Subversion Repositories HelenOS

Rev

Rev 2183 | Rev 2647 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
2183 jermar 60
#include <preemption.h>
703 jermar 61
#include <synch/spinlock.h>
1380 jermar 62
#include <synch/mutex.h>
788 jermar 63
#include <adt/list.h>
1147 jermar 64
#include <adt/btree.h>
1235 jermar 65
#include <proc/task.h>
1288 jermar 66
#include <proc/thread.h>
1235 jermar 67
#include <arch/asm.h>
703 jermar 68
#include <panic.h>
69
#include <debug.h>
1235 jermar 70
#include <print.h>
703 jermar 71
#include <memstr.h>
1070 jermar 72
#include <macros.h>
703 jermar 73
#include <arch.h>
1235 jermar 74
#include <errno.h>
75
#include <config.h>
1387 jermar 76
#include <align.h>
1235 jermar 77
#include <arch/types.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
2125 decky 85
#ifndef __OBJC__
1757 jermar 86
/**
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
89
 */
756 jermar 90
as_operations_t *as_operations = NULL;
703 jermar 91
 
1890 jermar 92
/**
93
 * Slab for as_t objects.
94
 */
95
static slab_cache_t *as_slab;
2126 decky 96
#endif
1890 jermar 97
 
2087 jermar 98
/**
2170 jermar 99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
2087 jermar 104
 */
2170 jermar 105
SPINLOCK_INITIALIZE(asidlock);
823 jermar 106
 
107
/**
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
757 jermar 113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
115
 
1235 jermar 116
static int area_flags_to_page_flags(int aflags);
1780 jermar 117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
2087 jermar 118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
1409 jermar 120
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 121
 
2126 decky 122
#ifndef __OBJC__
1891 jermar 123
static int as_constructor(void *obj, int flags)
124
{
125
	as_t *as = (as_t *) obj;
126
	int rc;
127
 
128
	link_initialize(&as->inactive_as_with_asid_link);
129
	mutex_initialize(&as->lock);	
130
 
131
	rc = as_constructor_arch(as, flags);
132
 
133
	return rc;
134
}
135
 
136
static int as_destructor(void *obj)
137
{
138
	as_t *as = (as_t *) obj;
139
 
140
	return as_destructor_arch(as);
141
}
2126 decky 142
#endif
1891 jermar 143
 
756 jermar 144
/** Initialize address space subsystem. */
145
void as_init(void)
146
{
147
	as_arch_init();
2126 decky 148
 
149
#ifndef __OBJC__
1891 jermar 150
	as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 151
	    as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
2126 decky 152
#endif
1890 jermar 153
 
789 palkovsky 154
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 155
	if (!AS_KERNEL)
156
		panic("can't create kernel address space\n");
157
 
756 jermar 158
}
159
 
757 jermar 160
/** Create address space.
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
756 jermar 164
as_t *as_create(int flags)
703 jermar 165
{
166
	as_t *as;
167
 
2126 decky 168
#ifdef __OBJC__
169
	as = [as_t new];
170
	link_initialize(&as->inactive_as_with_asid_link);
171
	mutex_initialize(&as->lock);	
172
	(void) as_constructor_arch(as, flags);
173
#else
1890 jermar 174
	as = (as_t *) slab_alloc(as_slab, 0);
2126 decky 175
#endif
1891 jermar 176
	(void) as_create_arch(as, 0);
177
 
1147 jermar 178
	btree_create(&as->as_area_btree);
822 palkovsky 179
 
180
	if (flags & FLAG_AS_KERNEL)
181
		as->asid = ASID_KERNEL;
182
	else
183
		as->asid = ASID_INVALID;
184
 
2183 jermar 185
	atomic_set(&as->refcount, 0);
1415 jermar 186
	as->cpu_refcount = 0;
2089 decky 187
#ifdef AS_PAGE_TABLE
2106 jermar 188
	as->genarch.page_table = page_table_create(flags);
2089 decky 189
#else
190
	page_table_create(flags);
191
#endif
703 jermar 192
 
193
	return as;
194
}
195
 
1468 jermar 196
/** Destroy adress space.
197
 *
2087 jermar 198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
2183 jermar 200
 *
201
 * We know that we don't hold any spinlock.
1468 jermar 202
 */
203
void as_destroy(as_t *as)
973 palkovsky 204
{
1468 jermar 205
	ipl_t ipl;
1594 jermar 206
	bool cond;
2183 jermar 207
	DEADLOCK_PROBE_INIT(p_asidlock);
973 palkovsky 208
 
2183 jermar 209
	ASSERT(atomic_get(&as->refcount) == 0);
1468 jermar 210
 
211
	/*
212
	 * Since there is no reference to this area,
213
	 * it is safe not to lock its mutex.
214
	 */
2170 jermar 215
 
2183 jermar 216
	/*
217
	 * We need to avoid deadlock between TLB shootdown and asidlock.
218
	 * We therefore try to take asid conditionally and if we don't succeed,
219
	 * we enable interrupts and try again. This is done while preemption is
220
	 * disabled to prevent nested context switches. We also depend on the
221
	 * fact that so far no spinlocks are held.
222
	 */
223
	preemption_disable();
224
	ipl = interrupts_read();
225
retry:
226
	interrupts_disable();
227
	if (!spinlock_trylock(&asidlock)) {
228
		interrupts_enable();
229
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
		goto retry;
231
	}
232
	preemption_enable();	/* Interrupts disabled, enable preemption */
1587 jermar 233
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 234
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 235
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 236
		asid_put(as->asid);
237
	}
2170 jermar 238
	spinlock_unlock(&asidlock);
1468 jermar 239
 
240
	/*
241
	 * Destroy address space areas of the address space.
1954 jermar 242
	 * The B+tree must be walked carefully because it is
1594 jermar 243
	 * also being destroyed.
1468 jermar 244
	 */	
1594 jermar 245
	for (cond = true; cond; ) {
1468 jermar 246
		btree_node_t *node;
1594 jermar 247
 
248
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 249
		node = list_get_instance(as->as_area_btree.leaf_head.next,
250
		    btree_node_t, leaf_link);
1594 jermar 251
 
252
		if ((cond = node->keys)) {
253
			as_area_destroy(as, node->key[0]);
254
		}
1468 jermar 255
	}
1495 jermar 256
 
1483 jermar 257
	btree_destroy(&as->as_area_btree);
2089 decky 258
#ifdef AS_PAGE_TABLE
2106 jermar 259
	page_table_destroy(as->genarch.page_table);
2089 decky 260
#else
261
	page_table_destroy(NULL);
262
#endif
1468 jermar 263
 
264
	interrupts_restore(ipl);
2126 decky 265
 
266
#ifdef __OBJC__
267
	[as free];
268
#else
1890 jermar 269
	slab_free(as_slab, as);
2126 decky 270
#endif
973 palkovsky 271
}
272
 
703 jermar 273
/** Create address space area of common attributes.
274
 *
275
 * The created address space area is added to the target address space.
276
 *
277
 * @param as Target address space.
1239 jermar 278
 * @param flags Flags of the area memory.
1048 jermar 279
 * @param size Size of area.
703 jermar 280
 * @param base Base address of area.
1239 jermar 281
 * @param attrs Attributes of the area.
1409 jermar 282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 284
 *
285
 * @return Address space area on success or NULL on failure.
286
 */
2069 jermar 287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 289
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 290
{
291
	ipl_t ipl;
292
	as_area_t *a;
293
 
294
	if (base % PAGE_SIZE)
1048 jermar 295
		return NULL;
296
 
1233 jermar 297
	if (!size)
298
		return NULL;
299
 
1048 jermar 300
	/* Writeable executable areas are not supported. */
301
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
		return NULL;
703 jermar 303
 
