Subversion Repositories HelenOS

Rev

Rev 1434 | Rev 1437 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file	as.c
31
 * @brief	Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
	as_arch_init();
789 palkovsky 100
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
	if (!AS_KERNEL)
102
		panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
	as_t *as;
113
 
822 palkovsky 114
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
	mutex_initialize(&as->lock);
1147 jermar 117
	btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
	if (flags & FLAG_AS_KERNEL)
120
		as->asid = ASID_KERNEL;
121
	else
122
		as->asid = ASID_INVALID;
123
 
1415 jermar 124
	as->cpu_refcount = 0;
822 palkovsky 125
	as->page_table = page_table_create(flags);
703 jermar 126
 
127
	return as;
128
}
129
 
973 palkovsky 130
/** Free Adress space */
131
void as_free(as_t *as)
132
{
1415 jermar 133
	ASSERT(as->cpu_refcount == 0);
973 palkovsky 134
 
135
	/* TODO: free as_areas and other resources held by as */
136
	/* TODO: free page table */
137
	free(as);
138
}
139
 
703 jermar 140
/** Create address space area of common attributes.
141
 *
142
 * The created address space area is added to the target address space.
143
 *
144
 * @param as Target address space.
1239 jermar 145
 * @param flags Flags of the area memory.
1048 jermar 146
 * @param size Size of area.
703 jermar 147
 * @param base Base address of area.
1239 jermar 148
 * @param attrs Attributes of the area.
1409 jermar 149
 * @param backend Address space area backend. NULL if no backend is used.
150
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 151
 *
152
 * @return Address space area on success or NULL on failure.
153
 */
1409 jermar 154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 155
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 156
{
157
	ipl_t ipl;
158
	as_area_t *a;
159
 
160
	if (base % PAGE_SIZE)
1048 jermar 161
		return NULL;
162
 
1233 jermar 163
	if (!size)
164
		return NULL;
165
 
1048 jermar 166
	/* Writeable executable areas are not supported. */
167
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
168
		return NULL;
703 jermar 169
 
170
	ipl = interrupts_disable();
1380 jermar 171
	mutex_lock(&as->lock);
703 jermar 172
 
1048 jermar 173
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 174
		mutex_unlock(&as->lock);
1048 jermar 175
		interrupts_restore(ipl);
176
		return NULL;
177
	}
703 jermar 178
 
822 palkovsky 179
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 180
 
1380 jermar 181
	mutex_initialize(&a->lock);
822 palkovsky 182
 
1424 jermar 183
	a->as = as;
1026 jermar 184
	a->flags = flags;
1239 jermar 185
	a->attributes = attrs;
1048 jermar 186
	a->pages = SIZE2FRAMES(size);
822 palkovsky 187
	a->base = base;
1409 jermar 188
	a->sh_info = NULL;
189
	a->backend = backend;
1424 jermar 190
	if (backend_data)
191
		a->backend_data = *backend_data;
192
	else
193
		memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
194
 
1387 jermar 195
	btree_create(&a->used_space);
822 palkovsky 196
 
1147 jermar 197
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 198
 
1380 jermar 199
	mutex_unlock(&as->lock);
703 jermar 200
	interrupts_restore(ipl);
704 jermar 201
 
703 jermar 202
	return a;
203
}
204
 
1235 jermar 205
/** Find address space area and change it.
206
 *
207
 * @param as Address space.
208
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
209
 * @param size New size of the virtual memory block starting at address. 
210
 * @param flags Flags influencing the remap operation. Currently unused.
211
 *
1306 jermar 212
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 213
 */ 
1306 jermar 214
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 215
{
1306 jermar 216
	as_area_t *area;
1235 jermar 217
	ipl_t ipl;
218
	size_t pages;
219
 
220
	ipl = interrupts_disable();
1380 jermar 221
	mutex_lock(&as->lock);
1235 jermar 222
 
223
	/*
224
	 * Locate the area.
225
	 */
226
	area = find_area_and_lock(as, address);
227
	if (!area) {
1380 jermar 228
		mutex_unlock(&as->lock);
1235 jermar 229
		interrupts_restore(ipl);
1306 jermar 230
		return ENOENT;
1235 jermar 231
	}
232
 
