Subversion Repositories HelenOS

Rev

Rev 1915 | Rev 2007 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
1757 jermar 81
/**
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
84
 */
756 jermar 85
as_operations_t *as_operations = NULL;
703 jermar 86
 
1890 jermar 87
/**
88
 * Slab for as_t objects.
89
 */
90
static slab_cache_t *as_slab;
91
 
1415 jermar 92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 94
 
95
/**
96
 * This list contains address spaces that are not active on any
97
 * processor and that have valid ASID.
98
 */
99
LIST_INITIALIZE(inactive_as_with_asid_head);
100
 
757 jermar 101
/** Kernel address space. */
102
as_t *AS_KERNEL = NULL;
103
 
1235 jermar 104
static int area_flags_to_page_flags(int aflags);
1780 jermar 105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 107
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 108
 
1891 jermar 109
static int as_constructor(void *obj, int flags)
110
{
111
	as_t *as = (as_t *) obj;
112
	int rc;
113
 
114
	link_initialize(&as->inactive_as_with_asid_link);
115
	mutex_initialize(&as->lock);	
116
 
117
	rc = as_constructor_arch(as, flags);
118
 
119
	return rc;
120
}
121
 
122
static int as_destructor(void *obj)
123
{
124
	as_t *as = (as_t *) obj;
125
 
126
	return as_destructor_arch(as);
127
}
128
 
756 jermar 129
/** Initialize address space subsystem. */
130
void as_init(void)
131
{
132
	as_arch_init();
1890 jermar 133
 
1891 jermar 134
	as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135
		as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 136
 
789 palkovsky 137
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 138
	if (!AS_KERNEL)
139
		panic("can't create kernel address space\n");
140
 
756 jermar 141
}
142
 
757 jermar 143
/** Create address space.
144
 *
145
 * @param flags Flags that influence way in wich the address space is created.
146
 */
756 jermar 147
as_t *as_create(int flags)
703 jermar 148
{
149
	as_t *as;
150
 
1890 jermar 151
	as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 152
	(void) as_create_arch(as, 0);
153
 
1147 jermar 154
	btree_create(&as->as_area_btree);
822 palkovsky 155
 
156
	if (flags & FLAG_AS_KERNEL)
157
		as->asid = ASID_KERNEL;
158
	else
159
		as->asid = ASID_INVALID;
160
 
1468 jermar 161
	as->refcount = 0;
1415 jermar 162
	as->cpu_refcount = 0;
822 palkovsky 163
	as->page_table = page_table_create(flags);
703 jermar 164
 
165
	return as;
166
}
167
 
1468 jermar 168
/** Destroy adress space.
169
 *
170
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171
 * the address space can be destroyed.
172
 */
173
void as_destroy(as_t *as)
973 palkovsky 174
{
1468 jermar 175
	ipl_t ipl;
1594 jermar 176
	bool cond;
973 palkovsky 177
 
1468 jermar 178
	ASSERT(as->refcount == 0);
179
 
180
	/*
181
	 * Since there is no reference to this area,
182
	 * it is safe not to lock its mutex.
183
	 */
184
	ipl = interrupts_disable();
185
	spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 186
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 187
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 188
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 189
		asid_put(as->asid);
190
	}
191
	spinlock_unlock(&inactive_as_with_asid_lock);
192
 
193
	/*
194
	 * Destroy address space areas of the address space.
1954 jermar 195
	 * The B+tree must be walked carefully because it is
1594 jermar 196
	 * also being destroyed.
1468 jermar 197
	 */	
1594 jermar 198
	for (cond = true; cond; ) {
1468 jermar 199
		btree_node_t *node;
1594 jermar 200
 
201
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202
		node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
203
 
204
		if ((cond = node->keys)) {
205
			as_area_destroy(as, node->key[0]);
206
		}
1468 jermar 207
	}
1495 jermar 208
 
1483 jermar 209
	btree_destroy(&as->as_area_btree);
1468 jermar 210
	page_table_destroy(as->page_table);
211
 
212
	interrupts_restore(ipl);
213
 
1890 jermar 214
	slab_free(as_slab, as);
973 palkovsky 215
}
216
 
703 jermar 217
/** Create address space area of common attributes.
218
 *
219
 * The created address space area is added to the target address space.
220
 *
221
 * @param as Target address space.
1239 jermar 222
 * @param flags Flags of the area memory.
1048 jermar 223
 * @param size Size of area.
703 jermar 224
 * @param base Base address of area.
1239 jermar 225
 * @param attrs Attributes of the area.
1409 jermar 226
 * @param backend Address space area backend. NULL if no backend is used.
227
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 228
 *
229
 * @return Address space area on success or NULL on failure.
230
 */
1780 jermar 231
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 232
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 233
{
234
	ipl_t ipl;
235
	as_area_t *a;
236
 
237
	if (base % PAGE_SIZE)
1048 jermar 238
		return NULL;
239
 
1233 jermar 240
	if (!size)
241
		return NULL;
242
 
1048 jermar 243
	/* Writeable executable areas are not supported. */
244
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245
		return NULL;
703 jermar 246
 
247
	ipl = interrupts_disable();
1380 jermar 248
	mutex_lock(&as->lock);
703 jermar 249
 
1048 jermar 250
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 251
		mutex_unlock(&as->lock);
1048 jermar 252
		interrupts_restore(ipl);
253
		return NULL;
254
	}
703 jermar 255
 
822 palkovsky 256
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 257
 
1380 jermar 258
	mutex_initialize(&a->lock);
822 palkovsky 259
 
1424 jermar 260
	a->as = as;
1026 jermar 261
	a->flags = flags;
1239 jermar 262
	a->attributes = attrs;
1048 jermar 263
	a->pages = SIZE2FRAMES(size);
822 palkovsky 264
	a->base = base;
1409 jermar 265
	a->sh_info = NULL;
266
	a->backend = backend;
1424 jermar 267
	if (backend_data)
268
		a->backend_data = *backend_data;
269
	else
1780 jermar 270
		memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 271
 
1387 jermar 272
	btree_create(&a->used_space);
822 palkovsky 273
 
1147 jermar 274
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 275
 
1380 jermar 276
	mutex_unlock(&as->lock);
703 jermar 277
	interrupts_restore(ipl);
704 jermar 278
 
