Subversion Repositories HelenOS

Rev

Rev 1587 | Rev 1702 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file	as.c
31
 * @brief	Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
	as_arch_init();
789 palkovsky 100
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
	if (!AS_KERNEL)
102
		panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
	as_t *as;
113
 
822 palkovsky 114
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
	mutex_initialize(&as->lock);
1147 jermar 117
	btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
	if (flags & FLAG_AS_KERNEL)
120
		as->asid = ASID_KERNEL;
121
	else
122
		as->asid = ASID_INVALID;
123
 
1468 jermar 124
	as->refcount = 0;
1415 jermar 125
	as->cpu_refcount = 0;
822 palkovsky 126
	as->page_table = page_table_create(flags);
703 jermar 127
 
128
	return as;
129
}
130
 
1468 jermar 131
/** Destroy adress space.
132
 *
133
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
134
 * the address space can be destroyed.
135
 */
136
void as_destroy(as_t *as)
973 palkovsky 137
{
1468 jermar 138
	ipl_t ipl;
1594 jermar 139
	bool cond;
973 palkovsky 140
 
1468 jermar 141
	ASSERT(as->refcount == 0);
142
 
143
	/*
144
	 * Since there is no reference to this area,
145
	 * it is safe not to lock its mutex.
146
	 */
147
	ipl = interrupts_disable();
148
	spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 149
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 150
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 151
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 152
		asid_put(as->asid);
153
	}
154
	spinlock_unlock(&inactive_as_with_asid_lock);
155
 
156
	/*
157
	 * Destroy address space areas of the address space.
1594 jermar 158
	 * The B+tee must be walked carefully because it is
159
	 * also being destroyed.
1468 jermar 160
	 */	
1594 jermar 161
	for (cond = true; cond; ) {
1468 jermar 162
		btree_node_t *node;
1594 jermar 163
 
164
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
165
		node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
166
 
167
		if ((cond = node->keys)) {
168
			as_area_destroy(as, node->key[0]);
169
		}
1468 jermar 170
	}
1495 jermar 171
 
1483 jermar 172
	btree_destroy(&as->as_area_btree);
1468 jermar 173
	page_table_destroy(as->page_table);
174
 
175
	interrupts_restore(ipl);
176
 
973 palkovsky 177
	free(as);
178
}
179
 
703 jermar 180
/** Create address space area of common attributes.
181
 *
182
 * The created address space area is added to the target address space.
183
 *
184
 * @param as Target address space.
1239 jermar 185
 * @param flags Flags of the area memory.
1048 jermar 186
 * @param size Size of area.
703 jermar 187
 * @param base Base address of area.
1239 jermar 188
 * @param attrs Attributes of the area.
1409 jermar 189
 * @param backend Address space area backend. NULL if no backend is used.
190
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 191
 *
192
 * @return Address space area on success or NULL on failure.
193
 */
1409 jermar 194
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 195
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 196
{
197
	ipl_t ipl;
198
	as_area_t *a;
199
 
200
	if (base % PAGE_SIZE)
1048 jermar 201
		return NULL;
202
 
1233 jermar 203
	if (!size)
204
		return NULL;
205
 
1048 jermar 206
	/* Writeable executable areas are not supported. */
207
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
208
		return NULL;
703 jermar 209
 
210
	ipl = interrupts_disable();
1380 jermar 211
	mutex_lock(&as->lock);
703 jermar 212
 
1048 jermar 213
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 214
		mutex_unlock(&as->lock);
1048 jermar 215
		interrupts_restore(ipl);
216
		return NULL;
217
	}
703 jermar 218
 
822 palkovsky 219
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 220
 
1380 jermar 221
	mutex_initialize(&a->lock);
822 palkovsky 222
 
1424 jermar 223
	a->as = as;
1026 jermar 224
	a->flags = flags;
1239 jermar 225
	a->attributes = attrs;
1048 jermar 226
	a->pages = SIZE2FRAMES(size);
822 palkovsky 227
	a->base = base;
1409 jermar 228
	a->sh_info = NULL;
229
	a->backend = backend;
1424 jermar 230
	if (backend_data)
231
		a->backend_data = *backend_data;
232
	else
233
		memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
234
 
1387 jermar 235
	btree_create(&a->used_space);
822 palkovsky 236
 
1147 jermar 237
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 238
 
1380 jermar 239
	mutex_unlock(&as->lock);
703 jermar 240
	interrupts_restore(ipl);
704 jermar 241
 
703 jermar 242
	return a;
243
}
244
 
1235 jermar 245
/** Find address space area and change it.
246
 *
247
 * @param as Address space.
248
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
249
 * @param size New size of the virtual memory block starting at address. 
250
 * @param flags Flags influencing the remap operation. Currently unused.
251
 *
1306 jermar 252
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 253
 */ 
1306 jermar 254
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 255
{
1306 jermar 256
	as_area_t *area;
1235 jermar 257
	ipl_t ipl;
258
	size_t pages;
259
 
260
	ipl = interrupts_disable();
1380 jermar 261
	mutex_lock(&as->lock);
1235 jermar 262
 
263
	/*
264
	 * Locate the area.
265
	 */
266
	area = find_area_and_lock(as, address);
267
	if (!area) {
1380 jermar 268
		mutex_unlock(&as->lock);
1235 jermar 269
		interrupts_restore(ipl);
1306 jermar 270
		return ENOENT;
1235 jermar 271
	}
272
 
1424 jermar 273
	if (area->backend == &phys_backend) {
1235 jermar 274
		/*
275
		 * Remapping of address space areas associated
276
		 * with memory mapped devices is not supported.
277
		 */
1380 jermar 278
		mutex_unlock(&area->lock);
279
		mutex_unlock(&as->lock);
1235 jermar 280
		interrupts_restore(ipl);
1306 jermar 281
		return ENOTSUP;
1235 jermar 282
	}
1409 jermar 283
	if (area->sh_info) {
284
		/*
285
		 * Remapping of shared address space areas 
286
		 * is not supported.
287
		 */
288
		mutex_unlock(&area->lock);
289
		mutex_unlock(&as->lock);
290
		interrupts_restore(ipl);
291
		return ENOTSUP;
292
	}
1235 jermar 293
 