304
	ipl = interrupts_disable();
1380 jermar 305
	mutex_lock(&as->lock);
703 jermar 306
 
1048 jermar 307
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 308
		mutex_unlock(&as->lock);
1048 jermar 309
		interrupts_restore(ipl);
310
		return NULL;
311
	}
703 jermar 312
 
822 palkovsky 313
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 314
 
1380 jermar 315
	mutex_initialize(&a->lock);
822 palkovsky 316
 
1424 jermar 317
	a->as = as;
1026 jermar 318
	a->flags = flags;
1239 jermar 319
	a->attributes = attrs;
1048 jermar 320
	a->pages = SIZE2FRAMES(size);
822 palkovsky 321
	a->base = base;
1409 jermar 322
	a->sh_info = NULL;
323
	a->backend = backend;
1424 jermar 324
	if (backend_data)
325
		a->backend_data = *backend_data;
326
	else
2087 jermar 327
		memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328
		    0);
1424 jermar 329
 
1387 jermar 330
	btree_create(&a->used_space);
822 palkovsky 331
 
1147 jermar 332
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 333
 
1380 jermar 334
	mutex_unlock(&as->lock);
703 jermar 335
	interrupts_restore(ipl);
704 jermar 336
 
703 jermar 337
	return a;
338
}
339
 
1235 jermar 340
/** Find address space area and change it.
341
 *
342
 * @param as Address space.
2087 jermar 343
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
1235 jermar 345
 * @param size New size of the virtual memory block starting at address. 
346
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
1306 jermar 348
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 349
 */ 
1780 jermar 350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 351
{
1306 jermar 352
	as_area_t *area;
1235 jermar 353
	ipl_t ipl;
354
	size_t pages;
355
 
356
	ipl = interrupts_disable();
1380 jermar 357
	mutex_lock(&as->lock);
1235 jermar 358
 
359
	/*
360
	 * Locate the area.
361
	 */
362
	area = find_area_and_lock(as, address);
363
	if (!area) {
1380 jermar 364
		mutex_unlock(&as->lock);
1235 jermar 365
		interrupts_restore(ipl);
1306 jermar 366
		return ENOENT;
1235 jermar 367
	}
368
 
1424 jermar 369
	if (area->backend == &phys_backend) {
1235 jermar 370
		/*
371
		 * Remapping of address space areas associated
372
		 * with memory mapped devices is not supported.
373
		 */
1380 jermar 374
		mutex_unlock(&area->lock);
375
		mutex_unlock(&as->lock);
1235 jermar 376
		interrupts_restore(ipl);
1306 jermar 377
		return ENOTSUP;
1235 jermar 378
	}
1409 jermar 379
	if (area->sh_info) {
380
		/*
381
		 * Remapping of shared address space areas 
382
		 * is not supported.
383
		 */
384
		mutex_unlock(&area->lock);
385
		mutex_unlock(&as->lock);
386
		interrupts_restore(ipl);
387
		return ENOTSUP;
388
	}
1235 jermar 389
 
390
	pages = SIZE2FRAMES((address - area->base) + size);
391
	if (!pages) {
392
		/*
393
		 * Zero size address space areas are not allowed.
394
		 */
1380 jermar 395
		mutex_unlock(&area->lock);
396
		mutex_unlock(&as->lock);
1235 jermar 397
		interrupts_restore(ipl);
1306 jermar 398
		return EPERM;
1235 jermar 399
	}
400
 
401
	if (pages < area->pages) {
1403 jermar 402
		bool cond;
1780 jermar 403
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 404
 
405
		/*
406
		 * Shrinking the area.
407
		 * No need to check for overlaps.
408
		 */
1403 jermar 409
 
410
		/*
1436 jermar 411
		 * Start TLB shootdown sequence.
412
		 */
2087 jermar 413
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
		    pages * PAGE_SIZE, area->pages - pages);
1436 jermar 415
 
416
		/*
1403 jermar 417
		 * Remove frames belonging to used space starting from
418
		 * the highest addresses downwards until an overlap with
419
		 * the resized address space area is found. Note that this
420
		 * is also the right way to remove part of the used_space
421
		 * B+tree leaf list.
422
		 */		
423
		for (cond = true; cond;) {
424
			btree_node_t *node;
425
 
426
			ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 427
			node = 
428
			    list_get_instance(area->used_space.leaf_head.prev,
429
			    btree_node_t, leaf_link);
1403 jermar 430
			if ((cond = (bool) node->keys)) {
1780 jermar 431
				uintptr_t b = node->key[node->keys - 1];
2087 jermar 432
				count_t c =
433
				    (count_t) node->value[node->keys - 1];
1403 jermar 434
				int i = 0;
1235 jermar 435
 
2087 jermar 436
				if (overlaps(b, c * PAGE_SIZE, area->base,
2133 jermar 437
				    pages * PAGE_SIZE)) {
1403 jermar 438
 
2087 jermar 439
					if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 440
						/*
2087 jermar 441
						 * The whole interval fits
442
						 * completely in the resized
443
						 * address space area.
1403 jermar 444
						 */
445
						break;
446
					}
447
 
448
					/*
2087 jermar 449
					 * Part of the interval corresponding
450
					 * to b and c overlaps with the resized
451
					 * address space area.
1403 jermar 452
					 */
453
 
454
					cond = false;	/* we are almost done */
455
					i = (start_free - b) >> PAGE_WIDTH;
2087 jermar 456
					if (!used_space_remove(area, start_free,
457
					    c - i))
458
						panic("Could not remove used "
459
						    "space.\n");
1403 jermar 460
				} else {
461
					/*
2087 jermar 462
					 * The interval of used space can be
463
					 * completely removed.
1403 jermar 464
					 */
465
					if (!used_space_remove(area, b, c))
2087 jermar 466
						panic("Could not remove used "
467
						    "space.\n");
1403 jermar 468
				}
469
 
470
				for (; i < c; i++) {
471
					pte_t *pte;
472
 
473
					page_table_lock(as, false);
2087 jermar 474
					pte = page_mapping_find(as, b +
475
					    i * PAGE_SIZE);
476
					ASSERT(pte && PTE_VALID(pte) &&
477
					    PTE_PRESENT(pte));
478
					if (area->backend &&
479
					    area->backend->frame_free) {
1424 jermar 480
						area->backend->frame_free(area,
2087 jermar 481
						    b + i * PAGE_SIZE,
482
						    PTE_GET_FRAME(pte));
1409 jermar 483
					}
2087 jermar 484
					page_mapping_remove(as, b +
485
					    i * PAGE_SIZE);
1403 jermar 486
					page_table_unlock(as, false);
487
				}
1235 jermar 488
			}
489
		}
1436 jermar 490
 
1235 jermar 491
		/*
1436 jermar 492
		 * Finish TLB shootdown sequence.
1235 jermar 493
		 */
2183 jermar 494
 
2087 jermar 495
		tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496
		    area->pages - pages);
1889 jermar 497
		/*
498
		 * Invalidate software translation caches (e.g. TSB on sparc64).
499
		 */
2087 jermar 500
		as_invalidate_translation_cache(as, area->base +
501
		    pages * PAGE_SIZE, area->pages - pages);
2183 jermar 502
		tlb_shootdown_finalize();
503
 
1235 jermar 504
	} else {
505
		/*
506
		 * Growing the area.
507
		 * Check for overlaps with other address space areas.
508
		 */
2087 jermar 509
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510
		    area)) {
1380 jermar 511
			mutex_unlock(&area->lock);
512
			mutex_unlock(&as->lock);		
1235 jermar 513
			interrupts_restore(ipl);
1306 jermar 514
			return EADDRNOTAVAIL;
1235 jermar 515
		}
516
	} 
517
 