703 jermar 279
	return a;
280
}
281
 
1235 jermar 282
/** Find address space area and change it.
283
 *
284
 * @param as Address space.
285
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286
 * @param size New size of the virtual memory block starting at address. 
287
 * @param flags Flags influencing the remap operation. Currently unused.
288
 *
1306 jermar 289
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 290
 */ 
1780 jermar 291
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 292
{
1306 jermar 293
	as_area_t *area;
1235 jermar 294
	ipl_t ipl;
295
	size_t pages;
296
 
297
	ipl = interrupts_disable();
1380 jermar 298
	mutex_lock(&as->lock);
1235 jermar 299
 
300
	/*
301
	 * Locate the area.
302
	 */
303
	area = find_area_and_lock(as, address);
304
	if (!area) {
1380 jermar 305
		mutex_unlock(&as->lock);
1235 jermar 306
		interrupts_restore(ipl);
1306 jermar 307
		return ENOENT;
1235 jermar 308
	}
309
 
1424 jermar 310
	if (area->backend == &phys_backend) {
1235 jermar 311
		/*
312
		 * Remapping of address space areas associated
313
		 * with memory mapped devices is not supported.
314
		 */
1380 jermar 315
		mutex_unlock(&area->lock);
316
		mutex_unlock(&as->lock);
1235 jermar 317
		interrupts_restore(ipl);
1306 jermar 318
		return ENOTSUP;
1235 jermar 319
	}
1409 jermar 320
	if (area->sh_info) {
321
		/*
322
		 * Remapping of shared address space areas 
323
		 * is not supported.
324
		 */
325
		mutex_unlock(&area->lock);
326
		mutex_unlock(&as->lock);
327
		interrupts_restore(ipl);
328
		return ENOTSUP;
329
	}
1235 jermar 330
 
331
	pages = SIZE2FRAMES((address - area->base) + size);
332
	if (!pages) {
333
		/*
334
		 * Zero size address space areas are not allowed.
335
		 */
1380 jermar 336
		mutex_unlock(&area->lock);
337
		mutex_unlock(&as->lock);
1235 jermar 338
		interrupts_restore(ipl);
1306 jermar 339
		return EPERM;
1235 jermar 340
	}
341
 
342
	if (pages < area->pages) {
1403 jermar 343
		bool cond;
1780 jermar 344
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 345
 
346
		/*
347
		 * Shrinking the area.
348
		 * No need to check for overlaps.
349
		 */
1403 jermar 350
 
351
		/*
1436 jermar 352
		 * Start TLB shootdown sequence.
353
		 */
354
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
355
 
356
		/*
1403 jermar 357
		 * Remove frames belonging to used space starting from
358
		 * the highest addresses downwards until an overlap with
359
		 * the resized address space area is found. Note that this
360
		 * is also the right way to remove part of the used_space
361
		 * B+tree leaf list.
362
		 */		
363
		for (cond = true; cond;) {
364
			btree_node_t *node;
365
 
366
			ASSERT(!list_empty(&area->used_space.leaf_head));
367
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368
			if ((cond = (bool) node->keys)) {
1780 jermar 369
				uintptr_t b = node->key[node->keys - 1];
1403 jermar 370
				count_t c = (count_t) node->value[node->keys - 1];
371
				int i = 0;
1235 jermar 372
 
1403 jermar 373
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
374
 
375
					if (b + c*PAGE_SIZE <= start_free) {
376
						/*
377
						 * The whole interval fits completely
378
						 * in the resized address space area.
379
						 */
380
						break;
381
					}
382
 
383
					/*
384
					 * Part of the interval corresponding to b and c
385
					 * overlaps with the resized address space area.
386
					 */
387
 
388
					cond = false;	/* we are almost done */
389
					i = (start_free - b) >> PAGE_WIDTH;
390
					if (!used_space_remove(area, start_free, c - i))
1889 jermar 391
						panic("Could not remove used space.\n");
1403 jermar 392
				} else {
393
					/*
394
					 * The interval of used space can be completely removed.
395
					 */
396
					if (!used_space_remove(area, b, c))
397
						panic("Could not remove used space.\n");
398
				}
399
 
400
				for (; i < c; i++) {
401
					pte_t *pte;
402
 
403
					page_table_lock(as, false);
404
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
405
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 406
					if (area->backend && area->backend->frame_free) {
407
						area->backend->frame_free(area,
1409 jermar 408
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
409
					}
1403 jermar 410
					page_mapping_remove(as, b + i*PAGE_SIZE);
411
					page_table_unlock(as, false);
412
				}
1235 jermar 413
			}
414
		}
1436 jermar 415
 
1235 jermar 416
		/*
1436 jermar 417
		 * Finish TLB shootdown sequence.
1235 jermar 418
		 */
1954 jermar 419
		tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 420
		tlb_shootdown_finalize();
1889 jermar 421
 
422
		/*
423
		 * Invalidate software translation caches (e.g. TSB on sparc64).
424
		 */
425
		as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 426
	} else {
427
		/*
428
		 * Growing the area.
429
		 * Check for overlaps with other address space areas.
430
		 */
431
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 432
			mutex_unlock(&area->lock);
433
			mutex_unlock(&as->lock);		
1235 jermar 434
			interrupts_restore(ipl);
1306 jermar 435
			return EADDRNOTAVAIL;
1235 jermar 436
		}
437
	} 
438
 
439
	area->pages = pages;
440
 
1380 jermar 441
	mutex_unlock(&area->lock);
442
	mutex_unlock(&as->lock);
1235 jermar 443
	interrupts_restore(ipl);
444
 
1306 jermar 445
	return 0;
1235 jermar 446
}
447
 
1306 jermar 448
/** Destroy address space area.
449
 *
450
 * @param as Address space.
451
 * @param address Address withing the area to be deleted.
452
 *
453
 * @return Zero on success or a value from @ref errno.h on failure. 
454
 */
1780 jermar 455
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 456
{
457
	as_area_t *area;
1780 jermar 458
	uintptr_t base;
1495 jermar 459
	link_t *cur;
1306 jermar 460
	ipl_t ipl;
461
 
462
	ipl = interrupts_disable();
1380 jermar 463
	mutex_lock(&as->lock);
1306 jermar 464
 
