086
		 */
2106 jermar 1087
		as_deinstall_arch(old_as);
823 jermar 1088
	}
1089
 
1090
	/*
1091
	 * Second, prepare the new address space.
1092
	 */
2106 jermar 1093
	if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
2170 jermar 1094
		if (new_as->asid != ASID_INVALID)
2106 jermar 1095
			list_remove(&new_as->inactive_as_with_asid_link);
2170 jermar 1096
		else
1097
			new_as->asid = asid_get();
823 jermar 1098
	}
2106 jermar 1099
#ifdef AS_PAGE_TABLE
1100
	SET_PTL0_ADDRESS(new_as->genarch.page_table);
1101
#endif
823 jermar 1102
 
1103
	/*
703 jermar 1104
	 * Perform architecture-specific steps.
727 jermar 1105
	 * (e.g. write ASID to hardware register etc.)
703 jermar 1106
	 */
2106 jermar 1107
	as_install_arch(new_as);
2170 jermar 1108
 
1109
	spinlock_unlock(&asidlock);
703 jermar 1110
 
2106 jermar 1111
	AS = new_as;
703 jermar 1112
}
754 jermar 1113
 
1235 jermar 1114
/** Convert address space area flags to page flags.
754 jermar 1115
 *
1235 jermar 1116
 * @param aflags Flags of some address space area.
754 jermar 1117
 *
1235 jermar 1118
 * @return Flags to be passed to page_mapping_insert().
754 jermar 1119
 */
1235 jermar 1120
int area_flags_to_page_flags(int aflags)
754 jermar 1121
{
1122
	int flags;
1123
 
1178 jermar 1124
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 1125
 
1235 jermar 1126
	if (aflags & AS_AREA_READ)
1026 jermar 1127
		flags |= PAGE_READ;
1128
 
1235 jermar 1129
	if (aflags & AS_AREA_WRITE)
1026 jermar 1130
		flags |= PAGE_WRITE;
1131
 
1235 jermar 1132
	if (aflags & AS_AREA_EXEC)
1026 jermar 1133
		flags |= PAGE_EXEC;
1134
 
1424 jermar 1135
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 1136
		flags |= PAGE_CACHEABLE;
1137
 
754 jermar 1138
	return flags;
1139
}
756 jermar 1140
 
1235 jermar 1141
/** Compute flags for virtual address translation subsytem.
1142
 *
1143
 * The address space area must be locked.
1144
 * Interrupts must be disabled.
1145
 *
1146
 * @param a Address space area.
1147
 *
1148
 * @return Flags to be used in page_mapping_insert().
1149
 */
1409 jermar 1150
int as_area_get_flags(as_area_t *a)
1235 jermar 1151
{
1152
	return area_flags_to_page_flags(a->flags);
1153
}
1154
 
756 jermar 1155
/** Create page table.
1156
 *
1157
 * Depending on architecture, create either address space
1158
 * private or global page table.
1159
 *
1160
 * @param flags Flags saying whether the page table is for kernel address space.
1161
 *
1162
 * @return First entry of the page table.
1163
 */
1164
pte_t *page_table_create(int flags)
1165
{
2125 decky 1166
#ifdef __OBJC__
1167
	return [as_t page_table_create: flags];
1168
#else
1169
	ASSERT(as_operations);
1170
	ASSERT(as_operations->page_table_create);
1171
 
1172
	return as_operations->page_table_create(flags);
1173
#endif
756 jermar 1174
}
977 jermar 1175
 
1468 jermar 1176
/** Destroy page table.
1177
 *
1178
 * Destroy page table in architecture specific way.
1179
 *
1180
 * @param page_table Physical address of PTL0.
1181
 */
1182
void page_table_destroy(pte_t *page_table)
1183
{
2125 decky 1184
#ifdef __OBJC__
1185
	return [as_t page_table_destroy: page_table];
1186
#else
1187
	ASSERT(as_operations);
1188
	ASSERT(as_operations->page_table_destroy);
1189
 