1424 jermar 233
	if (area->backend == &phys_backend) {
1235 jermar 234
		/*
235
		 * Remapping of address space areas associated
236
		 * with memory mapped devices is not supported.
237
		 */
1380 jermar 238
		mutex_unlock(&area->lock);
239
		mutex_unlock(&as->lock);
1235 jermar 240
		interrupts_restore(ipl);
1306 jermar 241
		return ENOTSUP;
1235 jermar 242
	}
1409 jermar 243
	if (area->sh_info) {
244
		/*
245
		 * Remapping of shared address space areas 
246
		 * is not supported.
247
		 */
248
		mutex_unlock(&area->lock);
249
		mutex_unlock(&as->lock);
250
		interrupts_restore(ipl);
251
		return ENOTSUP;
252
	}
1235 jermar 253
 
254
	pages = SIZE2FRAMES((address - area->base) + size);
255
	if (!pages) {
256
		/*
257
		 * Zero size address space areas are not allowed.
258
		 */
1380 jermar 259
		mutex_unlock(&area->lock);
260
		mutex_unlock(&as->lock);
1235 jermar 261
		interrupts_restore(ipl);
1306 jermar 262
		return EPERM;
1235 jermar 263
	}
264
 
265
	if (pages < area->pages) {
1403 jermar 266
		bool cond;
267
		__address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 268
 
269
		/*
270
		 * Shrinking the area.
271
		 * No need to check for overlaps.
272
		 */
1403 jermar 273
 
274
		/*
1436 jermar 275
		 * Start TLB shootdown sequence.
276
		 */
277
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
278
 
279
		/*
1403 jermar 280
		 * Remove frames belonging to used space starting from
281
		 * the highest addresses downwards until an overlap with
282
		 * the resized address space area is found. Note that this
283
		 * is also the right way to remove part of the used_space
284
		 * B+tree leaf list.
285
		 */		
286
		for (cond = true; cond;) {
287
			btree_node_t *node;
288
 
289
			ASSERT(!list_empty(&area->used_space.leaf_head));
290
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
291
			if ((cond = (bool) node->keys)) {
292
				__address b = node->key[node->keys - 1];
293
				count_t c = (count_t) node->value[node->keys - 1];
294
				int i = 0;
1235 jermar 295
 
1403 jermar 296
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
297
 
298
					if (b + c*PAGE_SIZE <= start_free) {
299
						/*
300
						 * The whole interval fits completely
301
						 * in the resized address space area.
302
						 */
303
						break;
304
					}
305
 
306
					/*
307
					 * Part of the interval corresponding to b and c
308
					 * overlaps with the resized address space area.
309
					 */
310
 
311
					cond = false;	/* we are almost done */
312
					i = (start_free - b) >> PAGE_WIDTH;
313
					if (!used_space_remove(area, start_free, c - i))
314
						panic("Could not remove used space.");
315
				} else {
316
					/*
317
					 * The interval of used space can be completely removed.
318
					 */
319
					if (!used_space_remove(area, b, c))
320
						panic("Could not remove used space.\n");
321
				}
322
 
323
				for (; i < c; i++) {
324
					pte_t *pte;
325
 
326
					page_table_lock(as, false);
327
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
328
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 329
					if (area->backend && area->backend->frame_free) {
330
						area->backend->frame_free(area,
1409 jermar 331
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
332
					}
1403 jermar 333
					page_mapping_remove(as, b + i*PAGE_SIZE);
334
					page_table_unlock(as, false);
335
				}
1235 jermar 336
			}
337
		}
1436 jermar 338
 
1235 jermar 339
		/*
1436 jermar 340
		 * Finish TLB shootdown sequence.
1235 jermar 341
		 */
342
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
343
		tlb_shootdown_finalize();
344
	} else {
345
		/*
346
		 * Growing the area.
347
		 * Check for overlaps with other address space areas.
348
		 */
349
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 350
			mutex_unlock(&area->lock);
351
			mutex_unlock(&as->lock);		
1235 jermar 352
			interrupts_restore(ipl);
1306 jermar 353
			return EADDRNOTAVAIL;
1235 jermar 354
		}
355
	} 
356
 