465
	area = find_area_and_lock(as, address);
466
	if (!area) {
1380 jermar 467
		mutex_unlock(&as->lock);
1306 jermar 468
		interrupts_restore(ipl);
469
		return ENOENT;
470
	}
471
 
1403 jermar 472
	base = area->base;
473
 
1411 jermar 474
	/*
1436 jermar 475
	 * Start TLB shootdown sequence.
476
	 */
1889 jermar 477
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 478
 
479
	/*
1411 jermar 480
	 * Visit only the pages mapped by used_space B+tree.
481
	 */
1495 jermar 482
	for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 483
		btree_node_t *node;
1495 jermar 484
		int i;
1403 jermar 485
 
1495 jermar 486
		node = list_get_instance(cur, btree_node_t, leaf_link);
487
		for (i = 0; i < node->keys; i++) {
1780 jermar 488
			uintptr_t b = node->key[i];
1495 jermar 489
			count_t j;
1411 jermar 490
			pte_t *pte;
1403 jermar 491
 
1495 jermar 492
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 493
				page_table_lock(as, false);
1495 jermar 494
				pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 495
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 496
				if (area->backend && area->backend->frame_free) {
497
					area->backend->frame_free(area,
1495 jermar 498
						b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 499
				}
1889 jermar 500
				page_mapping_remove(as, b + j*PAGE_SIZE);				
1411 jermar 501
				page_table_unlock(as, false);
1306 jermar 502
			}
503
		}
504
	}
1403 jermar 505
 
1306 jermar 506
	/*
1436 jermar 507
	 * Finish TLB shootdown sequence.
1306 jermar 508
	 */
1889 jermar 509
	tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 510
	tlb_shootdown_finalize();
1436 jermar 511
 
1889 jermar 512
	/*
513
	 * Invalidate potential software translation caches (e.g. TSB on sparc64).
514
	 */
515
	as_invalidate_translation_cache(as, area->base, area->pages);
516
 
1436 jermar 517
	btree_destroy(&area->used_space);
1306 jermar 518
 
1309 jermar 519
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 520
 
521
	if (area->sh_info)
522
		sh_info_remove_reference(area->sh_info);
523
 
1380 jermar 524
	mutex_unlock(&area->lock);
1306 jermar 525
 
526
	/*
527
	 * Remove the empty area from address space.
528
	 */
1889 jermar 529
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 530
 
1309 jermar 531
	free(area);
532
 
1889 jermar 533
	mutex_unlock(&as->lock);
1306 jermar 534
	interrupts_restore(ipl);
535
	return 0;
536
}
537
 
1413 jermar 538
/** Share address space area with another or the same address space.
1235 jermar 539
 *
1424 jermar 540
 * Address space area mapping is shared with a new address space area.
541
 * If the source address space area has not been shared so far,
542
 * a new sh_info is created. The new address space area simply gets the
543
 * sh_info of the source area. The process of duplicating the
544
 * mapping is done through the backend share function.
1413 jermar 545
 * 
1417 jermar 546
 * @param src_as Pointer to source address space.
1239 jermar 547
 * @param src_base Base address of the source address space area.
1417 jermar 548
 * @param acc_size Expected size of the source area.
1428 palkovsky 549
 * @param dst_as Pointer to destination address space.
1417 jermar 550
 * @param dst_base Target base address.
551
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 552
 *
1306 jermar 553
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 554
 *	   if there is no such address space area,
555
 *	   EPERM if there was a problem in accepting the area or
556
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 557
 *	   address space area. ENOTSUP is returned if an attempt
558
 *	   to share non-anonymous address space area is detected.
1235 jermar 559
 */
1780 jermar 560
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
561
		  as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 562
{
563
	ipl_t ipl;
1239 jermar 564
	int src_flags;
565
	size_t src_size;
566
	as_area_t *src_area, *dst_area;
1413 jermar 567
	share_info_t *sh_info;
1424 jermar 568
	mem_backend_t *src_backend;
569
	mem_backend_data_t src_backend_data;
1434 palkovsky 570
 
1235 jermar 571
	ipl = interrupts_disable();
1380 jermar 572
	mutex_lock(&src_as->lock);
1329 palkovsky 573
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 574
	if (!src_area) {
1238 jermar 575
		/*
576
		 * Could not find the source address space area.
577
		 */
1380 jermar 578
		mutex_unlock(&src_as->lock);
1238 jermar 579
		interrupts_restore(ipl);
580
		return ENOENT;
581
	}
1413 jermar 582
 
1424 jermar 583
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 584
		/*
1851 jermar 585
		 * There is no backend or the backend does not
1424 jermar 586
		 * know how to share the area.
1413 jermar 587
		 */
588
		mutex_unlock(&src_area->lock);
589
		mutex_unlock(&src_as->lock);
590
		interrupts_restore(ipl);
591
		return ENOTSUP;
592
	}
593
 
1239 jermar 594
	src_size = src_area->pages * PAGE_SIZE;
595
	src_flags = src_area->flags;
1424 jermar 596
	src_backend = src_area->backend;
597
	src_backend_data = src_area->backend_data;
1544 palkovsky 598
 
599
	/* Share the cacheable flag from the original mapping */
600
	if (src_flags & AS_AREA_CACHEABLE)
601
		dst_flags_mask |= AS_AREA_CACHEABLE;
602
 
1461 palkovsky 603
	if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 604
		mutex_unlock(&src_area->lock);
605
		mutex_unlock(&src_as->lock);
1235 jermar 606
		interrupts_restore(ipl);
607
		return EPERM;
608
	}
1413 jermar 609
 
1235 jermar 610
	/*
1413 jermar 611
	 * Now we are committed to sharing the area.
1954 jermar 612
	 * First, prepare the area for sharing.
1413 jermar 613
	 * Then it will be safe to unlock it.
614
	 */
615
	sh_info = src_area->sh_info;
616
	if (!sh_info) {
617
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
618
		mutex_initialize(&sh_info->lock);
619
		sh_info->refcount = 2;
620
		btree_create(&sh_info->pagemap);
621
		src_area->sh_info = sh_info;
622
	} else {
623
		mutex_lock(&sh_info->lock);
624
		sh_info->refcount++;
625
		mutex_unlock(&sh_info->lock);
626
	}
627
 