1190
	as_operations->page_table_destroy(page_table);
1191
#endif
1468 jermar 1192
}
1193
 
1044 jermar 1194
/** Lock page table.
1195
 *
1196
 * This function should be called before any page_mapping_insert(),
1197
 * page_mapping_remove() and page_mapping_find().
1198
 * 
1199
 * Locking order is such that address space areas must be locked
1200
 * prior to this call. Address space can be locked prior to this
1201
 * call in which case the lock argument is false.
1202
 *
1203
 * @param as Address space.
1248 jermar 1204
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 1205
 */
1206
void page_table_lock(as_t *as, bool lock)
1207
{
2125 decky 1208
#ifdef __OBJC__
1209
	[as page_table_lock: lock];
1210
#else
1044 jermar 1211
	ASSERT(as_operations);
1212
	ASSERT(as_operations->page_table_lock);
2125 decky 1213
 
1044 jermar 1214
	as_operations->page_table_lock(as, lock);
2125 decky 1215
#endif
1044 jermar 1216
}
1217
 
1218
/** Unlock page table.
1219
 *
1220
 * @param as Address space.
1248 jermar 1221
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 1222
 */
1223
void page_table_unlock(as_t *as, bool unlock)
1224
{
2125 decky 1225
#ifdef __OBJC__
1226
	[as page_table_unlock: unlock];
1227
#else
1044 jermar 1228
	ASSERT(as_operations);
1229
	ASSERT(as_operations->page_table_unlock);
2125 decky 1230
 
1044 jermar 1231
	as_operations->page_table_unlock(as, unlock);
2125 decky 1232
#endif
1044 jermar 1233
}
1234
 
977 jermar 1235
 
1236
/** Find address space area and lock it.
1237
 *
1238
 * The address space must be locked and interrupts must be disabled.
1239
 *
1240
 * @param as Address space.
1241
 * @param va Virtual address.
1242
 *
2087 jermar 1243
 * @return Locked address space area containing va on success or NULL on
1244
 *     failure.
977 jermar 1245
 */
1780 jermar 1246
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1247
{
1248
	as_area_t *a;
1147 jermar 1249
	btree_node_t *leaf, *lnode;
2745 decky 1250
	unsigned int i;
977 jermar 1251
 
1147 jermar 1252
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1253
	if (a) {
1254
		/* va is the base address of an address space area */
1380 jermar 1255
		mutex_lock(&a->lock);
1147 jermar 1256
		return a;
1257
	}
1258
 
1259
	/*
1150 jermar 1260
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1261
	 * to find out whether this is a miss or va belongs to an address
1262
	 * space area found there.
1263
	 */
1264
 
1265
	/* First, search the leaf node itself. */
1266
	for (i = 0; i < leaf->keys; i++) {
1267
		a = (as_area_t *) leaf->value[i];
1380 jermar 1268
		mutex_lock(&a->lock);
1147 jermar 1269
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1270
			return a;
1271
		}
1380 jermar 1272
		mutex_unlock(&a->lock);
1147 jermar 1273
	}
977 jermar 1274
 
1147 jermar 1275
	/*
1150 jermar 1276
	 * Second, locate the left neighbour and test its last record.
1148 jermar 1277
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 1278
	 */
2087 jermar 1279
	lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1280
	if (lnode) {
1147 jermar 1281
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1282
		mutex_lock(&a->lock);
1147 jermar 1283
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1284
			return a;
1147 jermar 1285
		}
1380 jermar 1286
		mutex_unlock(&a->lock);
977 jermar 1287
	}
1288
 