357
	area->pages = pages;
358
 
1380 jermar 359
	mutex_unlock(&area->lock);
360
	mutex_unlock(&as->lock);
1235 jermar 361
	interrupts_restore(ipl);
362
 
1306 jermar 363
	return 0;
1235 jermar 364
}
365
 
1306 jermar 366
/** Destroy address space area.
367
 *
368
 * @param as Address space.
369
 * @param address Address withing the area to be deleted.
370
 *
371
 * @return Zero on success or a value from @ref errno.h on failure. 
372
 */
373
int as_area_destroy(as_t *as, __address address)
374
{
375
	as_area_t *area;
376
	__address base;
377
	ipl_t ipl;
1411 jermar 378
	bool cond;
1306 jermar 379
 
380
	ipl = interrupts_disable();
1380 jermar 381
	mutex_lock(&as->lock);
1306 jermar 382
 
383
	area = find_area_and_lock(as, address);
384
	if (!area) {
1380 jermar 385
		mutex_unlock(&as->lock);
1306 jermar 386
		interrupts_restore(ipl);
387
		return ENOENT;
388
	}
389
 
1403 jermar 390
	base = area->base;
391
 
1411 jermar 392
	/*
1436 jermar 393
	 * Start TLB shootdown sequence.
394
	 */
395
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
396
 
397
	/*
1411 jermar 398
	 * Visit only the pages mapped by used_space B+tree.
399
	 * Note that we must be very careful when walking the tree
400
	 * leaf list and removing used space as the leaf list changes
401
	 * unpredictibly after each remove. The solution is to actually
402
	 * not walk the tree at all, but to remove items from the head
403
	 * of the leaf list until there are some keys left.
404
	 */
405
	for (cond = true; cond;) {
406
		btree_node_t *node;
1403 jermar 407
 
1411 jermar 408
		ASSERT(!list_empty(&area->used_space.leaf_head));
409
		node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
410
		if ((cond = (bool) node->keys)) {
411
			__address b = node->key[0];
412
			count_t i;
413
			pte_t *pte;
1403 jermar 414
 
1411 jermar 415
			for (i = 0; i < (count_t) node->value[0]; i++) {
416
				page_table_lock(as, false);
417
				pte = page_mapping_find(as, b + i*PAGE_SIZE);
418
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 419
				if (area->backend && area->backend->frame_free) {
420
					area->backend->frame_free(area,
1411 jermar 421
						b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 422
				}
1411 jermar 423
				page_mapping_remove(as, b + i*PAGE_SIZE);
424
				page_table_unlock(as, false);
1306 jermar 425
			}
1411 jermar 426
			if (!used_space_remove(area, b, i))
427
				panic("Could not remove used space.\n");
1306 jermar 428
		}
429
	}
1403 jermar 430
 
1306 jermar 431
	/*
1436 jermar 432
	 * Finish TLB shootdown sequence.
1306 jermar 433
	 */
434
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
435
	tlb_shootdown_finalize();
1436 jermar 436
 
437
	btree_destroy(&area->used_space);
1306 jermar 438
 
1309 jermar 439
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 440
 
441
	if (area->sh_info)
442
		sh_info_remove_reference(area->sh_info);
443
 
1380 jermar 444
	mutex_unlock(&area->lock);
1306 jermar 445
 
446
	/*
447
	 * Remove the empty area from address space.
448
	 */
449
	btree_remove(&AS->as_area_btree, base, NULL);
450
 
1309 jermar 451
	free(area);
452
 
1380 jermar 453
	mutex_unlock(&AS->lock);
1306 jermar 454
	interrupts_restore(ipl);
455
	return 0;
456
}
457
 