1424 jermar 628
	src_area->backend->share(src_area);
1413 jermar 629
 
630
	mutex_unlock(&src_area->lock);
631
	mutex_unlock(&src_as->lock);
632
 
633
	/*
1239 jermar 634
	 * Create copy of the source address space area.
635
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
636
	 * attribute set which prevents race condition with
637
	 * preliminary as_page_fault() calls.
1417 jermar 638
	 * The flags of the source area are masked against dst_flags_mask
639
	 * to support sharing in less privileged mode.
1235 jermar 640
	 */
1461 palkovsky 641
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 642
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 643
	if (!dst_area) {
1235 jermar 644
		/*
645
		 * Destination address space area could not be created.
646
		 */
1413 jermar 647
		sh_info_remove_reference(sh_info);
648
 
1235 jermar 649
		interrupts_restore(ipl);
650
		return ENOMEM;
651
	}
652
 
653
	/*
1239 jermar 654
	 * Now the destination address space area has been
655
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 656
	 * attribute and set the sh_info.
1239 jermar 657
	 */	
1380 jermar 658
	mutex_lock(&dst_area->lock);
1239 jermar 659
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 660
	dst_area->sh_info = sh_info;
1380 jermar 661
	mutex_unlock(&dst_area->lock);
1235 jermar 662
 
663
	interrupts_restore(ipl);
664
 
665
	return 0;
666
}
667
 
1423 jermar 668
/** Check access mode for address space area.
669
 *
670
 * The address space area must be locked prior to this call.
671
 *
672
 * @param area Address space area.
673
 * @param access Access mode.
674
 *
675
 * @return False if access violates area's permissions, true otherwise.
676
 */
677
bool as_area_check_access(as_area_t *area, pf_access_t access)
678
{
679
	int flagmap[] = {
680
		[PF_ACCESS_READ] = AS_AREA_READ,
681
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
682
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
683
	};
684
 
685
	if (!(area->flags & flagmap[access]))
686
		return false;
687
 
688
	return true;
689
}
690
 
703 jermar 691
/** Handle page fault within the current address space.
692
 *
1409 jermar 693
 * This is the high-level page fault handler. It decides
694
 * whether the page fault can be resolved by any backend
695
 * and if so, it invokes the backend to resolve the page
696
 * fault.
697
 *
703 jermar 698
 * Interrupts are assumed disabled.
699
 *
700
 * @param page Faulting page.
1411 jermar 701
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 702
 * @param istate Pointer to interrupted state.
703 jermar 703
 *
1409 jermar 704
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
705
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 706
 */
1780 jermar 707
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 708
{
1044 jermar 709
	pte_t *pte;
977 jermar 710
	as_area_t *area;
703 jermar 711
 
1380 jermar 712
	if (!THREAD)
1409 jermar 713
		return AS_PF_FAULT;
1380 jermar 714
 
703 jermar 715
	ASSERT(AS);
1044 jermar 716
 
1380 jermar 717
	mutex_lock(&AS->lock);
977 jermar 718
	area = find_area_and_lock(AS, page);	
703 jermar 719
	if (!area) {
720
		/*
721
		 * No area contained mapping for 'page'.
722
		 * Signal page fault to low-level handler.
723
		 */
1380 jermar 724
		mutex_unlock(&AS->lock);
1288 jermar 725
		goto page_fault;
703 jermar 726
	}
727
 
1239 jermar 728
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
729
		/*
730
		 * The address space area is not fully initialized.
731
		 * Avoid possible race by returning error.
732
		 */
1380 jermar 733
		mutex_unlock(&area->lock);
734
		mutex_unlock(&AS->lock);
1288 jermar 735
		goto page_fault;		
1239 jermar 736
	}
737
 
1424 jermar 738
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 739
		/*
740
		 * The address space area is not backed by any backend
741
		 * or the backend cannot handle page faults.
742
		 */
743
		mutex_unlock(&area->lock);
744
		mutex_unlock(&AS->lock);
745
		goto page_fault;		
746
	}
1179 jermar 747
 
1044 jermar 748
	page_table_lock(AS, false);
749
 
703 jermar 750
	/*
1044 jermar 751
	 * To avoid race condition between two page faults
752
	 * on the same address, we need to make sure
753
	 * the mapping has not been already inserted.
754
	 */
755
	if ((pte = page_mapping_find(AS, page))) {
756
		if (PTE_PRESENT(pte)) {
1423 jermar 757
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
758
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
759
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
760
				page_table_unlock(AS, false);
761
				mutex_unlock(&area->lock);
762
				mutex_unlock(&AS->lock);
763
				return AS_PF_OK;
764
			}
1044 jermar 765
		}
766
	}
1409 jermar 767
 
1044 jermar 768
	/*
1409 jermar 769
	 * Resort to the backend page fault handler.
703 jermar 770
	 */
1424 jermar 771
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 772
		page_table_unlock(AS, false);
773
		mutex_unlock(&area->lock);
774
		mutex_unlock(&AS->lock);
775
		goto page_fault;
776
	}
703 jermar 777
 
1044 jermar 778
	page_table_unlock(AS, false);
1380 jermar 779
	mutex_unlock(&area->lock);
780
	mutex_unlock(&AS->lock);
1288 jermar 781
	return AS_PF_OK;
782
 
783
page_fault:
784
	if (THREAD->in_copy_from_uspace) {
785
		THREAD->in_copy_from_uspace = false;
1780 jermar 786
		istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 787
	} else if (THREAD->in_copy_to_uspace) {
788
		THREAD->in_copy_to_uspace = false;
1780 jermar 789
		istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 790
	} else {
791
		return AS_PF_FAULT;
792
	}
793
 
794
	return AS_PF_DEFER;
703 jermar 795
}
796
 
823 jermar 797
/** Switch address spaces.
703 jermar 798
 *
1380 jermar 799
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 800
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 801
 *
823 jermar 802
 * @param old Old address space or NULL.
803
 * @param new New address space.
703 jermar 804
 */
823 jermar 805
void as_switch(as_t *old, as_t *new)
703 jermar 806
{
807
	ipl_t ipl;
823 jermar 808
	bool needs_asid = false;
703 jermar 809
 
810
	ipl = interrupts_disable();
1415 jermar 811
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 812
 