1289
	return NULL;
1290
}
1048 jermar 1291
 
1292
/** Check area conflicts with other areas.
1293
 *
1294
 * The address space must be locked and interrupts must be disabled.
1295
 *
1296
 * @param as Address space.
1297
 * @param va Starting virtual address of the area being tested.
1298
 * @param size Size of the area being tested.
1299
 * @param avoid_area Do not touch this area. 
1300
 *
1301
 * @return True if there is no conflict, false otherwise.
1302
 */
2087 jermar 1303
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1304
			  as_area_t *avoid_area)
1048 jermar 1305
{
1306
	as_area_t *a;
1147 jermar 1307
	btree_node_t *leaf, *node;
2745 decky 1308
	unsigned int i;
1048 jermar 1309
 
1070 jermar 1310
	/*
1311
	 * We don't want any area to have conflicts with NULL page.
1312
	 */
1313
	if (overlaps(va, size, NULL, PAGE_SIZE))
1314
		return false;
1315
 
1147 jermar 1316
	/*
1317
	 * The leaf node is found in O(log n), where n is proportional to
1318
	 * the number of address space areas belonging to as.
1319
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1320
	 * record in the left neighbour, the leftmost record in the right
1321
	 * neighbour and all records in the leaf node itself.
1147 jermar 1322
	 */
1048 jermar 1323
 
1147 jermar 1324
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1325
		if (a != avoid_area)
1326
			return false;
1327
	}
1328
 
1329
	/* First, check the two border cases. */
1150 jermar 1330
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1331
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1332
		mutex_lock(&a->lock);
1147 jermar 1333
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1334
			mutex_unlock(&a->lock);
1147 jermar 1335
			return false;
1336
		}
1380 jermar 1337
		mutex_unlock(&a->lock);
1147 jermar 1338
	}
2087 jermar 1339
	node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1340
	if (node) {
1147 jermar 1341
		a = (as_area_t *) node->value[0];
1380 jermar 1342
		mutex_lock(&a->lock);
1147 jermar 1343
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1344
			mutex_unlock(&a->lock);
1147 jermar 1345
			return false;
1346
		}
1380 jermar 1347
		mutex_unlock(&a->lock);
1147 jermar 1348
	}
1349
 
1350
	/* Second, check the leaf node. */
1351
	for (i = 0; i < leaf->keys; i++) {
1352
		a = (as_area_t *) leaf->value[i];
1353
 
1048 jermar 1354
		if (a == avoid_area)
1355
			continue;
1147 jermar 1356
 
1380 jermar 1357
		mutex_lock(&a->lock);
1147 jermar 1358
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1359
			mutex_unlock(&a->lock);
1147 jermar 1360
			return false;
1361
		}
1380 jermar 1362
		mutex_unlock(&a->lock);
1048 jermar 1363
	}
1364
 
1070 jermar 1365
	/*
1366
	 * So far, the area does not conflict with other areas.
1367
	 * Check if it doesn't conflict with kernel address space.
1368
	 */	 
1369
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1370
		return !overlaps(va, size, 
2087 jermar 1371
		    KERNEL_ADDRESS_SPACE_START,
1372
		    KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1373
	}
1374
 
1048 jermar 1375
	return true;
1376
}
1235 jermar 1377
 
2556 jermar 1378
/** Return size of the address space area with given base.
1379
 *
1380
 * @param base		Arbitrary address insede the address space area.
1381
 *
1382
 * @return		Size of the address space area in bytes or zero if it
1383
 *			does not exist.
1384
 */
1385
size_t as_area_get_size(uintptr_t base)
1329 palkovsky 1386
{
1387
	ipl_t ipl;
1388
	as_area_t *src_area;
1389
	size_t size;
1390
 
1391
	ipl = interrupts_disable();
1392
	src_area = find_area_and_lock(AS, base);
1393
	if (src_area){
1394
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1395
		mutex_unlock(&src_area->lock);
1329 palkovsky 1396
	} else {
1397
		size = 0;
1398
	}
1399
	interrupts_restore(ipl);
1400
	return size;
1401
}
1402
 