1413 jermar 458
/** Share address space area with another or the same address space.
1235 jermar 459
 *
1424 jermar 460
 * Address space area mapping is shared with a new address space area.
461
 * If the source address space area has not been shared so far,
462
 * a new sh_info is created. The new address space area simply gets the
463
 * sh_info of the source area. The process of duplicating the
464
 * mapping is done through the backend share function.
1413 jermar 465
 * 
1417 jermar 466
 * @param src_as Pointer to source address space.
1239 jermar 467
 * @param src_base Base address of the source address space area.
1417 jermar 468
 * @param acc_size Expected size of the source area.
1428 palkovsky 469
 * @param dst_as Pointer to destination address space.
1417 jermar 470
 * @param dst_base Target base address.
471
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 472
 *
1306 jermar 473
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 474
 *	   if there is no such address space area,
475
 *	   EPERM if there was a problem in accepting the area or
476
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 477
 *	   address space area. ENOTSUP is returned if an attempt
478
 *	   to share non-anonymous address space area is detected.
1235 jermar 479
 */
1413 jermar 480
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 481
		  as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 482
{
483
	ipl_t ipl;
1239 jermar 484
	int src_flags;
485
	size_t src_size;
486
	as_area_t *src_area, *dst_area;
1413 jermar 487
	share_info_t *sh_info;
1424 jermar 488
	mem_backend_t *src_backend;
489
	mem_backend_data_t src_backend_data;
1434 palkovsky 490
 
1235 jermar 491
	ipl = interrupts_disable();
1380 jermar 492
	mutex_lock(&src_as->lock);
1329 palkovsky 493
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 494
	if (!src_area) {
1238 jermar 495
		/*
496
		 * Could not find the source address space area.
497
		 */
1380 jermar 498
		mutex_unlock(&src_as->lock);
1238 jermar 499
		interrupts_restore(ipl);
500
		return ENOENT;
501
	}
1413 jermar 502
 
1424 jermar 503
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 504
		/*
1424 jermar 505
		 * There is now backend or the backend does not
506
		 * know how to share the area.
1413 jermar 507
		 */
508
		mutex_unlock(&src_area->lock);
509
		mutex_unlock(&src_as->lock);
510
		interrupts_restore(ipl);
511
		return ENOTSUP;
512
	}
513
 
1239 jermar 514
	src_size = src_area->pages * PAGE_SIZE;
515
	src_flags = src_area->flags;
1424 jermar 516
	src_backend = src_area->backend;
517
	src_backend_data = src_area->backend_data;
1413 jermar 518
 
1329 palkovsky 519
	if (src_size != acc_size) {
1413 jermar 520
		mutex_unlock(&src_area->lock);
521
		mutex_unlock(&src_as->lock);
1235 jermar 522
		interrupts_restore(ipl);
523
		return EPERM;
524
	}
1413 jermar 525
 
1235 jermar 526
	/*
1413 jermar 527
	 * Now we are committed to sharing the area.
528
	 * First prepare the area for sharing.
529
	 * Then it will be safe to unlock it.
530
	 */
531
	sh_info = src_area->sh_info;
532
	if (!sh_info) {
533
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
534
		mutex_initialize(&sh_info->lock);
535
		sh_info->refcount = 2;
536
		btree_create(&sh_info->pagemap);
537
		src_area->sh_info = sh_info;
538
	} else {
539
		mutex_lock(&sh_info->lock);
540
		sh_info->refcount++;
541
		mutex_unlock(&sh_info->lock);
542
	}
543
 
1424 jermar 544
	src_area->backend->share(src_area);
1413 jermar 545
 
546
	mutex_unlock(&src_area->lock);
547
	mutex_unlock(&src_as->lock);
548
 
549
	/*
1239 jermar 550
	 * Create copy of the source address space area.
551
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
552
	 * attribute set which prevents race condition with
553
	 * preliminary as_page_fault() calls.
1417 jermar 554
	 * The flags of the source area are masked against dst_flags_mask
555
	 * to support sharing in less privileged mode.
1235 jermar 556
	 */
1428 palkovsky 557
	dst_area = as_area_create(dst_as, src_flags & dst_flags_mask, src_size, dst_base,
1424 jermar 558
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 559
	if (!dst_area) {
1235 jermar 560
		/*
561
		 * Destination address space area could not be created.
562
		 */
1413 jermar 563
		sh_info_remove_reference(sh_info);
564
 
1235 jermar 565
		interrupts_restore(ipl);
566
		return ENOMEM;
567
	}
568
 
569
	/*
1239 jermar 570
	 * Now the destination address space area has been
571
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 572
	 * attribute and set the sh_info.
1239 jermar 573
	 */	
1380 jermar 574
	mutex_lock(&dst_area->lock);
1239 jermar 575
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 576
	dst_area->sh_info = sh_info;
1380 jermar 577
	mutex_unlock(&dst_area->lock);
1235 jermar 578
 