813
	/*
823 jermar 814
	 * First, take care of the old address space.
815
	 */	
816
	if (old) {
1380 jermar 817
		mutex_lock_active(&old->lock);
1415 jermar 818
		ASSERT(old->cpu_refcount);
819
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 820
			/*
821
			 * The old address space is no longer active on
822
			 * any processor. It can be appended to the
823
			 * list of inactive address spaces with assigned
824
			 * ASID.
825
			 */
826
			 ASSERT(old->asid != ASID_INVALID);
827
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
828
		}
1380 jermar 829
		mutex_unlock(&old->lock);
1890 jermar 830
 
831
		/*
832
		 * Perform architecture-specific tasks when the address space
833
		 * is being removed from the CPU.
834
		 */
835
		as_deinstall_arch(old);
823 jermar 836
	}
837
 
838
	/*
839
	 * Second, prepare the new address space.
840
	 */
1380 jermar 841
	mutex_lock_active(&new->lock);
1415 jermar 842
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 843
		if (new->asid != ASID_INVALID)
844
			list_remove(&new->inactive_as_with_asid_link);
845
		else
846
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
847
	}
848
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 849
	mutex_unlock(&new->lock);
823 jermar 850
 
851
	if (needs_asid) {
852
		/*
853
		 * Allocation of new ASID was deferred
854
		 * until now in order to avoid deadlock.
855
		 */
856
		asid_t asid;
857
 
858
		asid = asid_get();
1380 jermar 859
		mutex_lock_active(&new->lock);
823 jermar 860
		new->asid = asid;
1380 jermar 861
		mutex_unlock(&new->lock);
823 jermar 862
	}
1415 jermar 863
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 864
	interrupts_restore(ipl);
865
 
866
	/*
703 jermar 867
	 * Perform architecture-specific steps.
727 jermar 868
	 * (e.g. write ASID to hardware register etc.)
703 jermar 869
	 */
823 jermar 870
	as_install_arch(new);
703 jermar 871
 
823 jermar 872
	AS = new;
703 jermar 873
}
754 jermar 874
 
1235 jermar 875
/** Convert address space area flags to page flags.
754 jermar 876
 *
1235 jermar 877
 * @param aflags Flags of some address space area.
754 jermar 878
 *
1235 jermar 879
 * @return Flags to be passed to page_mapping_insert().
754 jermar 880
 */
1235 jermar 881
int area_flags_to_page_flags(int aflags)
754 jermar 882
{
883
	int flags;
884
 
1178 jermar 885
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 886
 
1235 jermar 887
	if (aflags & AS_AREA_READ)
1026 jermar 888
		flags |= PAGE_READ;
889
 
1235 jermar 890
	if (aflags & AS_AREA_WRITE)
1026 jermar 891
		flags |= PAGE_WRITE;
892
 
1235 jermar 893
	if (aflags & AS_AREA_EXEC)
1026 jermar 894
		flags |= PAGE_EXEC;
895
 
1424 jermar 896
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 897
		flags |= PAGE_CACHEABLE;
898
 
754 jermar 899
	return flags;
900
}
756 jermar 901
 
1235 jermar 902
/** Compute flags for virtual address translation subsytem.
903
 *
904
 * The address space area must be locked.
905
 * Interrupts must be disabled.
906
 *
907
 * @param a Address space area.
908
 *
909
 * @return Flags to be used in page_mapping_insert().
910
 */
1409 jermar 911
int as_area_get_flags(as_area_t *a)
1235 jermar 912
{
913
	return area_flags_to_page_flags(a->flags);
914
}
915
 
756 jermar 916
/** Create page table.
917
 *
918
 * Depending on architecture, create either address space
919
 * private or global page table.
920
 *
921
 * @param flags Flags saying whether the page table is for kernel address space.
922
 *
923
 * @return First entry of the page table.
924
 */
925
pte_t *page_table_create(int flags)
926
{
927
        ASSERT(as_operations);
928
        ASSERT(as_operations->page_table_create);
929
 
930
        return as_operations->page_table_create(flags);
931
}
977 jermar 932
 
1468 jermar 933
/** Destroy page table.
934
 *
935
 * Destroy page table in architecture specific way.
936
 *
937
 * @param page_table Physical address of PTL0.
938
 */
939
void page_table_destroy(pte_t *page_table)
940
{
941
        ASSERT(as_operations);
942
        ASSERT(as_operations->page_table_destroy);
943
 
944
        as_operations->page_table_destroy(page_table);
945
}
946
 
1044 jermar 947
/** Lock page table.
948
 *
949
 * This function should be called before any page_mapping_insert(),
950
 * page_mapping_remove() and page_mapping_find().
951
 * 
952
 * Locking order is such that address space areas must be locked
953
 * prior to this call. Address space can be locked prior to this
954
 * call in which case the lock argument is false.
955
 *
956
 * @param as Address space.
1248 jermar 957
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 958
 */
959
void page_table_lock(as_t *as, bool lock)
960
{
961
	ASSERT(as_operations);
962
	ASSERT(as_operations->page_table_lock);
963
 
964
	as_operations->page_table_lock(as, lock);
965
}
966
 
967
/** Unlock page table.
968
 *
969
 * @param as Address space.
1248 jermar 970
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 971
 */
972
void page_table_unlock(as_t *as, bool unlock)
973
{
974
	ASSERT(as_operations);
975
	ASSERT(as_operations->page_table_unlock);
976
 
977
	as_operations->page_table_unlock(as, unlock);
978
}
979
 
977 jermar 980
 
981
/** Find address space area and lock it.
982
 *
983
 * The address space must be locked and interrupts must be disabled.
984
 *
985
 * @param as Address space.
986
 * @param va Virtual address.
987
 *
988
 * @return Locked address space area containing va on success or NULL on failure.
989
 */
1780 jermar 990
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 991
{
992
	as_area_t *a;
1147 jermar 993
	btree_node_t *leaf, *lnode;
994
	int i;
977 jermar 995
 
1147 jermar 996
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
997
	if (a) {
998
		/* va is the base address of an address space area */
1380 jermar 999
		mutex_lock(&a->lock);
1147 jermar 1000
		return a;
1001
	}
1002
 
1003
	/*
1150 jermar 1004
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1005
	 * to find out whether this is a miss or va belongs to an address
1006
	 * space area found there.
1007
	 */
1008
 