1387 jermar 1403
/** Mark portion of address space area as used.
1404
 *
1405
 * The address space area must be already locked.
1406
 *
1407
 * @param a Address space area.
1408
 * @param page First page to be marked.
1409
 * @param count Number of page to be marked.
1410
 *
1411
 * @return 0 on failure and 1 on success.
1412
 */
1780 jermar 1413
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1414
{
1415
	btree_node_t *leaf, *node;
1416
	count_t pages;
2745 decky 1417
	unsigned int i;
1387 jermar 1418
 
1419
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1420
	ASSERT(count);
1421
 
1422
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1423
	if (pages) {
1424
		/*
1425
		 * We hit the beginning of some used space.
1426
		 */
1427
		return 0;
1428
	}
1429
 
1437 jermar 1430
	if (!leaf->keys) {
1431
		btree_insert(&a->used_space, page, (void *) count, leaf);
1432
		return 1;
1433
	}
1434
 
1387 jermar 1435
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1436
	if (node) {
2087 jermar 1437
		uintptr_t left_pg = node->key[node->keys - 1];
1438
		uintptr_t right_pg = leaf->key[0];
1439
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1440
		count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1441
 
1442
		/*
1443
		 * Examine the possibility that the interval fits
1444
		 * somewhere between the rightmost interval of
1445
		 * the left neigbour and the first interval of the leaf.
1446
		 */
1447
 
1448
		if (page >= right_pg) {
1449
			/* Do nothing. */
2087 jermar 1450
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1451
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1452
			/* The interval intersects with the left interval. */
1453
			return 0;
2087 jermar 1454
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1455
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1456
			/* The interval intersects with the right interval. */
1457
			return 0;			
2087 jermar 1458
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1459
		    (page + count * PAGE_SIZE == right_pg)) {
1460
			/*
1461
			 * The interval can be added by merging the two already
1462
			 * present intervals.
1463
			 */
1403 jermar 1464
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1465
			btree_remove(&a->used_space, right_pg, leaf);
1466
			return 1; 
2087 jermar 1467
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1468
			/* 
1469
			 * The interval can be added by simply growing the left
1470
			 * interval.
1471
			 */
1403 jermar 1472
			node->value[node->keys - 1] += count;
1387 jermar 1473
			return 1;
2087 jermar 1474
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1475
			/*
2087 jermar 1476
			 * The interval can be addded by simply moving base of
1477
			 * the right interval down and increasing its size
1478
			 * accordingly.
1387 jermar 1479
			 */
1403 jermar 1480
			leaf->value[0] += count;
1387 jermar 1481
			leaf->key[0] = page;
1482
			return 1;
1483
		} else {
1484
			/*
1485
			 * The interval is between both neigbouring intervals,
1486
			 * but cannot be merged with any of them.
1487
			 */
2087 jermar 1488
			btree_insert(&a->used_space, page, (void *) count,
1489
			    leaf);
1387 jermar 1490
			return 1;
1491
		}
1492
	} else if (page < leaf->key[0]) {
1780 jermar 1493
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1494
		count_t right_cnt = (count_t) leaf->value[0];
1495
 
1496
		/*
2087 jermar 1497
		 * Investigate the border case in which the left neighbour does
1498
		 * not exist but the interval fits from the left.
1387 jermar 1499
		 */
1500
 
2087 jermar 1501
		if (overlaps(page, count * PAGE_SIZE, right_pg,
1502
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1503
			/* The interval intersects with the right interval. */
1504
			return 0;
2087 jermar 1505
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1506
			/*
2087 jermar 1507
			 * The interval can be added by moving the base of the
1508
			 * right interval down and increasing its size
1509
			 * accordingly.
1387 jermar 1510
			 */
1511
			leaf->key[0] = page;
1403 jermar 1512
			leaf->value[0] += count;
1387 jermar 1513
			return 1;
1514
		} else {
1515
			/*
1516
			 * The interval doesn't adjoin with the right interval.
1517
			 * It must be added individually.
1518
			 */
2087 jermar 1519
			btree_insert(&a->used_space, page, (void *) count,
1520
			    leaf);
1387 jermar 1521
			return 1;
1522
		}
1523
	}
1524
 