294
	pages = SIZE2FRAMES((address - area->base) + size);
295
	if (!pages) {
296
		/*
297
		 * Zero size address space areas are not allowed.
298
		 */
1380 jermar 299
		mutex_unlock(&area->lock);
300
		mutex_unlock(&as->lock);
1235 jermar 301
		interrupts_restore(ipl);
1306 jermar 302
		return EPERM;
1235 jermar 303
	}
304
 
305
	if (pages < area->pages) {
1403 jermar 306
		bool cond;
307
		__address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 308
 
309
		/*
310
		 * Shrinking the area.
311
		 * No need to check for overlaps.
312
		 */
1403 jermar 313
 
314
		/*
1436 jermar 315
		 * Start TLB shootdown sequence.
316
		 */
317
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
318
 
319
		/*
1403 jermar 320
		 * Remove frames belonging to used space starting from
321
		 * the highest addresses downwards until an overlap with
322
		 * the resized address space area is found. Note that this
323
		 * is also the right way to remove part of the used_space
324
		 * B+tree leaf list.
325
		 */		
326
		for (cond = true; cond;) {
327
			btree_node_t *node;
328
 
329
			ASSERT(!list_empty(&area->used_space.leaf_head));
330
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
331
			if ((cond = (bool) node->keys)) {
332
				__address b = node->key[node->keys - 1];
333
				count_t c = (count_t) node->value[node->keys - 1];
334
				int i = 0;
1235 jermar 335
 
1403 jermar 336
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
337
 
338
					if (b + c*PAGE_SIZE <= start_free) {
339
						/*
340
						 * The whole interval fits completely
341
						 * in the resized address space area.
342
						 */
343
						break;
344
					}
345
 
346
					/*
347
					 * Part of the interval corresponding to b and c
348
					 * overlaps with the resized address space area.
349
					 */
350
 
351
					cond = false;	/* we are almost done */
352
					i = (start_free - b) >> PAGE_WIDTH;
353
					if (!used_space_remove(area, start_free, c - i))
354
						panic("Could not remove used space.");
355
				} else {
356
					/*
357
					 * The interval of used space can be completely removed.
358
					 */
359
					if (!used_space_remove(area, b, c))
360
						panic("Could not remove used space.\n");
361
				}
362
 
363
				for (; i < c; i++) {
364
					pte_t *pte;
365
 
366
					page_table_lock(as, false);
367
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
368
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 369
					if (area->backend && area->backend->frame_free) {
370
						area->backend->frame_free(area,
1409 jermar 371
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
372
					}
1403 jermar 373
					page_mapping_remove(as, b + i*PAGE_SIZE);
374
					page_table_unlock(as, false);
375
				}
1235 jermar 376
			}
377
		}
1436 jermar 378
 
1235 jermar 379
		/*
1436 jermar 380
		 * Finish TLB shootdown sequence.
1235 jermar 381
		 */
382
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
383
		tlb_shootdown_finalize();
384
	} else {
385
		/*
386
		 * Growing the area.
387
		 * Check for overlaps with other address space areas.
388
		 */
389
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 390
			mutex_unlock(&area->lock);
391
			mutex_unlock(&as->lock);		
1235 jermar 392
			interrupts_restore(ipl);
1306 jermar 393
			return EADDRNOTAVAIL;
1235 jermar 394
		}
395
	} 
396
 
397
	area->pages = pages;
398
 
1380 jermar 399
	mutex_unlock(&area->lock);
400
	mutex_unlock(&as->lock);
1235 jermar 401
	interrupts_restore(ipl);
402
 
1306 jermar 403
	return 0;
1235 jermar 404
}
405
 
1306 jermar 406
/** Destroy address space area.
407
 *
408
 * @param as Address space.
409
 * @param address Address withing the area to be deleted.
410
 *
411
 * @return Zero on success or a value from @ref errno.h on failure. 
412
 */
413
int as_area_destroy(as_t *as, __address address)
414
{
415
	as_area_t *area;
416
	__address base;
1495 jermar 417
	link_t *cur;
1306 jermar 418
	ipl_t ipl;
419
 
420
	ipl = interrupts_disable();
1380 jermar 421
	mutex_lock(&as->lock);
1306 jermar 422
 
423
	area = find_area_and_lock(as, address);
424
	if (!area) {
1380 jermar 425
		mutex_unlock(&as->lock);
1306 jermar 426
		interrupts_restore(ipl);
427
		return ENOENT;
428
	}
429
 
1403 jermar 430
	base = area->base;
431
 
1411 jermar 432
	/*
1436 jermar 433
	 * Start TLB shootdown sequence.
434
	 */
435
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
436
 
437
	/*
1411 jermar 438
	 * Visit only the pages mapped by used_space B+tree.
439
	 */
1495 jermar 440
	for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 441
		btree_node_t *node;
1495 jermar 442
		int i;
1403 jermar 443
 
1495 jermar 444
		node = list_get_instance(cur, btree_node_t, leaf_link);
445
		for (i = 0; i < node->keys; i++) {
446
			__address b = node->key[i];
447
			count_t j;
1411 jermar 448
			pte_t *pte;
1403 jermar 449
 
1495 jermar 450
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 451
				page_table_lock(as, false);
1495 jermar 452
				pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 453
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 454
				if (area->backend && area->backend->frame_free) {
455
					area->backend->frame_free(area,
1495 jermar 456
						b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 457
				}
1495 jermar 458
				page_mapping_remove(as, b + j*PAGE_SIZE);
1411 jermar 459
				page_table_unlock(as, false);
1306 jermar 460
			}
461
		}
462
	}
1403 jermar 463
 