1009
	/* First, search the leaf node itself. */
1010
	for (i = 0; i < leaf->keys; i++) {
1011
		a = (as_area_t *) leaf->value[i];
1380 jermar 1012
		mutex_lock(&a->lock);
1147 jermar 1013
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1014
			return a;
1015
		}
1380 jermar 1016
		mutex_unlock(&a->lock);
1147 jermar 1017
	}
977 jermar 1018
 
1147 jermar 1019
	/*
1150 jermar 1020
	 * Second, locate the left neighbour and test its last record.
1148 jermar 1021
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 1022
	 */
1150 jermar 1023
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1024
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1025
		mutex_lock(&a->lock);
1147 jermar 1026
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1027
			return a;
1147 jermar 1028
		}
1380 jermar 1029
		mutex_unlock(&a->lock);
977 jermar 1030
	}
1031
 
1032
	return NULL;
1033
}
1048 jermar 1034
 
1035
/** Check area conflicts with other areas.
1036
 *
1037
 * The address space must be locked and interrupts must be disabled.
1038
 *
1039
 * @param as Address space.
1040
 * @param va Starting virtual address of the area being tested.
1041
 * @param size Size of the area being tested.
1042
 * @param avoid_area Do not touch this area. 
1043
 *
1044
 * @return True if there is no conflict, false otherwise.
1045
 */
1780 jermar 1046
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1047
{
1048
	as_area_t *a;
1147 jermar 1049
	btree_node_t *leaf, *node;
1050
	int i;
1048 jermar 1051
 
1070 jermar 1052
	/*
1053
	 * We don't want any area to have conflicts with NULL page.
1054
	 */
1055
	if (overlaps(va, size, NULL, PAGE_SIZE))
1056
		return false;
1057
 
1147 jermar 1058
	/*
1059
	 * The leaf node is found in O(log n), where n is proportional to
1060
	 * the number of address space areas belonging to as.
1061
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1062
	 * record in the left neighbour, the leftmost record in the right
1063
	 * neighbour and all records in the leaf node itself.
1147 jermar 1064
	 */
1048 jermar 1065
 
1147 jermar 1066
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1067
		if (a != avoid_area)
1068
			return false;
1069
	}
1070
 
1071
	/* First, check the two border cases. */
1150 jermar 1072
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1073
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1074
		mutex_lock(&a->lock);
1147 jermar 1075
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1076
			mutex_unlock(&a->lock);
1147 jermar 1077
			return false;
1078
		}
1380 jermar 1079
		mutex_unlock(&a->lock);
1147 jermar 1080
	}
1150 jermar 1081
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1082
		a = (as_area_t *) node->value[0];
1380 jermar 1083
		mutex_lock(&a->lock);
1147 jermar 1084
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1085
			mutex_unlock(&a->lock);
1147 jermar 1086
			return false;
1087
		}
1380 jermar 1088
		mutex_unlock(&a->lock);
1147 jermar 1089
	}
1090
 
1091
	/* Second, check the leaf node. */
1092
	for (i = 0; i < leaf->keys; i++) {
1093
		a = (as_area_t *) leaf->value[i];
1094
 
1048 jermar 1095
		if (a == avoid_area)
1096
			continue;
1147 jermar 1097
 
1380 jermar 1098
		mutex_lock(&a->lock);
1147 jermar 1099
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1100
			mutex_unlock(&a->lock);
1147 jermar 1101
			return false;
1102
		}
1380 jermar 1103
		mutex_unlock(&a->lock);
1048 jermar 1104
	}
1105
 
1070 jermar 1106
	/*
1107
	 * So far, the area does not conflict with other areas.
1108
	 * Check if it doesn't conflict with kernel address space.
1109
	 */	 
1110
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1111
		return !overlaps(va, size, 
1112
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1113
	}
1114
 
1048 jermar 1115
	return true;
1116
}
1235 jermar 1117
 
1380 jermar 1118
/** Return size of the address space area with given base.  */
1780 jermar 1119
size_t as_get_size(uintptr_t base)
1329 palkovsky 1120
{
1121
	ipl_t ipl;
1122
	as_area_t *src_area;
1123
	size_t size;
1124
 
1125
	ipl = interrupts_disable();
1126
	src_area = find_area_and_lock(AS, base);
1127
	if (src_area){
1128
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1129
		mutex_unlock(&src_area->lock);
1329 palkovsky 1130
	} else {
1131
		size = 0;
1132
	}
1133
	interrupts_restore(ipl);
1134
	return size;
1135
}
1136
 
1387 jermar 1137
/** Mark portion of address space area as used.
1138
 *
1139
 * The address space area must be already locked.
1140
 *
1141
 * @param a Address space area.
1142
 * @param page First page to be marked.
1143
 * @param count Number of page to be marked.
1144
 *
1145
 * @return 0 on failure and 1 on success.
1146
 */
1780 jermar 1147
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1148
{
1149
	btree_node_t *leaf, *node;
1150
	count_t pages;
1151
	int i;
1152
 
1153
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1154
	ASSERT(count);
1155
 
1156
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1157
	if (pages) {
1158
		/*
1159
		 * We hit the beginning of some used space.
1160
		 */
1161
		return 0;
1162
	}
1163
 
1437 jermar 1164
	if (!leaf->keys) {
1165
		btree_insert(&a->used_space, page, (void *) count, leaf);
1166
		return 1;
1167
	}
1168
 
1387 jermar 1169
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1170
	if (node) {
1780 jermar 1171
		uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1172
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1173
 
1174
		/*
1175
		 * Examine the possibility that the interval fits
1176
		 * somewhere between the rightmost interval of
1177
		 * the left neigbour and the first interval of the leaf.
1178
		 */
1179
 