1525
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1526
	if (node) {
2087 jermar 1527
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1528
		uintptr_t right_pg = node->key[0];
1529
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1530
		count_t right_cnt = (count_t) node->value[0];
1387 jermar 1531
 
1532
		/*
1533
		 * Examine the possibility that the interval fits
1534
		 * somewhere between the leftmost interval of
1535
		 * the right neigbour and the last interval of the leaf.
1536
		 */
1537
 
1538
		if (page < left_pg) {
1539
			/* Do nothing. */
2087 jermar 1540
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1541
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1542
			/* The interval intersects with the left interval. */
1543
			return 0;
2087 jermar 1544
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1545
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1546
			/* The interval intersects with the right interval. */
1547
			return 0;			
2087 jermar 1548
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1549
		    (page + count * PAGE_SIZE == right_pg)) {
1550
			/*
1551
			 * The interval can be added by merging the two already
1552
			 * present intervals.
1553
			 * */
1403 jermar 1554
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1555
			btree_remove(&a->used_space, right_pg, node);
1556
			return 1; 
2087 jermar 1557
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1558
			/*
1559
			 * The interval can be added by simply growing the left
1560
			 * interval.
1561
			 * */
1403 jermar 1562
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1563
			return 1;
2087 jermar 1564
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1565
			/*
2087 jermar 1566
			 * The interval can be addded by simply moving base of
1567
			 * the right interval down and increasing its size
1568
			 * accordingly.
1387 jermar 1569
			 */
1403 jermar 1570
			node->value[0] += count;
1387 jermar 1571
			node->key[0] = page;
1572
			return 1;
1573
		} else {
1574
			/*
1575
			 * The interval is between both neigbouring intervals,
1576
			 * but cannot be merged with any of them.
1577
			 */
2087 jermar 1578
			btree_insert(&a->used_space, page, (void *) count,
1579
			    leaf);
1387 jermar 1580
			return 1;
1581
		}
1582
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1583
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1584
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1585
 
1586
		/*
2087 jermar 1587
		 * Investigate the border case in which the right neighbour
1588
		 * does not exist but the interval fits from the right.
1387 jermar 1589
		 */
1590
 
2087 jermar 1591
		if (overlaps(page, count * PAGE_SIZE, left_pg,
1592
		    left_cnt * PAGE_SIZE)) {
1403 jermar 1593
			/* The interval intersects with the left interval. */
1387 jermar 1594
			return 0;
2087 jermar 1595
		} else if (left_pg + left_cnt * PAGE_SIZE == page) {
1596
			/*
1597
			 * The interval can be added by growing the left
1598
			 * interval.
1599
			 */
1403 jermar 1600
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1601
			return 1;
1602
		} else {
1603
			/*
1604
			 * The interval doesn't adjoin with the left interval.
1605
			 * It must be added individually.
1606
			 */
2087 jermar 1607
			btree_insert(&a->used_space, page, (void *) count,
1608
			    leaf);
1387 jermar 1609
			return 1;
1610
		}
1611
	}
1612
 
1613
	/*
2087 jermar 1614
	 * Note that if the algorithm made it thus far, the interval can fit
1615
	 * only between two other intervals of the leaf. The two border cases
1616
	 * were already resolved.
1387 jermar 1617
	 */
1618
	for (i = 1; i < leaf->keys; i++) {
1619
		if (page < leaf->key[i]) {
2087 jermar 1620
			uintptr_t left_pg = leaf->key[i - 1];
1621
			uintptr_t right_pg = leaf->key[i];
1622
			count_t left_cnt = (count_t) leaf->value[i - 1];
1623
			count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1624
 
1625
			/*
1626
			 * The interval fits between left_pg and right_pg.
1627
			 */
1628
 