518
	area->pages = pages;
519
 
1380 jermar 520
	mutex_unlock(&area->lock);
521
	mutex_unlock(&as->lock);
1235 jermar 522
	interrupts_restore(ipl);
523
 
1306 jermar 524
	return 0;
1235 jermar 525
}
526
 
1306 jermar 527
/** Destroy address space area.
528
 *
529
 * @param as Address space.
530
 * @param address Address withing the area to be deleted.
531
 *
532
 * @return Zero on success or a value from @ref errno.h on failure. 
533
 */
1780 jermar 534
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 535
{
536
	as_area_t *area;
1780 jermar 537
	uintptr_t base;
1495 jermar 538
	link_t *cur;
1306 jermar 539
	ipl_t ipl;
540
 
541
	ipl = interrupts_disable();
1380 jermar 542
	mutex_lock(&as->lock);
1306 jermar 543
 
544
	area = find_area_and_lock(as, address);
545
	if (!area) {
1380 jermar 546
		mutex_unlock(&as->lock);
1306 jermar 547
		interrupts_restore(ipl);
548
		return ENOENT;
549
	}
550
 
1403 jermar 551
	base = area->base;
552
 
1411 jermar 553
	/*
1436 jermar 554
	 * Start TLB shootdown sequence.
555
	 */
1889 jermar 556
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 557
 
558
	/*
1411 jermar 559
	 * Visit only the pages mapped by used_space B+tree.
560
	 */
2087 jermar 561
	for (cur = area->used_space.leaf_head.next;
562
	    cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 563
		btree_node_t *node;
1495 jermar 564
		int i;
1403 jermar 565
 
1495 jermar 566
		node = list_get_instance(cur, btree_node_t, leaf_link);
567
		for (i = 0; i < node->keys; i++) {
1780 jermar 568
			uintptr_t b = node->key[i];
1495 jermar 569
			count_t j;
1411 jermar 570
			pte_t *pte;
1403 jermar 571
 
1495 jermar 572
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 573
				page_table_lock(as, false);
2087 jermar 574
				pte = page_mapping_find(as, b + j * PAGE_SIZE);
575
				ASSERT(pte && PTE_VALID(pte) &&
576
				    PTE_PRESENT(pte));
577
				if (area->backend &&
578
				    area->backend->frame_free) {
579
					area->backend->frame_free(area,	b +
2133 jermar 580
					    j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 581
				}
2087 jermar 582
				page_mapping_remove(as, b + j * PAGE_SIZE);				
1411 jermar 583
				page_table_unlock(as, false);
1306 jermar 584
			}
585
		}
586
	}
1403 jermar 587
 
1306 jermar 588
	/*
1436 jermar 589
	 * Finish TLB shootdown sequence.
1306 jermar 590
	 */
2183 jermar 591
 
1889 jermar 592
	tlb_invalidate_pages(as->asid, area->base, area->pages);
593
	/*
2087 jermar 594
	 * Invalidate potential software translation caches (e.g. TSB on
595
	 * sparc64).
1889 jermar 596
	 */
597
	as_invalidate_translation_cache(as, area->base, area->pages);
2183 jermar 598
	tlb_shootdown_finalize();
1889 jermar 599
 
1436 jermar 600
	btree_destroy(&area->used_space);
1306 jermar 601
 
1309 jermar 602
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 603
 
604
	if (area->sh_info)
605
		sh_info_remove_reference(area->sh_info);
606
 
1380 jermar 607
	mutex_unlock(&area->lock);
1306 jermar 608
 
609
	/*
610
	 * Remove the empty area from address space.
611
	 */
1889 jermar 612
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 613
 
1309 jermar 614
	free(area);
615
 
1889 jermar 616
	mutex_unlock(&as->lock);
1306 jermar 617
	interrupts_restore(ipl);
618
	return 0;
619
}
620
 
1413 jermar 621
/** Share address space area with another or the same address space.
1235 jermar 622
 *
1424 jermar 623
 * Address space area mapping is shared with a new address space area.
624
 * If the source address space area has not been shared so far,
625
 * a new sh_info is created. The new address space area simply gets the
626
 * sh_info of the source area. The process of duplicating the
627
 * mapping is done through the backend share function.
1413 jermar 628
 * 
1417 jermar 629
 * @param src_as Pointer to source address space.
1239 jermar 630
 * @param src_base Base address of the source address space area.
1417 jermar 631
 * @param acc_size Expected size of the source area.
1428 palkovsky 632
 * @param dst_as Pointer to destination address space.
1417 jermar 633
 * @param dst_base Target base address.
634
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 635
 *
2007 jermar 636
 * @return Zero on success or ENOENT if there is no such task or if there is no
637
 * such address space area, EPERM if there was a problem in accepting the area
638
 * or ENOMEM if there was a problem in allocating destination address space
639
 * area. ENOTSUP is returned if the address space area backend does not support
2141 jermar 640
 * sharing.
1235 jermar 641
 */
1780 jermar 642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643
		  as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 644
{
645
	ipl_t ipl;
1239 jermar 646
	int src_flags;
647
	size_t src_size;
648
	as_area_t *src_area, *dst_area;
1413 jermar 649
	share_info_t *sh_info;
1424 jermar 650
	mem_backend_t *src_backend;
651
	mem_backend_data_t src_backend_data;
1434 palkovsky 652
 
1235 jermar 653
	ipl = interrupts_disable();
1380 jermar 654
	mutex_lock(&src_as->lock);
1329 palkovsky 655
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 656
	if (!src_area) {
1238 jermar 657
		/*
658
		 * Could not find the source address space area.
659
		 */
1380 jermar 660
		mutex_unlock(&src_as->lock);
1238 jermar 661
		interrupts_restore(ipl);
662
		return ENOENT;
663
	}
2007 jermar 664
 
1424 jermar 665
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 666
		/*
1851 jermar 667
		 * There is no backend or the backend does not
1424 jermar 668
		 * know how to share the area.
1413 jermar 669
		 */
670
		mutex_unlock(&src_area->lock);
671
		mutex_unlock(&src_as->lock);
672
		interrupts_restore(ipl);
673
		return ENOTSUP;
674
	}
675
 
1239 jermar 676
	src_size = src_area->pages * PAGE_SIZE;
677
	src_flags = src_area->flags;
1424 jermar 678
	src_backend = src_area->backend;
679
	src_backend_data = src_area->backend_data;
1544 palkovsky 680
 
681
	/* Share the cacheable flag from the original mapping */
682
	if (src_flags & AS_AREA_CACHEABLE)
683
		dst_flags_mask |= AS_AREA_CACHEABLE;
684
 
2087 jermar 685
	if (src_size != acc_size ||
686
	    (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 687
		mutex_unlock(&src_area->lock);
688
		mutex_unlock(&src_as->lock);
1235 jermar 689
		interrupts_restore(ipl);
690
		return EPERM;
691
	}
1413 jermar 692
 
1235 jermar 693
	/*
1413 jermar 694
	 * Now we are committed to sharing the area.
1954 jermar 695
	 * First, prepare the area for sharing.
1413 jermar 696
	 * Then it will be safe to unlock it.
697
	 */
698
	sh_info = src_area->sh_info;
699
	if (!sh_info) {
700
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701
		mutex_initialize(&sh_info->lock);
702
		sh_info->refcount = 2;
703
		btree_create(&sh_info->pagemap);
704
		src_area->sh_info = sh_info;
705
	} else {
706
		mutex_lock(&sh_info->lock);
707
		sh_info->refcount++;
708
		mutex_unlock(&sh_info->lock);
709
	}
710
 