1306 jermar 464
	/*
1436 jermar 465
	 * Finish TLB shootdown sequence.
1306 jermar 466
	 */
467
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
468
	tlb_shootdown_finalize();
1436 jermar 469
 
470
	btree_destroy(&area->used_space);
1306 jermar 471
 
1309 jermar 472
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 473
 
474
	if (area->sh_info)
475
		sh_info_remove_reference(area->sh_info);
476
 
1380 jermar 477
	mutex_unlock(&area->lock);
1306 jermar 478
 
479
	/*
480
	 * Remove the empty area from address space.
481
	 */
482
	btree_remove(&AS->as_area_btree, base, NULL);
483
 
1309 jermar 484
	free(area);
485
 
1380 jermar 486
	mutex_unlock(&AS->lock);
1306 jermar 487
	interrupts_restore(ipl);
488
	return 0;
489
}
490
 
1413 jermar 491
/** Share address space area with another or the same address space.
1235 jermar 492
 *
1424 jermar 493
 * Address space area mapping is shared with a new address space area.
494
 * If the source address space area has not been shared so far,
495
 * a new sh_info is created. The new address space area simply gets the
496
 * sh_info of the source area. The process of duplicating the
497
 * mapping is done through the backend share function.
1413 jermar 498
 * 
1417 jermar 499
 * @param src_as Pointer to source address space.
1239 jermar 500
 * @param src_base Base address of the source address space area.
1417 jermar 501
 * @param acc_size Expected size of the source area.
1428 palkovsky 502
 * @param dst_as Pointer to destination address space.
1417 jermar 503
 * @param dst_base Target base address.
504
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 505
 *
1306 jermar 506
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 507
 *	   if there is no such address space area,
508
 *	   EPERM if there was a problem in accepting the area or
509
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 510
 *	   address space area. ENOTSUP is returned if an attempt
511
 *	   to share non-anonymous address space area is detected.
1235 jermar 512
 */
1413 jermar 513
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 514
		  as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 515
{
516
	ipl_t ipl;
1239 jermar 517
	int src_flags;
518
	size_t src_size;
519
	as_area_t *src_area, *dst_area;
1413 jermar 520
	share_info_t *sh_info;
1424 jermar 521
	mem_backend_t *src_backend;
522
	mem_backend_data_t src_backend_data;
1434 palkovsky 523
 
1235 jermar 524
	ipl = interrupts_disable();
1380 jermar 525
	mutex_lock(&src_as->lock);
1329 palkovsky 526
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 527
	if (!src_area) {
1238 jermar 528
		/*
529
		 * Could not find the source address space area.
530
		 */
1380 jermar 531
		mutex_unlock(&src_as->lock);
1238 jermar 532
		interrupts_restore(ipl);
533
		return ENOENT;
534
	}
1413 jermar 535
 
1424 jermar 536
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 537
		/*
1424 jermar 538
		 * There is now backend or the backend does not
539
		 * know how to share the area.
1413 jermar 540
		 */
541
		mutex_unlock(&src_area->lock);
542
		mutex_unlock(&src_as->lock);
543
		interrupts_restore(ipl);
544
		return ENOTSUP;
545
	}
546
 
1239 jermar 547
	src_size = src_area->pages * PAGE_SIZE;
548
	src_flags = src_area->flags;
1424 jermar 549
	src_backend = src_area->backend;
550
	src_backend_data = src_area->backend_data;
1544 palkovsky 551
 
552
	/* Share the cacheable flag from the original mapping */
553
	if (src_flags & AS_AREA_CACHEABLE)
554
		dst_flags_mask |= AS_AREA_CACHEABLE;
555
 
1461 palkovsky 556
	if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 557
		mutex_unlock(&src_area->lock);
558
		mutex_unlock(&src_as->lock);
1235 jermar 559
		interrupts_restore(ipl);
560
		return EPERM;
561
	}
1413 jermar 562
 
1235 jermar 563
	/*
1413 jermar 564
	 * Now we are committed to sharing the area.
565
	 * First prepare the area for sharing.
566
	 * Then it will be safe to unlock it.
567
	 */
568
	sh_info = src_area->sh_info;
569
	if (!sh_info) {
570
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
571
		mutex_initialize(&sh_info->lock);
572
		sh_info->refcount = 2;
573
		btree_create(&sh_info->pagemap);
574
		src_area->sh_info = sh_info;
575
	} else {
576
		mutex_lock(&sh_info->lock);
577
		sh_info->refcount++;
578
		mutex_unlock(&sh_info->lock);
579
	}
580
 
1424 jermar 581
	src_area->backend->share(src_area);
1413 jermar 582
 
583
	mutex_unlock(&src_area->lock);
584
	mutex_unlock(&src_as->lock);
585
 
586
	/*
1239 jermar 587
	 * Create copy of the source address space area.
588
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
589
	 * attribute set which prevents race condition with
590
	 * preliminary as_page_fault() calls.
1417 jermar 591
	 * The flags of the source area are masked against dst_flags_mask
592
	 * to support sharing in less privileged mode.
1235 jermar 593
	 */
1461 palkovsky 594
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 595
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 596
	if (!dst_area) {
1235 jermar 597
		/*
598
		 * Destination address space area could not be created.
599
		 */
1413 jermar 600
		sh_info_remove_reference(sh_info);
601
 
1235 jermar 602
		interrupts_restore(ipl);
603
		return ENOMEM;
604
	}
605
 
606
	/*
1239 jermar 607
	 * Now the destination address space area has been
608
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 609
	 * attribute and set the sh_info.
1239 jermar 610
	 */	
1380 jermar 611
	mutex_lock(&dst_area->lock);
1239 jermar 612
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 613
	dst_area->sh_info = sh_info;
1380 jermar 614
	mutex_unlock(&dst_area->lock);
1235 jermar 615
 