2087 jermar 1629
			if (overlaps(page, count * PAGE_SIZE, left_pg,
1630
			    left_cnt * PAGE_SIZE)) {
1631
				/*
1632
				 * The interval intersects with the left
1633
				 * interval.
1634
				 */
1387 jermar 1635
				return 0;
2087 jermar 1636
			} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1637
			    right_cnt * PAGE_SIZE)) {
1638
				/*
1639
				 * The interval intersects with the right
1640
				 * interval.
1641
				 */
1387 jermar 1642
				return 0;			
2087 jermar 1643
			} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
			    (page + count * PAGE_SIZE == right_pg)) {
1645
				/*
1646
				 * The interval can be added by merging the two
1647
				 * already present intervals.
1648
				 */
1403 jermar 1649
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1650
				btree_remove(&a->used_space, right_pg, leaf);
1651
				return 1; 
2087 jermar 1652
			} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
				/*
1654
				 * The interval can be added by simply growing
1655
				 * the left interval.
1656
				 */
1403 jermar 1657
				leaf->value[i - 1] += count;
1387 jermar 1658
				return 1;
2087 jermar 1659
			} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1660
				/*
2087 jermar 1661
			         * The interval can be addded by simply moving
1662
				 * base of the right interval down and
1663
				 * increasing its size accordingly.
1387 jermar 1664
			 	 */
1403 jermar 1665
				leaf->value[i] += count;
1387 jermar 1666
				leaf->key[i] = page;
1667
				return 1;
1668
			} else {
1669
				/*
2087 jermar 1670
				 * The interval is between both neigbouring
1671
				 * intervals, but cannot be merged with any of
1672
				 * them.
1387 jermar 1673
				 */
2087 jermar 1674
				btree_insert(&a->used_space, page,
1675
				    (void *) count, leaf);
1387 jermar 1676
				return 1;
1677
			}
1678
		}
1679
	}
1680
 
3057 decky 1681
	panic("Inconsistency detected while adding %" PRIc " pages of used space at "
2087 jermar 1682
	    "%p.\n", count, page);
1387 jermar 1683
}
1684
 
1685
/** Mark portion of address space area as unused.
1686
 *
1687
 * The address space area must be already locked.
1688
 *
1689
 * @param a Address space area.
1690
 * @param page First page to be marked.
1691
 * @param count Number of page to be marked.
1692
 *
1693
 * @return 0 on failure and 1 on success.
1694
 */
1780 jermar 1695
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1696
{
1697
	btree_node_t *leaf, *node;
1698
	count_t pages;
2745 decky 1699
	unsigned int i;
1387 jermar 1700
 
1701
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1702
	ASSERT(count);
1703
 
1704
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1705
	if (pages) {
1706
		/*
1707
		 * We are lucky, page is the beginning of some interval.
1708
		 */
1709
		if (count > pages) {
1710
			return 0;
1711
		} else if (count == pages) {
1712
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1713
			return 1;
1387 jermar 1714
		} else {
1715
			/*
1716
			 * Find the respective interval.
1717
			 * Decrease its size and relocate its start address.
1718
			 */
1719
			for (i = 0; i < leaf->keys; i++) {
1720
				if (leaf->key[i] == page) {
2087 jermar 1721
					leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1722
					leaf->value[i] -= count;
1387 jermar 1723
					return 1;
1724
				}
1725
			}
1726
			goto error;
1727
		}
1728
	}
1729
 
1730
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1731
	if (node && page < leaf->key[0]) {
1780 jermar 1732
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1733
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1734
 
2087 jermar 1735
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1736
		    count * PAGE_SIZE)) {
1737
			if (page + count * PAGE_SIZE ==
1738
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1739
				/*
2087 jermar 1740
				 * The interval is contained in the rightmost
1741
				 * interval of the left neighbour and can be
1742
				 * removed by updating the size of the bigger
1743
				 * interval.
1387 jermar 1744
				 */
1403 jermar 1745
				node->value[node->keys - 1] -= count;
1387 jermar 1746
				return 1;
2087 jermar 1747
			} else if (page + count * PAGE_SIZE <
1748
			    left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1749
				count_t new_cnt;
1387 jermar 1750
 