1424 jermar 711
	src_area->backend->share(src_area);
1413 jermar 712
 
713
	mutex_unlock(&src_area->lock);
714
	mutex_unlock(&src_as->lock);
715
 
716
	/*
1239 jermar 717
	 * Create copy of the source address space area.
718
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
719
	 * attribute set which prevents race condition with
720
	 * preliminary as_page_fault() calls.
1417 jermar 721
	 * The flags of the source area are masked against dst_flags_mask
722
	 * to support sharing in less privileged mode.
1235 jermar 723
	 */
1461 palkovsky 724
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 725
	    AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 726
	if (!dst_area) {
1235 jermar 727
		/*
728
		 * Destination address space area could not be created.
729
		 */
1413 jermar 730
		sh_info_remove_reference(sh_info);
731
 
1235 jermar 732
		interrupts_restore(ipl);
733
		return ENOMEM;
734
	}
2009 jermar 735
 
1235 jermar 736
	/*
1239 jermar 737
	 * Now the destination address space area has been
738
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 739
	 * attribute and set the sh_info.
1239 jermar 740
	 */	
2009 jermar 741
	mutex_lock(&dst_as->lock);	
1380 jermar 742
	mutex_lock(&dst_area->lock);
1239 jermar 743
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 744
	dst_area->sh_info = sh_info;
1380 jermar 745
	mutex_unlock(&dst_area->lock);
2009 jermar 746
	mutex_unlock(&dst_as->lock);	
747
 
1235 jermar 748
	interrupts_restore(ipl);
749
 
750
	return 0;
751
}
752
 
1423 jermar 753
/** Check access mode for address space area.
754
 *
755
 * The address space area must be locked prior to this call.
756
 *
757
 * @param area Address space area.
758
 * @param access Access mode.
759
 *
760
 * @return False if access violates area's permissions, true otherwise.
761
 */
762
bool as_area_check_access(as_area_t *area, pf_access_t access)
763
{
764
	int flagmap[] = {
765
		[PF_ACCESS_READ] = AS_AREA_READ,
766
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
767
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
768
	};
769
 
770
	if (!(area->flags & flagmap[access]))
771
		return false;
772
 
773
	return true;
774
}
775
 
703 jermar 776
/** Handle page fault within the current address space.
777
 *
1409 jermar 778
 * This is the high-level page fault handler. It decides
779
 * whether the page fault can be resolved by any backend
780
 * and if so, it invokes the backend to resolve the page
781
 * fault.
782
 *
703 jermar 783
 * Interrupts are assumed disabled.
784
 *
785
 * @param page Faulting page.
1411 jermar 786
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 787
 * @param istate Pointer to interrupted state.
703 jermar 788
 *
1409 jermar 789
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
790
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 791
 */
1780 jermar 792
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 793
{
1044 jermar 794
	pte_t *pte;
977 jermar 795
	as_area_t *area;
703 jermar 796
 
1380 jermar 797
	if (!THREAD)
1409 jermar 798
		return AS_PF_FAULT;
1380 jermar 799
 
703 jermar 800
	ASSERT(AS);
1044 jermar 801
 
1380 jermar 802
	mutex_lock(&AS->lock);
977 jermar 803
	area = find_area_and_lock(AS, page);	
703 jermar 804
	if (!area) {
805
		/*
806
		 * No area contained mapping for 'page'.
807
		 * Signal page fault to low-level handler.
808
		 */
1380 jermar 809
		mutex_unlock(&AS->lock);
1288 jermar 810
		goto page_fault;
703 jermar 811
	}
812
 
1239 jermar 813
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
814
		/*
815
		 * The address space area is not fully initialized.
816
		 * Avoid possible race by returning error.
817
		 */
1380 jermar 818
		mutex_unlock(&area->lock);
819
		mutex_unlock(&AS->lock);
1288 jermar 820
		goto page_fault;		
1239 jermar 821
	}
822
 
1424 jermar 823
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 824
		/*
825
		 * The address space area is not backed by any backend
826
		 * or the backend cannot handle page faults.
827
		 */
828
		mutex_unlock(&area->lock);
829
		mutex_unlock(&AS->lock);
830
		goto page_fault;		
831
	}
1179 jermar 832
 
1044 jermar 833
	page_table_lock(AS, false);
834
 
703 jermar 835
	/*
1044 jermar 836
	 * To avoid race condition between two page faults
837
	 * on the same address, we need to make sure
838
	 * the mapping has not been already inserted.
839
	 */
840
	if ((pte = page_mapping_find(AS, page))) {
841
		if (PTE_PRESENT(pte)) {
1423 jermar 842
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 843
			    (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
844
			    (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 845
				page_table_unlock(AS, false);
846
				mutex_unlock(&area->lock);
847
				mutex_unlock(&AS->lock);
848
				return AS_PF_OK;
849
			}
1044 jermar 850
		}
851
	}
1409 jermar 852
 
1044 jermar 853
	/*
1409 jermar 854
	 * Resort to the backend page fault handler.
703 jermar 855
	 */
1424 jermar 856
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 857
		page_table_unlock(AS, false);
858
		mutex_unlock(&area->lock);
859
		mutex_unlock(&AS->lock);
860
		goto page_fault;
861
	}
703 jermar 862
 
1044 jermar 863
	page_table_unlock(AS, false);
1380 jermar 864
	mutex_unlock(&area->lock);
865
	mutex_unlock(&AS->lock);
1288 jermar 866
	return AS_PF_OK;
867
 
868
page_fault:
869
	if (THREAD->in_copy_from_uspace) {
870
		THREAD->in_copy_from_uspace = false;
2087 jermar 871
		istate_set_retaddr(istate,
872
		    (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 873
	} else if (THREAD->in_copy_to_uspace) {
874
		THREAD->in_copy_to_uspace = false;
2087 jermar 875
		istate_set_retaddr(istate,
876
		    (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 877
	} else {
878
		return AS_PF_FAULT;
879
	}
880
 
881
	return AS_PF_DEFER;
703 jermar 882
}
883
 
823 jermar 884
/** Switch address spaces.
703 jermar 885
 *
1380 jermar 886
 * Note that this function cannot sleep as it is essentially a part of
2170 jermar 887
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
888
 * thing which is forbidden in this context is locking the address space.
1380 jermar 889
 *
2183 jermar 890
 * When this function is enetered, no spinlocks may be held.
891
 *
823 jermar 892
 * @param old Old address space or NULL.
893
 * @param new New address space.
703 jermar 894
 */
2106 jermar 895
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 896
{
2183 jermar 897
	DEADLOCK_PROBE_INIT(p_asidlock);
898
	preemption_disable();
899
retry:
900
	(void) interrupts_disable();
901
	if (!spinlock_trylock(&asidlock)) {
902
		/* 
903
		 * Avoid deadlock with TLB shootdown.
904
		 * We can enable interrupts here because
905
		 * preemption is disabled. We should not be
906
		 * holding any other lock.
907
		 */
908
		(void) interrupts_enable();
909
		DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
910
		goto retry;
911
	}
912
	preemption_enable();
703 jermar 913
 
914
	/*
823 jermar 915
	 * First, take care of the old address space.
916
	 */	
2106 jermar 917
	if (old_as) {
918
		ASSERT(old_as->cpu_refcount);
919
		if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 920
			/*
921
			 * The old address space is no longer active on
922
			 * any processor. It can be appended to the
923
			 * list of inactive address spaces with assigned
924
			 * ASID.
925
			 */
2141 jermar 926
			ASSERT(old_as->asid != ASID_INVALID);
927
			list_append(&old_as->inactive_as_with_asid_link,
928
			    &inactive_as_with_asid_head);
823 jermar 929
		}
1890 jermar 930
 
931
		/*
932
		 * Perform architecture-specific tasks when the address space
933
		 * is being removed from the CPU.
934
		 */
2106 jermar 935
		as_deinstall_arch(old_as);
823 jermar 936
	}
937
 