1180
		if (page >= right_pg) {
1181
			/* Do nothing. */
1182
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1183
			/* The interval intersects with the left interval. */
1184
			return 0;
1185
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1186
			/* The interval intersects with the right interval. */
1187
			return 0;			
1188
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1189
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1190
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1191
			btree_remove(&a->used_space, right_pg, leaf);
1192
			return 1; 
1193
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1194
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1195
			node->value[node->keys - 1] += count;
1387 jermar 1196
			return 1;
1197
		} else if (page + count*PAGE_SIZE == right_pg) {
1198
			/*
1199
			 * The interval can be addded by simply moving base of the right
1200
			 * interval down and increasing its size accordingly.
1201
			 */
1403 jermar 1202
			leaf->value[0] += count;
1387 jermar 1203
			leaf->key[0] = page;
1204
			return 1;
1205
		} else {
1206
			/*
1207
			 * The interval is between both neigbouring intervals,
1208
			 * but cannot be merged with any of them.
1209
			 */
1210
			btree_insert(&a->used_space, page, (void *) count, leaf);
1211
			return 1;
1212
		}
1213
	} else if (page < leaf->key[0]) {
1780 jermar 1214
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1215
		count_t right_cnt = (count_t) leaf->value[0];
1216
 
1217
		/*
1218
		 * Investigate the border case in which the left neighbour does not
1219
		 * exist but the interval fits from the left.
1220
		 */
1221
 
1222
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1223
			/* The interval intersects with the right interval. */
1224
			return 0;
1225
		} else if (page + count*PAGE_SIZE == right_pg) {
1226
			/*
1227
			 * The interval can be added by moving the base of the right interval down
1228
			 * and increasing its size accordingly.
1229
			 */
1230
			leaf->key[0] = page;
1403 jermar 1231
			leaf->value[0] += count;
1387 jermar 1232
			return 1;
1233
		} else {
1234
			/*
1235
			 * The interval doesn't adjoin with the right interval.
1236
			 * It must be added individually.
1237
			 */
1238
			btree_insert(&a->used_space, page, (void *) count, leaf);
1239
			return 1;
1240
		}
1241
	}
1242
 
1243
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1244
	if (node) {
1780 jermar 1245
		uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1246
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1247
 
1248
		/*
1249
		 * Examine the possibility that the interval fits
1250
		 * somewhere between the leftmost interval of
1251
		 * the right neigbour and the last interval of the leaf.
1252
		 */
1253
 
1254
		if (page < left_pg) {
1255
			/* Do nothing. */
1256
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1257
			/* The interval intersects with the left interval. */
1258
			return 0;
1259
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1260
			/* The interval intersects with the right interval. */
1261
			return 0;			
1262
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1263
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1264
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1265
			btree_remove(&a->used_space, right_pg, node);
1266
			return 1; 
1267
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1268
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1269
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1270
			return 1;
1271
		} else if (page + count*PAGE_SIZE == right_pg) {
1272
			/*
1273
			 * The interval can be addded by simply moving base of the right
1274
			 * interval down and increasing its size accordingly.
1275
			 */
1403 jermar 1276
			node->value[0] += count;
1387 jermar 1277
			node->key[0] = page;
1278
			return 1;
1279
		} else {
1280
			/*
1281
			 * The interval is between both neigbouring intervals,
1282
			 * but cannot be merged with any of them.
1283
			 */
1284
			btree_insert(&a->used_space, page, (void *) count, leaf);
1285
			return 1;
1286
		}
1287
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1288
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1289
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1290
 
1291
		/*
1292
		 * Investigate the border case in which the right neighbour does not
1293
		 * exist but the interval fits from the right.
1294
		 */
1295
 
1296
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1297
			/* The interval intersects with the left interval. */
1387 jermar 1298
			return 0;
1299
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1300
			/* The interval can be added by growing the left interval. */
1403 jermar 1301
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1302
			return 1;
1303
		} else {
1304
			/*
1305
			 * The interval doesn't adjoin with the left interval.
1306
			 * It must be added individually.
1307
			 */
1308
			btree_insert(&a->used_space, page, (void *) count, leaf);
1309
			return 1;
1310
		}
1311
	}
1312
 
1313
	/*
1314
	 * Note that if the algorithm made it thus far, the interval can fit only
1315
	 * between two other intervals of the leaf. The two border cases were already
1316
	 * resolved.
1317
	 */
1318
	for (i = 1; i < leaf->keys; i++) {
1319
		if (page < leaf->key[i]) {
1780 jermar 1320
			uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1321
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1322
 
1323
			/*
1324
			 * The interval fits between left_pg and right_pg.
1325
			 */
1326
 
1327
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1328
				/* The interval intersects with the left interval. */
1329
				return 0;
1330
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1331
				/* The interval intersects with the right interval. */
1332
				return 0;			
1333
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1334
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1335
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1336
				btree_remove(&a->used_space, right_pg, leaf);
1337
				return 1; 
1338
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1339
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1340
				leaf->value[i - 1] += count;
1387 jermar 1341
				return 1;
1342
			} else if (page + count*PAGE_SIZE == right_pg) {
1343
				/*
1344
			         * The interval can be addded by simply moving base of the right
1345
			 	 * interval down and increasing its size accordingly.
1346
			 	 */
1403 jermar 1347
				leaf->value[i] += count;
1387 jermar 1348
				leaf->key[i] = page;
1349
				return 1;
1350
			} else {
1351
				/*
1352
				 * The interval is between both neigbouring intervals,
1353
				 * but cannot be merged with any of them.
1354
				 */
1355
				btree_insert(&a->used_space, page, (void *) count, leaf);
1356
				return 1;
1357
			}
1358
		}
1359
	}
1360
 
1735 decky 1361
	panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1362
}
1363
 
1364
/** Mark portion of address space area as unused.
1365
 *
1366
 * The address space area must be already locked.
1367
 *
1368
 * @param a Address space area.
1369
 * @param page First page to be marked.
1370
 * @param count Number of page to be marked.
1371
 *
1372
 * @return 0 on failure and 1 on success.
1373
 */
1780 jermar 1374
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1375
{
1376
	btree_node_t *leaf, *node;
1377
	count_t pages;
1378
	int i;
1379
 
1380
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1381
	ASSERT(count);
1382
 
1383
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1384
	if (pages) {
1385
		/*
1386
		 * We are lucky, page is the beginning of some interval.
1387
		 */
1388
		if (count > pages) {
1389
			return 0;
1390
		} else if (count == pages) {
1391
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1392
			return 1;
1387 jermar 1393
		} else {
1394
			/*
1395
			 * Find the respective interval.
1396
			 * Decrease its size and relocate its start address.
1397
			 */
1398
			for (i = 0; i < leaf->keys; i++) {
1399
				if (leaf->key[i] == page) {
1400
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1401
					leaf->value[i] -= count;
1387 jermar 1402
					return 1;
1403
				}
1404
			}
1405
			goto error;
1406
		}
1407
	}
1408
 