1751
				/*
2087 jermar 1752
				 * The interval is contained in the rightmost
1753
				 * interval of the left neighbour but its
1754
				 * removal requires both updating the size of
1755
				 * the original interval and also inserting a
1756
				 * new interval.
1387 jermar 1757
				 */
2087 jermar 1758
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1759
				    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1760
				node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1761
				btree_insert(&a->used_space, page +
1762
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1763
				return 1;
1764
			}
1765
		}
1766
		return 0;
1767
	} else if (page < leaf->key[0]) {
1768
		return 0;
1769
	}
1770
 
1771
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1772
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1773
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1774
 
2087 jermar 1775
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1776
		    count * PAGE_SIZE)) {
1777
			if (page + count * PAGE_SIZE == 
1778
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1779
				/*
2087 jermar 1780
				 * The interval is contained in the rightmost
1781
				 * interval of the leaf and can be removed by
1782
				 * updating the size of the bigger interval.
1387 jermar 1783
				 */
1403 jermar 1784
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1785
				return 1;
2087 jermar 1786
			} else if (page + count * PAGE_SIZE < left_pg +
1787
			    left_cnt * PAGE_SIZE) {
1403 jermar 1788
				count_t new_cnt;
1387 jermar 1789
 
1790
				/*
2087 jermar 1791
				 * The interval is contained in the rightmost
1792
				 * interval of the leaf but its removal
1793
				 * requires both updating the size of the
1794
				 * original interval and also inserting a new
1795
				 * interval.
1387 jermar 1796
				 */
2087 jermar 1797
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1798
				    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1799
				leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1800
				btree_insert(&a->used_space, page +
1801
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1802
				return 1;
1803
			}
1804
		}
1805
		return 0;
1806
	}	
1807
 
1808
	/*
1809
	 * The border cases have been already resolved.
1810
	 * Now the interval can be only between intervals of the leaf. 
1811
	 */
1812
	for (i = 1; i < leaf->keys - 1; i++) {
1813
		if (page < leaf->key[i]) {
1780 jermar 1814
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1815
			count_t left_cnt = (count_t) leaf->value[i - 1];
1816
 
1817
			/*
2087 jermar 1818
			 * Now the interval is between intervals corresponding
1819
			 * to (i - 1) and i.
1387 jermar 1820
			 */
2087 jermar 1821
			if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1822
			    count * PAGE_SIZE)) {
1823
				if (page + count * PAGE_SIZE ==
1824
				    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 1825
					/*
2087 jermar 1826
					 * The interval is contained in the
1827
					 * interval (i - 1) of the leaf and can
1828
					 * be removed by updating the size of
1829
					 * the bigger interval.
1387 jermar 1830
					 */
1403 jermar 1831
					leaf->value[i - 1] -= count;
1387 jermar 1832
					return 1;
2087 jermar 1833
				} else if (page + count * PAGE_SIZE <
1834
				    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 1835
					count_t new_cnt;
1387 jermar 1836
 
1837
					/*
2087 jermar 1838
					 * The interval is contained in the
1839
					 * interval (i - 1) of the leaf but its
1840
					 * removal requires both updating the
1841
					 * size of the original interval and
1387 jermar 1842
					 * also inserting a new interval.
1843
					 */
2087 jermar 1844
					new_cnt = ((left_pg +
1845
					    left_cnt * PAGE_SIZE) -
1846
					    (page + count * PAGE_SIZE)) >>
1847
					    PAGE_WIDTH;
1403 jermar 1848
					leaf->value[i - 1] -= count + new_cnt;
2087 jermar 1849
					btree_insert(&a->used_space, page +
1850
					    count * PAGE_SIZE, (void *) new_cnt,
1851
					    leaf);
1387 jermar 1852
					return 1;
1853
				}
1854
			}
1855
			return 0;
1856
		}
1857
	}
1858
 