938
	/*
939
	 * Second, prepare the new address space.
940
	 */
2106 jermar 941
	if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
2170 jermar 942
		if (new_as->asid != ASID_INVALID)
2106 jermar 943
			list_remove(&new_as->inactive_as_with_asid_link);
2170 jermar 944
		else
945
			new_as->asid = asid_get();
823 jermar 946
	}
2106 jermar 947
#ifdef AS_PAGE_TABLE
948
	SET_PTL0_ADDRESS(new_as->genarch.page_table);
949
#endif
823 jermar 950
 
951
	/*
703 jermar 952
	 * Perform architecture-specific steps.
727 jermar 953
	 * (e.g. write ASID to hardware register etc.)
703 jermar 954
	 */
2106 jermar 955
	as_install_arch(new_as);
2170 jermar 956
 
957
	spinlock_unlock(&asidlock);
703 jermar 958
 
2106 jermar 959
	AS = new_as;
703 jermar 960
}
754 jermar 961
 
1235 jermar 962
/** Convert address space area flags to page flags.
754 jermar 963
 *
1235 jermar 964
 * @param aflags Flags of some address space area.
754 jermar 965
 *
1235 jermar 966
 * @return Flags to be passed to page_mapping_insert().
754 jermar 967
 */
1235 jermar 968
int area_flags_to_page_flags(int aflags)
754 jermar 969
{
970
	int flags;
971
 
1178 jermar 972
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 973
 
1235 jermar 974
	if (aflags & AS_AREA_READ)
1026 jermar 975
		flags |= PAGE_READ;
976
 
1235 jermar 977
	if (aflags & AS_AREA_WRITE)
1026 jermar 978
		flags |= PAGE_WRITE;
979
 
1235 jermar 980
	if (aflags & AS_AREA_EXEC)
1026 jermar 981
		flags |= PAGE_EXEC;
982
 
1424 jermar 983
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 984
		flags |= PAGE_CACHEABLE;
985
 
754 jermar 986
	return flags;
987
}
756 jermar 988
 
1235 jermar 989
/** Compute flags for virtual address translation subsytem.
990
 *
991
 * The address space area must be locked.
992
 * Interrupts must be disabled.
993
 *
994
 * @param a Address space area.
995
 *
996
 * @return Flags to be used in page_mapping_insert().
997
 */
1409 jermar 998
int as_area_get_flags(as_area_t *a)
1235 jermar 999
{
1000
	return area_flags_to_page_flags(a->flags);
1001
}
1002
 
756 jermar 1003
/** Create page table.
1004
 *
1005
 * Depending on architecture, create either address space
1006
 * private or global page table.
1007
 *
1008
 * @param flags Flags saying whether the page table is for kernel address space.
1009
 *
1010
 * @return First entry of the page table.
1011
 */
1012
pte_t *page_table_create(int flags)
1013
{
2125 decky 1014
#ifdef __OBJC__
1015
	return [as_t page_table_create: flags];
1016
#else
1017
	ASSERT(as_operations);
1018
	ASSERT(as_operations->page_table_create);
1019
 
1020
	return as_operations->page_table_create(flags);
1021
#endif
756 jermar 1022
}
977 jermar 1023
 
1468 jermar 1024
/** Destroy page table.
1025
 *
1026
 * Destroy page table in architecture specific way.
1027
 *
1028
 * @param page_table Physical address of PTL0.
1029
 */
1030
void page_table_destroy(pte_t *page_table)
1031
{
2125 decky 1032
#ifdef __OBJC__
1033
	return [as_t page_table_destroy: page_table];
1034
#else
1035
	ASSERT(as_operations);
1036
	ASSERT(as_operations->page_table_destroy);
1037
 
1038
	as_operations->page_table_destroy(page_table);
1039
#endif
1468 jermar 1040
}
1041
 
1044 jermar 1042
/** Lock page table.
1043
 *
1044
 * This function should be called before any page_mapping_insert(),
1045
 * page_mapping_remove() and page_mapping_find().
1046
 * 
1047
 * Locking order is such that address space areas must be locked
1048
 * prior to this call. Address space can be locked prior to this
1049
 * call in which case the lock argument is false.
1050
 *
1051
 * @param as Address space.
1248 jermar 1052
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 1053
 */
1054
void page_table_lock(as_t *as, bool lock)
1055
{
2125 decky 1056
#ifdef __OBJC__
1057
	[as page_table_lock: lock];
1058
#else
1044 jermar 1059
	ASSERT(as_operations);
1060
	ASSERT(as_operations->page_table_lock);
2125 decky 1061
 
1044 jermar 1062
	as_operations->page_table_lock(as, lock);
2125 decky 1063
#endif
1044 jermar 1064
}
1065
 
1066
/** Unlock page table.
1067
 *
1068
 * @param as Address space.
1248 jermar 1069
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 1070
 */
1071
void page_table_unlock(as_t *as, bool unlock)
1072
{
2125 decky 1073
#ifdef __OBJC__
1074
	[as page_table_unlock: unlock];
1075
#else
1044 jermar 1076
	ASSERT(as_operations);
1077
	ASSERT(as_operations->page_table_unlock);
2125 decky 1078
 
1044 jermar 1079
	as_operations->page_table_unlock(as, unlock);
2125 decky 1080
#endif
1044 jermar 1081
}
1082
 
977 jermar 1083
 
1084
/** Find address space area and lock it.
1085
 *
1086
 * The address space must be locked and interrupts must be disabled.
1087
 *
1088
 * @param as Address space.
1089
 * @param va Virtual address.
1090
 *
2087 jermar 1091
 * @return Locked address space area containing va on success or NULL on
1092
 *     failure.
977 jermar 1093
 */
1780 jermar 1094
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1095
{
1096
	as_area_t *a;
1147 jermar 1097
	btree_node_t *leaf, *lnode;
1098
	int i;
977 jermar 1099
 
1147 jermar 1100
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1101
	if (a) {
1102
		/* va is the base address of an address space area */
1380 jermar 1103
		mutex_lock(&a->lock);
1147 jermar 1104
		return a;
1105
	}
1106
 
1107
	/*
1150 jermar 1108
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1109
	 * to find out whether this is a miss or va belongs to an address
1110
	 * space area found there.
1111
	 */
1112
 
1113
	/* First, search the leaf node itself. */
1114
	for (i = 0; i < leaf->keys; i++) {
1115
		a = (as_area_t *) leaf->value[i];
1380 jermar 1116
		mutex_lock(&a->lock);
1147 jermar 1117
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1118
			return a;
1119
		}
1380 jermar 1120
		mutex_unlock(&a->lock);
1147 jermar 1121
	}
977 jermar 1122
 
1147 jermar 1123
	/*
1150 jermar 1124
	 * Second, locate the left neighbour and test its last record.
1148 jermar 1125
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 1126
	 */
2087 jermar 1127
	lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1128
	if (lnode) {
1147 jermar 1129
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1130
		mutex_lock(&a->lock);
1147 jermar 1131
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1132
			return a;
1147 jermar 1133
		}
1380 jermar 1134
		mutex_unlock(&a->lock);
977 jermar 1135
	}
1136
 
1137
	return NULL;
1138
}
1048 jermar 1139
 
1140
/** Check area conflicts with other areas.
1141
 *
1142
 * The address space must be locked and interrupts must be disabled.
1143
 *
1144
 * @param as Address space.
1145
 * @param va Starting virtual address of the area being tested.
1146
 * @param size Size of the area being tested.
1147
 * @param avoid_area Do not touch this area. 
1148
 *
1149
 * @return True if there is no conflict, false otherwise.
1150
 */
2087 jermar 1151
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1152
			  as_area_t *avoid_area)
1048 jermar 1153
{
1154
	as_area_t *a;
1147 jermar 1155
	btree_node_t *leaf, *node;
1156
	int i;
1048 jermar 1157
 