616
	interrupts_restore(ipl);
617
 
618
	return 0;
619
}
620
 
1423 jermar 621
/** Check access mode for address space area.
622
 *
623
 * The address space area must be locked prior to this call.
624
 *
625
 * @param area Address space area.
626
 * @param access Access mode.
627
 *
628
 * @return False if access violates area's permissions, true otherwise.
629
 */
630
bool as_area_check_access(as_area_t *area, pf_access_t access)
631
{
632
	int flagmap[] = {
633
		[PF_ACCESS_READ] = AS_AREA_READ,
634
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
635
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
636
	};
637
 
638
	if (!(area->flags & flagmap[access]))
639
		return false;
640
 
641
	return true;
642
}
643
 
703 jermar 644
/** Handle page fault within the current address space.
645
 *
1409 jermar 646
 * This is the high-level page fault handler. It decides
647
 * whether the page fault can be resolved by any backend
648
 * and if so, it invokes the backend to resolve the page
649
 * fault.
650
 *
703 jermar 651
 * Interrupts are assumed disabled.
652
 *
653
 * @param page Faulting page.
1411 jermar 654
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 655
 * @param istate Pointer to interrupted state.
703 jermar 656
 *
1409 jermar 657
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
658
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 659
 */
1411 jermar 660
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 661
{
1044 jermar 662
	pte_t *pte;
977 jermar 663
	as_area_t *area;
703 jermar 664
 
1380 jermar 665
	if (!THREAD)
1409 jermar 666
		return AS_PF_FAULT;
1380 jermar 667
 
703 jermar 668
	ASSERT(AS);
1044 jermar 669
 
1380 jermar 670
	mutex_lock(&AS->lock);
977 jermar 671
	area = find_area_and_lock(AS, page);	
703 jermar 672
	if (!area) {
673
		/*
674
		 * No area contained mapping for 'page'.
675
		 * Signal page fault to low-level handler.
676
		 */
1380 jermar 677
		mutex_unlock(&AS->lock);
1288 jermar 678
		goto page_fault;
703 jermar 679
	}
680
 
1239 jermar 681
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
682
		/*
683
		 * The address space area is not fully initialized.
684
		 * Avoid possible race by returning error.
685
		 */
1380 jermar 686
		mutex_unlock(&area->lock);
687
		mutex_unlock(&AS->lock);
1288 jermar 688
		goto page_fault;		
1239 jermar 689
	}
690
 
1424 jermar 691
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 692
		/*
693
		 * The address space area is not backed by any backend
694
		 * or the backend cannot handle page faults.
695
		 */
696
		mutex_unlock(&area->lock);
697
		mutex_unlock(&AS->lock);
698
		goto page_fault;		
699
	}
1179 jermar 700
 
1044 jermar 701
	page_table_lock(AS, false);
702
 
703 jermar 703
	/*
1044 jermar 704
	 * To avoid race condition between two page faults
705
	 * on the same address, we need to make sure
706
	 * the mapping has not been already inserted.
707
	 */
708
	if ((pte = page_mapping_find(AS, page))) {
709
		if (PTE_PRESENT(pte)) {
1423 jermar 710
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
711
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
712
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
713
				page_table_unlock(AS, false);
714
				mutex_unlock(&area->lock);
715
				mutex_unlock(&AS->lock);
716
				return AS_PF_OK;
717
			}
1044 jermar 718
		}
719
	}
1409 jermar 720
 
1044 jermar 721
	/*
1409 jermar 722
	 * Resort to the backend page fault handler.
703 jermar 723
	 */
1424 jermar 724
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 725
		page_table_unlock(AS, false);
726
		mutex_unlock(&area->lock);
727
		mutex_unlock(&AS->lock);
728
		goto page_fault;
729
	}
703 jermar 730
 
1044 jermar 731
	page_table_unlock(AS, false);
1380 jermar 732
	mutex_unlock(&area->lock);
733
	mutex_unlock(&AS->lock);
1288 jermar 734
	return AS_PF_OK;
735
 
736
page_fault:
737
	if (THREAD->in_copy_from_uspace) {
738
		THREAD->in_copy_from_uspace = false;
739
		istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
740
	} else if (THREAD->in_copy_to_uspace) {
741
		THREAD->in_copy_to_uspace = false;
742
		istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
743
	} else {
744
		return AS_PF_FAULT;
745
	}
746
 
747
	return AS_PF_DEFER;
703 jermar 748
}
749
 
823 jermar 750
/** Switch address spaces.
703 jermar 751
 *
1380 jermar 752
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 753
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 754
 *
823 jermar 755
 * @param old Old address space or NULL.
756
 * @param new New address space.
703 jermar 757
 */
823 jermar 758
void as_switch(as_t *old, as_t *new)
703 jermar 759
{
760
	ipl_t ipl;
823 jermar 761
	bool needs_asid = false;
703 jermar 762
 
763
	ipl = interrupts_disable();
1415 jermar 764
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 765
 
766
	/*
823 jermar 767
	 * First, take care of the old address space.
768
	 */	
769
	if (old) {
1380 jermar 770
		mutex_lock_active(&old->lock);
1415 jermar 771
		ASSERT(old->cpu_refcount);
772
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 773
			/*
774
			 * The old address space is no longer active on
775
			 * any processor. It can be appended to the
776
			 * list of inactive address spaces with assigned
777
			 * ASID.
778
			 */
779
			 ASSERT(old->asid != ASID_INVALID);
780
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
781
		}
1380 jermar 782
		mutex_unlock(&old->lock);
823 jermar 783
	}
784
 