1409
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1410
	if (node && page < leaf->key[0]) {
1780 jermar 1411
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1412
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1413
 
1414
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1415
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1416
				/*
1417
				 * The interval is contained in the rightmost interval
1418
				 * of the left neighbour and can be removed by
1419
				 * updating the size of the bigger interval.
1420
				 */
1403 jermar 1421
				node->value[node->keys - 1] -= count;
1387 jermar 1422
				return 1;
1423
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1424
				count_t new_cnt;
1387 jermar 1425
 
1426
				/*
1427
				 * The interval is contained in the rightmost interval
1428
				 * of the left neighbour but its removal requires
1429
				 * both updating the size of the original interval and
1430
				 * also inserting a new interval.
1431
				 */
1403 jermar 1432
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1433
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1434
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1435
				return 1;
1436
			}
1437
		}
1438
		return 0;
1439
	} else if (page < leaf->key[0]) {
1440
		return 0;
1441
	}
1442
 
1443
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1444
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1445
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1446
 
1447
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1448
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1449
				/*
1450
				 * The interval is contained in the rightmost interval
1451
				 * of the leaf and can be removed by updating the size
1452
				 * of the bigger interval.
1453
				 */
1403 jermar 1454
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1455
				return 1;
1456
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1457
				count_t new_cnt;
1387 jermar 1458
 
1459
				/*
1460
				 * The interval is contained in the rightmost interval
1461
				 * of the leaf but its removal requires both updating
1462
				 * the size of the original interval and
1463
				 * also inserting a new interval.
1464
				 */
1403 jermar 1465
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1466
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1467
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1468
				return 1;
1469
			}
1470
		}
1471
		return 0;
1472
	}	
1473
 
1474
	/*
1475
	 * The border cases have been already resolved.
1476
	 * Now the interval can be only between intervals of the leaf. 
1477
	 */
1478
	for (i = 1; i < leaf->keys - 1; i++) {
1479
		if (page < leaf->key[i]) {
1780 jermar 1480
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1481
			count_t left_cnt = (count_t) leaf->value[i - 1];
1482
 
1483
			/*
1484
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1485
			 */
1486
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1487
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1488
					/*
1489
				 	* The interval is contained in the interval (i - 1)
1490
					 * of the leaf and can be removed by updating the size
1491
					 * of the bigger interval.
1492
					 */
1403 jermar 1493
					leaf->value[i - 1] -= count;
1387 jermar 1494
					return 1;
1495
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1496
					count_t new_cnt;
1387 jermar 1497
 
1498
					/*
1499
					 * The interval is contained in the interval (i - 1)
1500
					 * of the leaf but its removal requires both updating
1501
					 * the size of the original interval and
1502
					 * also inserting a new interval.
1503
					 */
1403 jermar 1504
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1505
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1506
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1507
					return 1;
1508
				}
1509
			}
1510
			return 0;
1511
		}
1512
	}
1513
 
1514
error:
1735 decky 1515
	panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1516
}
1517
 
1409 jermar 1518
/** Remove reference to address space area share info.
1519
 *
1520
 * If the reference count drops to 0, the sh_info is deallocated.
1521
 *
1522
 * @param sh_info Pointer to address space area share info.
1523
 */
1524
void sh_info_remove_reference(share_info_t *sh_info)
1525
{
1526
	bool dealloc = false;
1527
 
1528
	mutex_lock(&sh_info->lock);
1529
	ASSERT(sh_info->refcount);
1530
	if (--sh_info->refcount == 0) {
1531
		dealloc = true;
1495 jermar 1532
		link_t *cur;
1409 jermar 1533
 
1534
		/*
1535
		 * Now walk carefully the pagemap B+tree and free/remove
1536
		 * reference from all frames found there.
1537
		 */
1495 jermar 1538
		for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1539
			btree_node_t *node;
1495 jermar 1540
			int i;
1409 jermar 1541
 
1495 jermar 1542
			node = list_get_instance(cur, btree_node_t, leaf_link);
1543
			for (i = 0; i < node->keys; i++) 
1780 jermar 1544
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1545
		}
1546
 
1547
	}
1548
	mutex_unlock(&sh_info->lock);
1549
 
1550
	if (dealloc) {
1551
		btree_destroy(&sh_info->pagemap);
1552
		free(sh_info);
1553
	}
1554
}
1555
 
1235 jermar 1556
/*
1557
 * Address space related syscalls.
1558
 */
1559
 
1560
/** Wrapper for as_area_create(). */
1780 jermar 1561
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1562
{
1424 jermar 1563
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1564
		return (unative_t) address;
1235 jermar 1565
	else
1780 jermar 1566
		return (unative_t) -1;
1235 jermar 1567
}
1568
 
1793 jermar 1569
/** Wrapper for as_area_resize(). */
1780 jermar 1570
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1571
{
1780 jermar 1572
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1573
}
1574
 
1793 jermar 1575
/** Wrapper for as_area_destroy(). */
1780 jermar 1576
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1577
{
1780 jermar 1578
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1579
}
1702 cejka 1580
 
1914 jermar 1581
/** Print out information about address space.
1582
 *
1583
 * @param as Address space.
1584
 */
1585
void as_print(as_t *as)
1586
{
1587
	ipl_t ipl;
1588
 
1589
	ipl = interrupts_disable();
1590
	mutex_lock(&as->lock);
1591
 
1592
	/* print out info about address space areas */
1593
	link_t *cur;
1594
	for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1915 jermar 1595
		btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1914 jermar 1596
 
1597
		int i;
1598
		for (i = 0; i < node->keys; i++) {
1915 jermar 1599
			as_area_t *area = node->value[i];
1914 jermar 1600
 
1601
			mutex_lock(&area->lock);
1602
			printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1603
				area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1604
			mutex_unlock(&area->lock);
1605
		}
1606
	}
1607
 
1608
	mutex_unlock(&as->lock);
1609
	interrupts_restore(ipl);
1610
}
1611
 
1757 jermar 1612
/** @}
1702 cejka 1613
 */