1070 jermar 1158
	/*
1159
	 * We don't want any area to have conflicts with NULL page.
1160
	 */
1161
	if (overlaps(va, size, NULL, PAGE_SIZE))
1162
		return false;
1163
 
1147 jermar 1164
	/*
1165
	 * The leaf node is found in O(log n), where n is proportional to
1166
	 * the number of address space areas belonging to as.
1167
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1168
	 * record in the left neighbour, the leftmost record in the right
1169
	 * neighbour and all records in the leaf node itself.
1147 jermar 1170
	 */
1048 jermar 1171
 
1147 jermar 1172
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1173
		if (a != avoid_area)
1174
			return false;
1175
	}
1176
 
1177
	/* First, check the two border cases. */
1150 jermar 1178
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1179
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1180
		mutex_lock(&a->lock);
1147 jermar 1181
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1182
			mutex_unlock(&a->lock);
1147 jermar 1183
			return false;
1184
		}
1380 jermar 1185
		mutex_unlock(&a->lock);
1147 jermar 1186
	}
2087 jermar 1187
	node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1188
	if (node) {
1147 jermar 1189
		a = (as_area_t *) node->value[0];
1380 jermar 1190
		mutex_lock(&a->lock);
1147 jermar 1191
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1192
			mutex_unlock(&a->lock);
1147 jermar 1193
			return false;
1194
		}
1380 jermar 1195
		mutex_unlock(&a->lock);
1147 jermar 1196
	}
1197
 
1198
	/* Second, check the leaf node. */
1199
	for (i = 0; i < leaf->keys; i++) {
1200
		a = (as_area_t *) leaf->value[i];
1201
 
1048 jermar 1202
		if (a == avoid_area)
1203
			continue;
1147 jermar 1204
 
1380 jermar 1205
		mutex_lock(&a->lock);
1147 jermar 1206
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1207
			mutex_unlock(&a->lock);
1147 jermar 1208
			return false;
1209
		}
1380 jermar 1210
		mutex_unlock(&a->lock);
1048 jermar 1211
	}
1212
 
1070 jermar 1213
	/*
1214
	 * So far, the area does not conflict with other areas.
1215
	 * Check if it doesn't conflict with kernel address space.
1216
	 */	 
1217
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1218
		return !overlaps(va, size, 
2087 jermar 1219
		    KERNEL_ADDRESS_SPACE_START,
1220
		    KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1221
	}
1222
 
1048 jermar 1223
	return true;
1224
}
1235 jermar 1225
 
2556 jermar 1226
/** Return size of the address space area with given base.
1227
 *
1228
 * @param base		Arbitrary address insede the address space area.
1229
 *
1230
 * @return		Size of the address space area in bytes or zero if it
1231
 *			does not exist.
1232
 */
1233
size_t as_area_get_size(uintptr_t base)
1329 palkovsky 1234
{
1235
	ipl_t ipl;
1236
	as_area_t *src_area;
1237
	size_t size;
1238
 
1239
	ipl = interrupts_disable();
1240
	src_area = find_area_and_lock(AS, base);
1241
	if (src_area){
1242
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1243
		mutex_unlock(&src_area->lock);
1329 palkovsky 1244
	} else {
1245
		size = 0;
1246
	}
1247
	interrupts_restore(ipl);
1248
	return size;
1249
}
1250
 
1387 jermar 1251
/** Mark portion of address space area as used.
1252
 *
1253
 * The address space area must be already locked.
1254
 *
1255
 * @param a Address space area.
1256
 * @param page First page to be marked.
1257
 * @param count Number of page to be marked.
1258
 *
1259
 * @return 0 on failure and 1 on success.
1260
 */
1780 jermar 1261
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1262
{
1263
	btree_node_t *leaf, *node;
1264
	count_t pages;
1265
	int i;
1266
 
1267
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1268
	ASSERT(count);
1269
 
1270
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1271
	if (pages) {
1272
		/*
1273
		 * We hit the beginning of some used space.
1274
		 */
1275
		return 0;
1276
	}
1277
 
1437 jermar 1278
	if (!leaf->keys) {
1279
		btree_insert(&a->used_space, page, (void *) count, leaf);
1280
		return 1;
1281
	}
1282
 
1387 jermar 1283
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1284
	if (node) {
2087 jermar 1285
		uintptr_t left_pg = node->key[node->keys - 1];
1286
		uintptr_t right_pg = leaf->key[0];
1287
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1288
		count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1289
 
1290
		/*
1291
		 * Examine the possibility that the interval fits
1292
		 * somewhere between the rightmost interval of
1293
		 * the left neigbour and the first interval of the leaf.
1294
		 */
1295
 
1296
		if (page >= right_pg) {
1297
			/* Do nothing. */
2087 jermar 1298
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1299
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1300
			/* The interval intersects with the left interval. */
1301
			return 0;
2087 jermar 1302
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1303
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1304
			/* The interval intersects with the right interval. */
1305
			return 0;			
2087 jermar 1306
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1307
		    (page + count * PAGE_SIZE == right_pg)) {
1308
			/*
1309
			 * The interval can be added by merging the two already
1310
			 * present intervals.
1311
			 */
1403 jermar 1312
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1313
			btree_remove(&a->used_space, right_pg, leaf);
1314
			return 1; 
2087 jermar 1315
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1316
			/* 
1317
			 * The interval can be added by simply growing the left
1318
			 * interval.
1319
			 */
1403 jermar 1320
			node->value[node->keys - 1] += count;
1387 jermar 1321
			return 1;
2087 jermar 1322
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1323
			/*
2087 jermar 1324
			 * The interval can be addded by simply moving base of
1325
			 * the right interval down and increasing its size
1326
			 * accordingly.
1387 jermar 1327
			 */
1403 jermar 1328
			leaf->value[0] += count;
1387 jermar 1329
			leaf->key[0] = page;
1330
			return 1;
1331
		} else {
1332
			/*
1333
			 * The interval is between both neigbouring intervals,
1334
			 * but cannot be merged with any of them.
1335
			 */
2087 jermar 1336
			btree_insert(&a->used_space, page, (void *) count,
1337
			    leaf);
1387 jermar 1338
			return 1;
1339
		}
1340
	} else if (page < leaf->key[0]) {
1780 jermar 1341
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1342
		count_t right_cnt = (count_t) leaf->value[0];
1343
 
1344
		/*
2087 jermar 1345
		 * Investigate the border case in which the left neighbour does
1346
		 * not exist but the interval fits from the left.
1387 jermar 1347
		 */
1348
 
2087 jermar 1349
		if (overlaps(page, count * PAGE_SIZE, right_pg,
1350
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1351
			/* The interval intersects with the right interval. */
1352
			return 0;
2087 jermar 1353
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1354
			/*
2087 jermar 1355
			 * The interval can be added by moving the base of the
1356
			 * right interval down and increasing its size
1357
			 * accordingly.
1387 jermar 1358
			 */
1359
			leaf->key[0] = page;
1403 jermar 1360
			leaf->value[0] += count;
1387 jermar 1361
			return 1;
1362
		} else {
1363
			/*
1364
			 * The interval doesn't adjoin with the right interval.
1365
			 * It must be added individually.
1366
			 */
2087 jermar 1367
			btree_insert(&a->used_space, page, (void *) count,
1368
			    leaf);
1387 jermar 1369
			return 1;
1370
		}
1371
	}
1372
 
1373
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1374
	if (node) {
2087 jermar 1375
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1376
		uintptr_t right_pg = node->key[0];
1377
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1378
		count_t right_cnt = (count_t) node->value[0];
1387 jermar 1379
 