785
	/*
786
	 * Second, prepare the new address space.
787
	 */
1380 jermar 788
	mutex_lock_active(&new->lock);
1415 jermar 789
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 790
		if (new->asid != ASID_INVALID)
791
			list_remove(&new->inactive_as_with_asid_link);
792
		else
793
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
794
	}
795
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 796
	mutex_unlock(&new->lock);
823 jermar 797
 
798
	if (needs_asid) {
799
		/*
800
		 * Allocation of new ASID was deferred
801
		 * until now in order to avoid deadlock.
802
		 */
803
		asid_t asid;
804
 
805
		asid = asid_get();
1380 jermar 806
		mutex_lock_active(&new->lock);
823 jermar 807
		new->asid = asid;
1380 jermar 808
		mutex_unlock(&new->lock);
823 jermar 809
	}
1415 jermar 810
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 811
	interrupts_restore(ipl);
812
 
813
	/*
703 jermar 814
	 * Perform architecture-specific steps.
727 jermar 815
	 * (e.g. write ASID to hardware register etc.)
703 jermar 816
	 */
823 jermar 817
	as_install_arch(new);
703 jermar 818
 
823 jermar 819
	AS = new;
703 jermar 820
}
754 jermar 821
 
1235 jermar 822
/** Convert address space area flags to page flags.
754 jermar 823
 *
1235 jermar 824
 * @param aflags Flags of some address space area.
754 jermar 825
 *
1235 jermar 826
 * @return Flags to be passed to page_mapping_insert().
754 jermar 827
 */
1235 jermar 828
int area_flags_to_page_flags(int aflags)
754 jermar 829
{
830
	int flags;
831
 
1178 jermar 832
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 833
 
1235 jermar 834
	if (aflags & AS_AREA_READ)
1026 jermar 835
		flags |= PAGE_READ;
836
 
1235 jermar 837
	if (aflags & AS_AREA_WRITE)
1026 jermar 838
		flags |= PAGE_WRITE;
839
 
1235 jermar 840
	if (aflags & AS_AREA_EXEC)
1026 jermar 841
		flags |= PAGE_EXEC;
842
 
1424 jermar 843
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 844
		flags |= PAGE_CACHEABLE;
845
 
754 jermar 846
	return flags;
847
}
756 jermar 848
 
1235 jermar 849
/** Compute flags for virtual address translation subsytem.
850
 *
851
 * The address space area must be locked.
852
 * Interrupts must be disabled.
853
 *
854
 * @param a Address space area.
855
 *
856
 * @return Flags to be used in page_mapping_insert().
857
 */
1409 jermar 858
int as_area_get_flags(as_area_t *a)
1235 jermar 859
{
860
	return area_flags_to_page_flags(a->flags);
861
}
862
 
756 jermar 863
/** Create page table.
864
 *
865
 * Depending on architecture, create either address space
866
 * private or global page table.
867
 *
868
 * @param flags Flags saying whether the page table is for kernel address space.
869
 *
870
 * @return First entry of the page table.
871
 */
872
pte_t *page_table_create(int flags)
873
{
874
        ASSERT(as_operations);
875
        ASSERT(as_operations->page_table_create);
876
 
877
        return as_operations->page_table_create(flags);
878
}
977 jermar 879
 
1468 jermar 880
/** Destroy page table.
881
 *
882
 * Destroy page table in architecture specific way.
883
 *
884
 * @param page_table Physical address of PTL0.
885
 */
886
void page_table_destroy(pte_t *page_table)
887
{
888
        ASSERT(as_operations);
889
        ASSERT(as_operations->page_table_destroy);
890
 
891
        as_operations->page_table_destroy(page_table);
892
}
893
 
1044 jermar 894
/** Lock page table.
895
 *
896
 * This function should be called before any page_mapping_insert(),
897
 * page_mapping_remove() and page_mapping_find().
898
 * 
899
 * Locking order is such that address space areas must be locked
900
 * prior to this call. Address space can be locked prior to this
901
 * call in which case the lock argument is false.
902
 *
903
 * @param as Address space.
1248 jermar 904
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 905
 */
906
void page_table_lock(as_t *as, bool lock)
907
{
908
	ASSERT(as_operations);
909
	ASSERT(as_operations->page_table_lock);
910
 
911
	as_operations->page_table_lock(as, lock);
912
}
913
 
914
/** Unlock page table.
915
 *
916
 * @param as Address space.
1248 jermar 917
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 918
 */
919
void page_table_unlock(as_t *as, bool unlock)
920
{
921
	ASSERT(as_operations);
922
	ASSERT(as_operations->page_table_unlock);
923
 
924
	as_operations->page_table_unlock(as, unlock);
925
}
926
 
977 jermar 927
 
928
/** Find address space area and lock it.
929
 *
930
 * The address space must be locked and interrupts must be disabled.
931
 *
932
 * @param as Address space.
933
 * @param va Virtual address.
934
 *
935
 * @return Locked address space area containing va on success or NULL on failure.
936
 */
937
as_area_t *find_area_and_lock(as_t *as, __address va)
938
{
939
	as_area_t *a;
1147 jermar 940
	btree_node_t *leaf, *lnode;
941
	int i;
977 jermar 942
 
1147 jermar 943
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
944
	if (a) {
945
		/* va is the base address of an address space area */
1380 jermar 946
		mutex_lock(&a->lock);
1147 jermar 947
		return a;
948
	}
949
 
950
	/*
1150 jermar 951
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 952
	 * to find out whether this is a miss or va belongs to an address
953
	 * space area found there.
954
	 */
955
 
956
	/* First, search the leaf node itself. */
957
	for (i = 0; i < leaf->keys; i++) {
958
		a = (as_area_t *) leaf->value[i];
1380 jermar 959
		mutex_lock(&a->lock);
1147 jermar 960
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
961
			return a;
962
		}
1380 jermar 963
		mutex_unlock(&a->lock);
1147 jermar 964
	}
977 jermar 965
 