579
	interrupts_restore(ipl);
580
 
581
	return 0;
582
}
583
 
1423 jermar 584
/** Check access mode for address space area.
585
 *
586
 * The address space area must be locked prior to this call.
587
 *
588
 * @param area Address space area.
589
 * @param access Access mode.
590
 *
591
 * @return False if access violates area's permissions, true otherwise.
592
 */
593
bool as_area_check_access(as_area_t *area, pf_access_t access)
594
{
595
	int flagmap[] = {
596
		[PF_ACCESS_READ] = AS_AREA_READ,
597
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
598
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
599
	};
600
 
601
	if (!(area->flags & flagmap[access]))
602
		return false;
603
 
604
	return true;
605
}
606
 
703 jermar 607
/** Handle page fault within the current address space.
608
 *
1409 jermar 609
 * This is the high-level page fault handler. It decides
610
 * whether the page fault can be resolved by any backend
611
 * and if so, it invokes the backend to resolve the page
612
 * fault.
613
 *
703 jermar 614
 * Interrupts are assumed disabled.
615
 *
616
 * @param page Faulting page.
1411 jermar 617
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 618
 * @param istate Pointer to interrupted state.
703 jermar 619
 *
1409 jermar 620
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
621
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 622
 */
1411 jermar 623
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 624
{
1044 jermar 625
	pte_t *pte;
977 jermar 626
	as_area_t *area;
703 jermar 627
 
1380 jermar 628
	if (!THREAD)
1409 jermar 629
		return AS_PF_FAULT;
1380 jermar 630
 
703 jermar 631
	ASSERT(AS);
1044 jermar 632
 
1380 jermar 633
	mutex_lock(&AS->lock);
977 jermar 634
	area = find_area_and_lock(AS, page);	
703 jermar 635
	if (!area) {
636
		/*
637
		 * No area contained mapping for 'page'.
638
		 * Signal page fault to low-level handler.
639
		 */
1380 jermar 640
		mutex_unlock(&AS->lock);
1288 jermar 641
		goto page_fault;
703 jermar 642
	}
643
 
1239 jermar 644
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
645
		/*
646
		 * The address space area is not fully initialized.
647
		 * Avoid possible race by returning error.
648
		 */
1380 jermar 649
		mutex_unlock(&area->lock);
650
		mutex_unlock(&AS->lock);
1288 jermar 651
		goto page_fault;		
1239 jermar 652
	}
653
 
1424 jermar 654
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 655
		/*
656
		 * The address space area is not backed by any backend
657
		 * or the backend cannot handle page faults.
658
		 */
659
		mutex_unlock(&area->lock);
660
		mutex_unlock(&AS->lock);
661
		goto page_fault;		
662
	}
1179 jermar 663
 
1044 jermar 664
	page_table_lock(AS, false);
665
 
703 jermar 666
	/*
1044 jermar 667
	 * To avoid race condition between two page faults
668
	 * on the same address, we need to make sure
669
	 * the mapping has not been already inserted.
670
	 */
671
	if ((pte = page_mapping_find(AS, page))) {
672
		if (PTE_PRESENT(pte)) {
1423 jermar 673
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
674
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
675
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
676
				page_table_unlock(AS, false);
677
				mutex_unlock(&area->lock);
678
				mutex_unlock(&AS->lock);
679
				return AS_PF_OK;
680
			}
1044 jermar 681
		}
682
	}
1409 jermar 683
 
1044 jermar 684
	/*
1409 jermar 685
	 * Resort to the backend page fault handler.
703 jermar 686
	 */
1424 jermar 687
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 688
		page_table_unlock(AS, false);
689
		mutex_unlock(&area->lock);
690
		mutex_unlock(&AS->lock);
691
		goto page_fault;
692
	}
703 jermar 693
 
1044 jermar 694
	page_table_unlock(AS, false);
1380 jermar 695
	mutex_unlock(&area->lock);
696
	mutex_unlock(&AS->lock);
1288 jermar 697
	return AS_PF_OK;
698
 
699
page_fault:
700
	if (THREAD->in_copy_from_uspace) {
701
		THREAD->in_copy_from_uspace = false;
702
		istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
703
	} else if (THREAD->in_copy_to_uspace) {
704
		THREAD->in_copy_to_uspace = false;
705
		istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
706
	} else {
707
		return AS_PF_FAULT;
708
	}
709
 