1380
		/*
1381
		 * Examine the possibility that the interval fits
1382
		 * somewhere between the leftmost interval of
1383
		 * the right neigbour and the last interval of the leaf.
1384
		 */
1385
 
1386
		if (page < left_pg) {
1387
			/* Do nothing. */
2087 jermar 1388
		} else if (overlaps(page, count * PAGE_SIZE, left_pg,
1389
		    left_cnt * PAGE_SIZE)) {
1387 jermar 1390
			/* The interval intersects with the left interval. */
1391
			return 0;
2087 jermar 1392
		} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1393
		    right_cnt * PAGE_SIZE)) {
1387 jermar 1394
			/* The interval intersects with the right interval. */
1395
			return 0;			
2087 jermar 1396
		} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1397
		    (page + count * PAGE_SIZE == right_pg)) {
1398
			/*
1399
			 * The interval can be added by merging the two already
1400
			 * present intervals.
1401
			 * */
1403 jermar 1402
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1403
			btree_remove(&a->used_space, right_pg, node);
1404
			return 1; 
2087 jermar 1405
		} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1406
			/*
1407
			 * The interval can be added by simply growing the left
1408
			 * interval.
1409
			 * */
1403 jermar 1410
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1411
			return 1;
2087 jermar 1412
		} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1413
			/*
2087 jermar 1414
			 * The interval can be addded by simply moving base of
1415
			 * the right interval down and increasing its size
1416
			 * accordingly.
1387 jermar 1417
			 */
1403 jermar 1418
			node->value[0] += count;
1387 jermar 1419
			node->key[0] = page;
1420
			return 1;
1421
		} else {
1422
			/*
1423
			 * The interval is between both neigbouring intervals,
1424
			 * but cannot be merged with any of them.
1425
			 */
2087 jermar 1426
			btree_insert(&a->used_space, page, (void *) count,
1427
			    leaf);
1387 jermar 1428
			return 1;
1429
		}
1430
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1431
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1432
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1433
 
1434
		/*
2087 jermar 1435
		 * Investigate the border case in which the right neighbour
1436
		 * does not exist but the interval fits from the right.
1387 jermar 1437
		 */
1438
 
2087 jermar 1439
		if (overlaps(page, count * PAGE_SIZE, left_pg,
1440
		    left_cnt * PAGE_SIZE)) {
1403 jermar 1441
			/* The interval intersects with the left interval. */
1387 jermar 1442
			return 0;
2087 jermar 1443
		} else if (left_pg + left_cnt * PAGE_SIZE == page) {
1444
			/*
1445
			 * The interval can be added by growing the left
1446
			 * interval.
1447
			 */
1403 jermar 1448
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1449
			return 1;
1450
		} else {
1451
			/*
1452
			 * The interval doesn't adjoin with the left interval.
1453
			 * It must be added individually.
1454
			 */
2087 jermar 1455
			btree_insert(&a->used_space, page, (void *) count,
1456
			    leaf);
1387 jermar 1457
			return 1;
1458
		}
1459
	}
1460
 
1461
	/*
2087 jermar 1462
	 * Note that if the algorithm made it thus far, the interval can fit
1463
	 * only between two other intervals of the leaf. The two border cases
1464
	 * were already resolved.
1387 jermar 1465
	 */
1466
	for (i = 1; i < leaf->keys; i++) {
1467
		if (page < leaf->key[i]) {
2087 jermar 1468
			uintptr_t left_pg = leaf->key[i - 1];
1469
			uintptr_t right_pg = leaf->key[i];
1470
			count_t left_cnt = (count_t) leaf->value[i - 1];
1471
			count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1472
 
1473
			/*
1474
			 * The interval fits between left_pg and right_pg.
1475
			 */
1476
 
2087 jermar 1477
			if (overlaps(page, count * PAGE_SIZE, left_pg,
1478
			    left_cnt * PAGE_SIZE)) {
1479
				/*
1480
				 * The interval intersects with the left
1481
				 * interval.
1482
				 */
1387 jermar 1483
				return 0;
2087 jermar 1484
			} else if (overlaps(page, count * PAGE_SIZE, right_pg,
1485
			    right_cnt * PAGE_SIZE)) {
1486
				/*
1487
				 * The interval intersects with the right
1488
				 * interval.
1489
				 */
1387 jermar 1490
				return 0;			
2087 jermar 1491
			} else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1492
			    (page + count * PAGE_SIZE == right_pg)) {
1493
				/*
1494
				 * The interval can be added by merging the two
1495
				 * already present intervals.
1496
				 */
1403 jermar 1497
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1498
				btree_remove(&a->used_space, right_pg, leaf);
1499
				return 1; 
2087 jermar 1500
			} else if (page == left_pg + left_cnt * PAGE_SIZE) {
1501
				/*
1502
				 * The interval can be added by simply growing
1503
				 * the left interval.
1504
				 */
1403 jermar 1505
				leaf->value[i - 1] += count;
1387 jermar 1506
				return 1;
2087 jermar 1507
			} else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1508
				/*
2087 jermar 1509
			         * The interval can be addded by simply moving
1510
				 * base of the right interval down and
1511
				 * increasing its size accordingly.
1387 jermar 1512
			 	 */
1403 jermar 1513
				leaf->value[i] += count;
1387 jermar 1514
				leaf->key[i] = page;
1515
				return 1;
1516
			} else {
1517
				/*
2087 jermar 1518
				 * The interval is between both neigbouring
1519
				 * intervals, but cannot be merged with any of
1520
				 * them.
1387 jermar 1521
				 */
2087 jermar 1522
				btree_insert(&a->used_space, page,
1523
				    (void *) count, leaf);
1387 jermar 1524
				return 1;
1525
			}
1526
		}
1527
	}
1528
 
2087 jermar 1529
	panic("Inconsistency detected while adding %d pages of used space at "
1530
	    "%p.\n", count, page);
1387 jermar 1531
}
1532
 
1533
/** Mark portion of address space area as unused.
1534
 *
1535
 * The address space area must be already locked.
1536
 *
1537
 * @param a Address space area.
1538
 * @param page First page to be marked.
1539
 * @param count Number of page to be marked.
1540
 *
1541
 * @return 0 on failure and 1 on success.
1542
 */
1780 jermar 1543
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1544
{
1545
	btree_node_t *leaf, *node;
1546
	count_t pages;
1547
	int i;
1548
 
1549
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1550
	ASSERT(count);
1551
 
1552
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1553
	if (pages) {
1554
		/*
1555
		 * We are lucky, page is the beginning of some interval.
1556
		 */
1557
		if (count > pages) {
1558
			return 0;
1559
		} else if (count == pages) {
1560
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1561
			return 1;
1387 jermar 1562
		} else {
1563
			/*
1564
			 * Find the respective interval.
1565
			 * Decrease its size and relocate its start address.
1566
			 */
1567
			for (i = 0; i < leaf->keys; i++) {
1568
				if (leaf->key[i] == page) {
2087 jermar 1569
					leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1570
					leaf->value[i] -= count;
1387 jermar 1571
					return 1;
1572
				}
1573
			}
1574
			goto error;
1575
		}
1576
	}
1577
 
1578
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1579
	if (node && page < leaf->key[0]) {
1780 jermar 1580
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1581
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1582
 
2087 jermar 1583
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1584
		    count * PAGE_SIZE)) {
1585
			if (page + count * PAGE_SIZE ==
1586
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1587
				/*
2087 jermar 1588
				 * The interval is contained in the rightmost
1589
				 * interval of the left neighbour and can be
1590
				 * removed by updating the size of the bigger
1591
				 * interval.
1387 jermar 1592
				 */
1403 jermar 1593
				node->value[node->keys - 1] -= count;
1387 jermar 1594
				return 1;
2087 jermar 1595
			} else if (page + count * PAGE_SIZE <
1596
			    left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1597
				count_t new_cnt;
1387 jermar 1598
 