1147 jermar 966
	/*
1150 jermar 967
	 * Second, locate the left neighbour and test its last record.
1148 jermar 968
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 969
	 */
1150 jermar 970
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 971
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 972
		mutex_lock(&a->lock);
1147 jermar 973
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 974
			return a;
1147 jermar 975
		}
1380 jermar 976
		mutex_unlock(&a->lock);
977 jermar 977
	}
978
 
979
	return NULL;
980
}
1048 jermar 981
 
982
/** Check area conflicts with other areas.
983
 *
984
 * The address space must be locked and interrupts must be disabled.
985
 *
986
 * @param as Address space.
987
 * @param va Starting virtual address of the area being tested.
988
 * @param size Size of the area being tested.
989
 * @param avoid_area Do not touch this area. 
990
 *
991
 * @return True if there is no conflict, false otherwise.
992
 */
993
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
994
{
995
	as_area_t *a;
1147 jermar 996
	btree_node_t *leaf, *node;
997
	int i;
1048 jermar 998
 
1070 jermar 999
	/*
1000
	 * We don't want any area to have conflicts with NULL page.
1001
	 */
1002
	if (overlaps(va, size, NULL, PAGE_SIZE))
1003
		return false;
1004
 
1147 jermar 1005
	/*
1006
	 * The leaf node is found in O(log n), where n is proportional to
1007
	 * the number of address space areas belonging to as.
1008
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1009
	 * record in the left neighbour, the leftmost record in the right
1010
	 * neighbour and all records in the leaf node itself.
1147 jermar 1011
	 */
1048 jermar 1012
 
1147 jermar 1013
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1014
		if (a != avoid_area)
1015
			return false;
1016
	}
1017
 
1018
	/* First, check the two border cases. */
1150 jermar 1019
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1020
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1021
		mutex_lock(&a->lock);
1147 jermar 1022
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1023
			mutex_unlock(&a->lock);
1147 jermar 1024
			return false;
1025
		}
1380 jermar 1026
		mutex_unlock(&a->lock);
1147 jermar 1027
	}
1150 jermar 1028
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1029
		a = (as_area_t *) node->value[0];
1380 jermar 1030
		mutex_lock(&a->lock);
1147 jermar 1031
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1032
			mutex_unlock(&a->lock);
1147 jermar 1033
			return false;
1034
		}
1380 jermar 1035
		mutex_unlock(&a->lock);
1147 jermar 1036
	}
1037
 
1038
	/* Second, check the leaf node. */
1039
	for (i = 0; i < leaf->keys; i++) {
1040
		a = (as_area_t *) leaf->value[i];
1041
 
1048 jermar 1042
		if (a == avoid_area)
1043
			continue;
1147 jermar 1044
 
1380 jermar 1045
		mutex_lock(&a->lock);
1147 jermar 1046
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1047
			mutex_unlock(&a->lock);
1147 jermar 1048
			return false;
1049
		}
1380 jermar 1050
		mutex_unlock(&a->lock);
1048 jermar 1051
	}
1052
 
1070 jermar 1053
	/*
1054
	 * So far, the area does not conflict with other areas.
1055
	 * Check if it doesn't conflict with kernel address space.
1056
	 */	 
1057
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1058
		return !overlaps(va, size, 
1059
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1060
	}
1061
 
1048 jermar 1062
	return true;
1063
}
1235 jermar 1064
 
1380 jermar 1065
/** Return size of the address space area with given base.  */
1329 palkovsky 1066
size_t as_get_size(__address base)
1067
{
1068
	ipl_t ipl;
1069
	as_area_t *src_area;
1070
	size_t size;
1071
 
1072
	ipl = interrupts_disable();
1073
	src_area = find_area_and_lock(AS, base);
1074
	if (src_area){
1075
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1076
		mutex_unlock(&src_area->lock);
1329 palkovsky 1077
	} else {
1078
		size = 0;
1079
	}
1080
	interrupts_restore(ipl);
1081
	return size;
1082
}
1083
 
1387 jermar 1084
/** Mark portion of address space area as used.
1085
 *
1086
 * The address space area must be already locked.
1087
 *
1088
 * @param a Address space area.
1089
 * @param page First page to be marked.
1090
 * @param count Number of page to be marked.
1091
 *
1092
 * @return 0 on failure and 1 on success.
1093
 */
1094
int used_space_insert(as_area_t *a, __address page, count_t count)
1095
{
1096
	btree_node_t *leaf, *node;
1097
	count_t pages;
1098
	int i;
1099
 
1100
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1101
	ASSERT(count);
1102
 
1103
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1104
	if (pages) {
1105
		/*
1106
		 * We hit the beginning of some used space.
1107
		 */
1108
		return 0;
1109
	}
1110
 
1437 jermar 1111
	if (!leaf->keys) {
1112
		btree_insert(&a->used_space, page, (void *) count, leaf);
1113
		return 1;
1114
	}
1115
 
1387 jermar 1116
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1117
	if (node) {
1118
		__address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1119
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1120
 
1121
		/*
1122
		 * Examine the possibility that the interval fits
1123
		 * somewhere between the rightmost interval of
1124
		 * the left neigbour and the first interval of the leaf.
1125
		 */
1126
 
1127
		if (page >= right_pg) {
1128
			/* Do nothing. */
1129
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1130
			/* The interval intersects with the left interval. */
1131
			return 0;
1132
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1133
			/* The interval intersects with the right interval. */
1134
			return 0;			
1135
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1136
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1137
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1138
			btree_remove(&a->used_space, right_pg, leaf);
1139
			return 1; 
1140
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1141
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1142
			node->value[node->keys - 1] += count;
1387 jermar 1143
			return 1;
1144
		} else if (page + count*PAGE_SIZE == right_pg) {
1145
			/*
1146
			 * The interval can be addded by simply moving base of the right
1147
			 * interval down and increasing its size accordingly.
1148
			 */
1403 jermar 1149
			leaf->value[0] += count;
1387 jermar 1150
			leaf->key[0] = page;
1151
			return 1;
1152
		} else {
1153
			/*
1154
			 * The interval is between both neigbouring intervals,
1155
			 * but cannot be merged with any of them.
1156
			 */
1157
			btree_insert(&a->used_space, page, (void *) count, leaf);
1158
			return 1;
1159
		}
1160
	} else if (page < leaf->key[0]) {
1161
		__address right_pg = leaf->key[0];
1162
		count_t right_cnt = (count_t) leaf->value[0];
1163
 