710
	return AS_PF_DEFER;
703 jermar 711
}
712
 
823 jermar 713
/** Switch address spaces.
703 jermar 714
 *
1380 jermar 715
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 716
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 717
 *
823 jermar 718
 * @param old Old address space or NULL.
719
 * @param new New address space.
703 jermar 720
 */
823 jermar 721
void as_switch(as_t *old, as_t *new)
703 jermar 722
{
723
	ipl_t ipl;
823 jermar 724
	bool needs_asid = false;
703 jermar 725
 
726
	ipl = interrupts_disable();
1415 jermar 727
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 728
 
729
	/*
823 jermar 730
	 * First, take care of the old address space.
731
	 */	
732
	if (old) {
1380 jermar 733
		mutex_lock_active(&old->lock);
1415 jermar 734
		ASSERT(old->cpu_refcount);
735
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 736
			/*
737
			 * The old address space is no longer active on
738
			 * any processor. It can be appended to the
739
			 * list of inactive address spaces with assigned
740
			 * ASID.
741
			 */
742
			 ASSERT(old->asid != ASID_INVALID);
743
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
744
		}
1380 jermar 745
		mutex_unlock(&old->lock);
823 jermar 746
	}
747
 
748
	/*
749
	 * Second, prepare the new address space.
750
	 */
1380 jermar 751
	mutex_lock_active(&new->lock);
1415 jermar 752
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 753
		if (new->asid != ASID_INVALID)
754
			list_remove(&new->inactive_as_with_asid_link);
755
		else
756
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
757
	}
758
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 759
	mutex_unlock(&new->lock);
823 jermar 760
 
761
	if (needs_asid) {
762
		/*
763
		 * Allocation of new ASID was deferred
764
		 * until now in order to avoid deadlock.
765
		 */
766
		asid_t asid;
767
 
768
		asid = asid_get();
1380 jermar 769
		mutex_lock_active(&new->lock);
823 jermar 770
		new->asid = asid;
1380 jermar 771
		mutex_unlock(&new->lock);
823 jermar 772
	}
1415 jermar 773
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 774
	interrupts_restore(ipl);
775
 
776
	/*
703 jermar 777
	 * Perform architecture-specific steps.
727 jermar 778
	 * (e.g. write ASID to hardware register etc.)
703 jermar 779
	 */
823 jermar 780
	as_install_arch(new);
703 jermar 781
 
823 jermar 782
	AS = new;
703 jermar 783
}
754 jermar 784
 
1235 jermar 785
/** Convert address space area flags to page flags.
754 jermar 786
 *
1235 jermar 787
 * @param aflags Flags of some address space area.
754 jermar 788
 *
1235 jermar 789
 * @return Flags to be passed to page_mapping_insert().
754 jermar 790
 */
1235 jermar 791
int area_flags_to_page_flags(int aflags)
754 jermar 792
{
793
	int flags;
794
 
1178 jermar 795
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 796
 
1235 jermar 797
	if (aflags & AS_AREA_READ)
1026 jermar 798
		flags |= PAGE_READ;
799
 
1235 jermar 800
	if (aflags & AS_AREA_WRITE)
1026 jermar 801
		flags |= PAGE_WRITE;
802
 
1235 jermar 803
	if (aflags & AS_AREA_EXEC)
1026 jermar 804
		flags |= PAGE_EXEC;
805
 
1424 jermar 806
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 807
		flags |= PAGE_CACHEABLE;
808
 
754 jermar 809
	return flags;
810
}
756 jermar 811
 
1235 jermar 812
/** Compute flags for virtual address translation subsytem.
813
 *
814
 * The address space area must be locked.
815
 * Interrupts must be disabled.
816
 *
817
 * @param a Address space area.
818
 *
819
 * @return Flags to be used in page_mapping_insert().
820
 */
1409 jermar 821
int as_area_get_flags(as_area_t *a)
1235 jermar 822
{
823
	return area_flags_to_page_flags(a->flags);
824
}
825
 