1599
				/*
2087 jermar 1600
				 * The interval is contained in the rightmost
1601
				 * interval of the left neighbour but its
1602
				 * removal requires both updating the size of
1603
				 * the original interval and also inserting a
1604
				 * new interval.
1387 jermar 1605
				 */
2087 jermar 1606
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1607
				    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1608
				node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1609
				btree_insert(&a->used_space, page +
1610
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1611
				return 1;
1612
			}
1613
		}
1614
		return 0;
1615
	} else if (page < leaf->key[0]) {
1616
		return 0;
1617
	}
1618
 
1619
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1620
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1621
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1622
 
2087 jermar 1623
		if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1624
		    count * PAGE_SIZE)) {
1625
			if (page + count * PAGE_SIZE == 
1626
			    left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1627
				/*
2087 jermar 1628
				 * The interval is contained in the rightmost
1629
				 * interval of the leaf and can be removed by
1630
				 * updating the size of the bigger interval.
1387 jermar 1631
				 */
1403 jermar 1632
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1633
				return 1;
2087 jermar 1634
			} else if (page + count * PAGE_SIZE < left_pg +
1635
			    left_cnt * PAGE_SIZE) {
1403 jermar 1636
				count_t new_cnt;
1387 jermar 1637
 
1638
				/*
2087 jermar 1639
				 * The interval is contained in the rightmost
1640
				 * interval of the leaf but its removal
1641
				 * requires both updating the size of the
1642
				 * original interval and also inserting a new
1643
				 * interval.
1387 jermar 1644
				 */
2087 jermar 1645
				new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1646
				    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1647
				leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1648
				btree_insert(&a->used_space, page +
1649
				    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1650
				return 1;
1651
			}
1652
		}
1653
		return 0;
1654
	}	
1655
 
1656
	/*
1657
	 * The border cases have been already resolved.
1658
	 * Now the interval can be only between intervals of the leaf. 
1659
	 */
1660
	for (i = 1; i < leaf->keys - 1; i++) {
1661
		if (page < leaf->key[i]) {
1780 jermar 1662
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1663
			count_t left_cnt = (count_t) leaf->value[i - 1];
1664
 
1665
			/*
2087 jermar 1666
			 * Now the interval is between intervals corresponding
1667
			 * to (i - 1) and i.
1387 jermar 1668
			 */
2087 jermar 1669
			if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1670
			    count * PAGE_SIZE)) {
1671
				if (page + count * PAGE_SIZE ==
1672
				    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 1673
					/*
2087 jermar 1674
					 * The interval is contained in the
1675
					 * interval (i - 1) of the leaf and can
1676
					 * be removed by updating the size of
1677
					 * the bigger interval.
1387 jermar 1678
					 */
1403 jermar 1679
					leaf->value[i - 1] -= count;
1387 jermar 1680
					return 1;
2087 jermar 1681
				} else if (page + count * PAGE_SIZE <
1682
				    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 1683
					count_t new_cnt;
1387 jermar 1684
 
1685
					/*
2087 jermar 1686
					 * The interval is contained in the
1687
					 * interval (i - 1) of the leaf but its
1688
					 * removal requires both updating the
1689
					 * size of the original interval and
1387 jermar 1690
					 * also inserting a new interval.
1691
					 */
2087 jermar 1692
					new_cnt = ((left_pg +
1693
					    left_cnt * PAGE_SIZE) -
1694
					    (page + count * PAGE_SIZE)) >>
1695
					    PAGE_WIDTH;
1403 jermar 1696
					leaf->value[i - 1] -= count + new_cnt;
2087 jermar 1697
					btree_insert(&a->used_space, page +
1698
					    count * PAGE_SIZE, (void *) new_cnt,
1699
					    leaf);
1387 jermar 1700
					return 1;
1701
				}
1702
			}
1703
			return 0;
1704
		}
1705
	}
1706
 
1707
error:
2087 jermar 1708
	panic("Inconsistency detected while removing %d pages of used space "
1709
	    "from %p.\n", count, page);
1387 jermar 1710
}
1711
 
1409 jermar 1712
/** Remove reference to address space area share info.
1713
 *
1714
 * If the reference count drops to 0, the sh_info is deallocated.
1715
 *
1716
 * @param sh_info Pointer to address space area share info.
1717
 */
1718
void sh_info_remove_reference(share_info_t *sh_info)
1719
{
1720
	bool dealloc = false;
1721
 
1722
	mutex_lock(&sh_info->lock);
1723
	ASSERT(sh_info->refcount);
1724
	if (--sh_info->refcount == 0) {
1725
		dealloc = true;
1495 jermar 1726
		link_t *cur;
1409 jermar 1727
 
1728
		/*
1729
		 * Now walk carefully the pagemap B+tree and free/remove
1730
		 * reference from all frames found there.
1731
		 */
2087 jermar 1732
		for (cur = sh_info->pagemap.leaf_head.next;
1733
		    cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1734
			btree_node_t *node;
1495 jermar 1735
			int i;
1409 jermar 1736
 
1495 jermar 1737
			node = list_get_instance(cur, btree_node_t, leaf_link);
1738
			for (i = 0; i < node->keys; i++) 
1780 jermar 1739
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1740
		}
1741
 
1742
	}
1743
	mutex_unlock(&sh_info->lock);
1744
 
1745
	if (dealloc) {
1746
		btree_destroy(&sh_info->pagemap);
1747
		free(sh_info);
1748
	}
1749
}
1750
 
1235 jermar 1751
/*
1752
 * Address space related syscalls.
1753
 */
1754
 
1755
/** Wrapper for as_area_create(). */
1780 jermar 1756
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1757
{
2087 jermar 1758
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1759
	    AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1760
		return (unative_t) address;
1235 jermar 1761
	else
1780 jermar 1762
		return (unative_t) -1;
1235 jermar 1763
}
1764
 
1793 jermar 1765
/** Wrapper for as_area_resize(). */
1780 jermar 1766
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1767
{
1780 jermar 1768
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1769
}
1770
 
1793 jermar 1771
/** Wrapper for as_area_destroy(). */
1780 jermar 1772
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1773
{
1780 jermar 1774
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1775
}
1702 cejka 1776
 
1914 jermar 1777
/** Print out information about address space.
1778
 *
1779
 * @param as Address space.
1780
 */
1781
void as_print(as_t *as)
1782
{
1783
	ipl_t ipl;
1784
 
1785
	ipl = interrupts_disable();
1786
	mutex_lock(&as->lock);
1787
 
1788
	/* print out info about address space areas */
1789
	link_t *cur;
2087 jermar 1790
	for (cur = as->as_area_btree.leaf_head.next;
1791
	    cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1792
		btree_node_t *node;
1914 jermar 1793
 
2087 jermar 1794
		node = list_get_instance(cur, btree_node_t, leaf_link);
1795
 
1914 jermar 1796
		int i;
1797
		for (i = 0; i < node->keys; i++) {
1915 jermar 1798
			as_area_t *area = node->value[i];
1914 jermar 1799
 
1800
			mutex_lock(&area->lock);
1801
			printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
2087 jermar 1802
			    area, area->base, area->pages, area->base,
1803
			    area->base + area->pages*PAGE_SIZE);
1914 jermar 1804
			mutex_unlock(&area->lock);
1805
		}
1806
	}
1807
 
1808
	mutex_unlock(&as->lock);
1809
	interrupts_restore(ipl);
1810
}
1811
 
1757 jermar 1812
/** @}
1702 cejka 1813
 */