1164
		/*
1165
		 * Investigate the border case in which the left neighbour does not
1166
		 * exist but the interval fits from the left.
1167
		 */
1168
 
1169
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1170
			/* The interval intersects with the right interval. */
1171
			return 0;
1172
		} else if (page + count*PAGE_SIZE == right_pg) {
1173
			/*
1174
			 * The interval can be added by moving the base of the right interval down
1175
			 * and increasing its size accordingly.
1176
			 */
1177
			leaf->key[0] = page;
1403 jermar 1178
			leaf->value[0] += count;
1387 jermar 1179
			return 1;
1180
		} else {
1181
			/*
1182
			 * The interval doesn't adjoin with the right interval.
1183
			 * It must be added individually.
1184
			 */
1185
			btree_insert(&a->used_space, page, (void *) count, leaf);
1186
			return 1;
1187
		}
1188
	}
1189
 
1190
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1191
	if (node) {
1192
		__address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1193
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1194
 
1195
		/*
1196
		 * Examine the possibility that the interval fits
1197
		 * somewhere between the leftmost interval of
1198
		 * the right neigbour and the last interval of the leaf.
1199
		 */
1200
 
1201
		if (page < left_pg) {
1202
			/* Do nothing. */
1203
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1204
			/* The interval intersects with the left interval. */
1205
			return 0;
1206
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1207
			/* The interval intersects with the right interval. */
1208
			return 0;			
1209
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1210
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1211
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1212
			btree_remove(&a->used_space, right_pg, node);
1213
			return 1; 
1214
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1215
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1216
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1217
			return 1;
1218
		} else if (page + count*PAGE_SIZE == right_pg) {
1219
			/*
1220
			 * The interval can be addded by simply moving base of the right
1221
			 * interval down and increasing its size accordingly.
1222
			 */
1403 jermar 1223
			node->value[0] += count;
1387 jermar 1224
			node->key[0] = page;
1225
			return 1;
1226
		} else {
1227
			/*
1228
			 * The interval is between both neigbouring intervals,
1229
			 * but cannot be merged with any of them.
1230
			 */
1231
			btree_insert(&a->used_space, page, (void *) count, leaf);
1232
			return 1;
1233
		}
1234
	} else if (page >= leaf->key[leaf->keys - 1]) {
1235
		__address left_pg = leaf->key[leaf->keys - 1];
1236
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1237
 
1238
		/*
1239
		 * Investigate the border case in which the right neighbour does not
1240
		 * exist but the interval fits from the right.
1241
		 */
1242
 
1243
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1244
			/* The interval intersects with the left interval. */
1387 jermar 1245
			return 0;
1246
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1247
			/* The interval can be added by growing the left interval. */
1403 jermar 1248
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1249
			return 1;
1250
		} else {
1251
			/*
1252
			 * The interval doesn't adjoin with the left interval.
1253
			 * It must be added individually.
1254
			 */
1255
			btree_insert(&a->used_space, page, (void *) count, leaf);
1256
			return 1;
1257
		}
1258
	}
1259
 
1260
	/*
1261
	 * Note that if the algorithm made it thus far, the interval can fit only
1262
	 * between two other intervals of the leaf. The two border cases were already
1263
	 * resolved.
1264
	 */
1265
	for (i = 1; i < leaf->keys; i++) {
1266
		if (page < leaf->key[i]) {
1267
			__address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1268
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1269
 
1270
			/*
1271
			 * The interval fits between left_pg and right_pg.
1272
			 */
1273
 
1274
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1275
				/* The interval intersects with the left interval. */
1276
				return 0;
1277
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1278
				/* The interval intersects with the right interval. */
1279
				return 0;			
1280
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1281
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1282
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1283
				btree_remove(&a->used_space, right_pg, leaf);
1284
				return 1; 
1285
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1286
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1287
				leaf->value[i - 1] += count;
1387 jermar 1288
				return 1;
1289
			} else if (page + count*PAGE_SIZE == right_pg) {
1290
				/*
1291
			         * The interval can be addded by simply moving base of the right
1292
			 	 * interval down and increasing its size accordingly.
1293
			 	 */
1403 jermar 1294
				leaf->value[i] += count;
1387 jermar 1295
				leaf->key[i] = page;
1296
				return 1;
1297
			} else {
1298
				/*
1299
				 * The interval is between both neigbouring intervals,
1300
				 * but cannot be merged with any of them.
1301
				 */
1302
				btree_insert(&a->used_space, page, (void *) count, leaf);
1303
				return 1;
1304
			}
1305
		}
1306
	}
1307
 
1308
	panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1309
}
1310
 
1311
/** Mark portion of address space area as unused.
1312
 *
1313
 * The address space area must be already locked.
1314
 *
1315
 * @param a Address space area.
1316
 * @param page First page to be marked.
1317
 * @param count Number of page to be marked.
1318
 *
1319
 * @return 0 on failure and 1 on success.
1320
 */
1321
int used_space_remove(as_area_t *a, __address page, count_t count)
1322
{
1323
	btree_node_t *leaf, *node;
1324
	count_t pages;
1325
	int i;
1326
 
1327
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1328
	ASSERT(count);
1329
 