1859
error:
3057 decky 1860
	panic("Inconsistency detected while removing %" PRIc " pages of used space "
2087 jermar 1861
	    "from %p.\n", count, page);
1387 jermar 1862
}
1863
 
1409 jermar 1864
/** Remove reference to address space area share info.
1865
 *
1866
 * If the reference count drops to 0, the sh_info is deallocated.
1867
 *
1868
 * @param sh_info Pointer to address space area share info.
1869
 */
1870
void sh_info_remove_reference(share_info_t *sh_info)
1871
{
1872
	bool dealloc = false;
1873
 
1874
	mutex_lock(&sh_info->lock);
1875
	ASSERT(sh_info->refcount);
1876
	if (--sh_info->refcount == 0) {
1877
		dealloc = true;
1495 jermar 1878
		link_t *cur;
1409 jermar 1879
 
1880
		/*
1881
		 * Now walk carefully the pagemap B+tree and free/remove
1882
		 * reference from all frames found there.
1883
		 */
2087 jermar 1884
		for (cur = sh_info->pagemap.leaf_head.next;
1885
		    cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1886
			btree_node_t *node;
2745 decky 1887
			unsigned int i;
1409 jermar 1888
 
1495 jermar 1889
			node = list_get_instance(cur, btree_node_t, leaf_link);
1890
			for (i = 0; i < node->keys; i++) 
1780 jermar 1891
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1892
		}
1893
 
1894
	}
1895
	mutex_unlock(&sh_info->lock);
1896
 
1897
	if (dealloc) {
1898
		btree_destroy(&sh_info->pagemap);
1899
		free(sh_info);
1900
	}
1901
}
1902
 
1235 jermar 1903
/*
1904
 * Address space related syscalls.
1905
 */
1906
 
1907
/** Wrapper for as_area_create(). */
1780 jermar 1908
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1909
{
2087 jermar 1910
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1911
	    AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1912
		return (unative_t) address;
1235 jermar 1913
	else
1780 jermar 1914
		return (unative_t) -1;
1235 jermar 1915
}
1916
 
1793 jermar 1917
/** Wrapper for as_area_resize(). */
1780 jermar 1918
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1919
{
1780 jermar 1920
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1921
}
1922
 
3222 svoboda 1923
/** Wrapper for as_area_change_flags(). */
1924
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1925
{
1926
	return (unative_t) as_area_change_flags(AS, flags, address);
1927
}
1928
 
1793 jermar 1929
/** Wrapper for as_area_destroy(). */
1780 jermar 1930
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1931
{
1780 jermar 1932
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1933
}
1702 cejka 1934
 
1914 jermar 1935
/** Print out information about address space.
1936
 *
1937
 * @param as Address space.
1938
 */
1939
void as_print(as_t *as)
1940
{
1941
	ipl_t ipl;
1942
 
1943
	ipl = interrupts_disable();
1944
	mutex_lock(&as->lock);
1945
 
1946
	/* print out info about address space areas */
1947
	link_t *cur;
2087 jermar 1948
	for (cur = as->as_area_btree.leaf_head.next;
1949
	    cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1950
		btree_node_t *node;
1914 jermar 1951
 
2087 jermar 1952
		node = list_get_instance(cur, btree_node_t, leaf_link);
1953
 
2745 decky 1954
		unsigned int i;
1914 jermar 1955
		for (i = 0; i < node->keys; i++) {
1915 jermar 1956
			as_area_t *area = node->value[i];
1914 jermar 1957
 
1958
			mutex_lock(&area->lock);
3057 decky 1959
			printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
2087 jermar 1960
			    area, area->base, area->pages, area->base,
3057 decky 1961
			    area->base + FRAMES2SIZE(area->pages));
1914 jermar 1962
			mutex_unlock(&area->lock);
1963
		}
1964
	}
1965
 
1966
	mutex_unlock(&as->lock);
1967
	interrupts_restore(ipl);
1968
}
1969
 
1757 jermar 1970
/** @}
1702 cejka 1971
 */