1330
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1331
	if (pages) {
1332
		/*
1333
		 * We are lucky, page is the beginning of some interval.
1334
		 */
1335
		if (count > pages) {
1336
			return 0;
1337
		} else if (count == pages) {
1338
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1339
			return 1;
1387 jermar 1340
		} else {
1341
			/*
1342
			 * Find the respective interval.
1343
			 * Decrease its size and relocate its start address.
1344
			 */
1345
			for (i = 0; i < leaf->keys; i++) {
1346
				if (leaf->key[i] == page) {
1347
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1348
					leaf->value[i] -= count;
1387 jermar 1349
					return 1;
1350
				}
1351
			}
1352
			goto error;
1353
		}
1354
	}
1355
 
1356
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1357
	if (node && page < leaf->key[0]) {
1358
		__address left_pg = node->key[node->keys - 1];
1359
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1360
 
1361
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1362
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1363
				/*
1364
				 * The interval is contained in the rightmost interval
1365
				 * of the left neighbour and can be removed by
1366
				 * updating the size of the bigger interval.
1367
				 */
1403 jermar 1368
				node->value[node->keys - 1] -= count;
1387 jermar 1369
				return 1;
1370
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1371
				count_t new_cnt;
1387 jermar 1372
 
1373
				/*
1374
				 * The interval is contained in the rightmost interval
1375
				 * of the left neighbour but its removal requires
1376
				 * both updating the size of the original interval and
1377
				 * also inserting a new interval.
1378
				 */
1403 jermar 1379
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1380
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1381
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1382
				return 1;
1383
			}
1384
		}
1385
		return 0;
1386
	} else if (page < leaf->key[0]) {
1387
		return 0;
1388
	}
1389
 
1390
	if (page > leaf->key[leaf->keys - 1]) {
1391
		__address left_pg = leaf->key[leaf->keys - 1];
1392
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1393
 
1394
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1395
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1396
				/*
1397
				 * The interval is contained in the rightmost interval
1398
				 * of the leaf and can be removed by updating the size
1399
				 * of the bigger interval.
1400
				 */
1403 jermar 1401
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1402
				return 1;
1403
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1404
				count_t new_cnt;
1387 jermar 1405
 
1406
				/*
1407
				 * The interval is contained in the rightmost interval
1408
				 * of the leaf but its removal requires both updating
1409
				 * the size of the original interval and
1410
				 * also inserting a new interval.
1411
				 */
1403 jermar 1412
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1413
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1414
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1415
				return 1;
1416
			}
1417
		}
1418
		return 0;
1419
	}	
1420
 
1421
	/*
1422
	 * The border cases have been already resolved.
1423
	 * Now the interval can be only between intervals of the leaf. 
1424
	 */
1425
	for (i = 1; i < leaf->keys - 1; i++) {
1426
		if (page < leaf->key[i]) {
1427
			__address left_pg = leaf->key[i - 1];
1428
			count_t left_cnt = (count_t) leaf->value[i - 1];
1429
 
1430
			/*
1431
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1432
			 */
1433
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1434
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1435
					/*
1436
				 	* The interval is contained in the interval (i - 1)
1437
					 * of the leaf and can be removed by updating the size
1438
					 * of the bigger interval.
1439
					 */
1403 jermar 1440
					leaf->value[i - 1] -= count;
1387 jermar 1441
					return 1;
1442
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1443
					count_t new_cnt;
1387 jermar 1444
 
1445
					/*
1446
					 * The interval is contained in the interval (i - 1)
1447
					 * of the leaf but its removal requires both updating
1448
					 * the size of the original interval and
1449
					 * also inserting a new interval.
1450
					 */
1403 jermar 1451
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1452
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1453
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1454
					return 1;
1455
				}
1456
			}
1457
			return 0;
1458
		}
1459
	}
1460
 
1461
error:
1462
	panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1463
}
1464
 
1409 jermar 1465
/** Remove reference to address space area share info.
1466
 *
1467
 * If the reference count drops to 0, the sh_info is deallocated.
1468
 *
1469
 * @param sh_info Pointer to address space area share info.
1470
 */
1471
void sh_info_remove_reference(share_info_t *sh_info)
1472
{
1473
	bool dealloc = false;
1474
 
1475
	mutex_lock(&sh_info->lock);
1476
	ASSERT(sh_info->refcount);
1477
	if (--sh_info->refcount == 0) {
1478
		dealloc = true;
1495 jermar 1479
		link_t *cur;
1409 jermar 1480
 
1481
		/*
1482
		 * Now walk carefully the pagemap B+tree and free/remove
1483
		 * reference from all frames found there.
1484
		 */
1495 jermar 1485
		for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1486
			btree_node_t *node;
1495 jermar 1487
			int i;
1409 jermar 1488
 
1495 jermar 1489
			node = list_get_instance(cur, btree_node_t, leaf_link);
1490
			for (i = 0; i < node->keys; i++) 
1491
				frame_free(ADDR2PFN((__address) node->value[i]));
1409 jermar 1492
		}
1493
 
1494
	}
1495
	mutex_unlock(&sh_info->lock);
1496
 
1497
	if (dealloc) {
1498
		btree_destroy(&sh_info->pagemap);
1499
		free(sh_info);
1500
	}
1501
}
1502
 
1235 jermar 1503
/*
1504
 * Address space related syscalls.
1505
 */
1506
 
1507
/** Wrapper for as_area_create(). */
1508
__native sys_as_area_create(__address address, size_t size, int flags)
1509
{
1424 jermar 1510
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1511
		return (__native) address;
1512
	else
1513
		return (__native) -1;
1514
}
1515
 
1516
/** Wrapper for as_area_resize. */
1517
__native sys_as_area_resize(__address address, size_t size, int flags)
1518
{
1306 jermar 1519
	return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1520
}
1521
 
1306 jermar 1522
/** Wrapper for as_area_destroy. */
1523
__native sys_as_area_destroy(__address address)
1524
{
1525
	return (__native) as_area_destroy(AS, address);
1526
}