756 jermar 826
/** Create page table.
827
 *
828
 * Depending on architecture, create either address space
829
 * private or global page table.
830
 *
831
 * @param flags Flags saying whether the page table is for kernel address space.
832
 *
833
 * @return First entry of the page table.
834
 */
835
pte_t *page_table_create(int flags)
836
{
837
        ASSERT(as_operations);
838
        ASSERT(as_operations->page_table_create);
839
 
840
        return as_operations->page_table_create(flags);
841
}
977 jermar 842
 
1044 jermar 843
/** Lock page table.
844
 *
845
 * This function should be called before any page_mapping_insert(),
846
 * page_mapping_remove() and page_mapping_find().
847
 * 
848
 * Locking order is such that address space areas must be locked
849
 * prior to this call. Address space can be locked prior to this
850
 * call in which case the lock argument is false.
851
 *
852
 * @param as Address space.
1248 jermar 853
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 854
 */
855
void page_table_lock(as_t *as, bool lock)
856
{
857
	ASSERT(as_operations);
858
	ASSERT(as_operations->page_table_lock);
859
 
860
	as_operations->page_table_lock(as, lock);
861
}
862
 
863
/** Unlock page table.
864
 *
865
 * @param as Address space.
1248 jermar 866
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 867
 */
868
void page_table_unlock(as_t *as, bool unlock)
869
{
870
	ASSERT(as_operations);
871
	ASSERT(as_operations->page_table_unlock);
872
 
873
	as_operations->page_table_unlock(as, unlock);
874
}
875
 
977 jermar 876
 
877
/** Find address space area and lock it.
878
 *
879
 * The address space must be locked and interrupts must be disabled.
880
 *
881
 * @param as Address space.
882
 * @param va Virtual address.
883
 *
884
 * @return Locked address space area containing va on success or NULL on failure.
885
 */
886
as_area_t *find_area_and_lock(as_t *as, __address va)
887
{
888
	as_area_t *a;
1147 jermar 889
	btree_node_t *leaf, *lnode;
890
	int i;
977 jermar 891
 
1147 jermar 892
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
893
	if (a) {
894
		/* va is the base address of an address space area */
1380 jermar 895
		mutex_lock(&a->lock);
1147 jermar 896
		return a;
897
	}
898
 
899
	/*
1150 jermar 900
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 901
	 * to find out whether this is a miss or va belongs to an address
902
	 * space area found there.
903
	 */
904
 
905
	/* First, search the leaf node itself. */
906
	for (i = 0; i < leaf->keys; i++) {
907
		a = (as_area_t *) leaf->value[i];
1380 jermar 908
		mutex_lock(&a->lock);
1147 jermar 909
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
910
			return a;
911
		}
1380 jermar 912
		mutex_unlock(&a->lock);
1147 jermar 913
	}
977 jermar 914
 
1147 jermar 915
	/*
1150 jermar 916
	 * Second, locate the left neighbour and test its last record.
1148 jermar 917
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 918
	 */
1150 jermar 919
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 920
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 921
		mutex_lock(&a->lock);
1147 jermar 922
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 923
			return a;
1147 jermar 924
		}
1380 jermar 925
		mutex_unlock(&a->lock);
977 jermar 926
	}
927
 
928
	return NULL;
929
}
1048 jermar 930
 
931
/** Check area conflicts with other areas.
932
 *
933
 * The address space must be locked and interrupts must be disabled.
934
 *
935
 * @param as Address space.
936
 * @param va Starting virtual address of the area being tested.
937
 * @param size Size of the area being tested.
938
 * @param avoid_area Do not touch this area. 
939
 *
940
 * @return True if there is no conflict, false otherwise.
941
 */
942
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
943
{
944
	as_area_t *a;
1147 jermar 945
	btree_node_t *leaf, *node;
946
	int i;
1048 jermar 947
 
1070 jermar 948
	/*
949
	 * We don't want any area to have conflicts with NULL page.
950
	 */
951
	if (overlaps(va, size, NULL, PAGE_SIZE))
952
		return false;
953
 
1147 jermar 954
	/*
955
	 * The leaf node is found in O(log n), where n is proportional to
956
	 * the number of address space areas belonging to as.
957
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 958
	 * record in the left neighbour, the leftmost record in the right
959
	 * neighbour and all records in the leaf node itself.
1147 jermar 960
	 */
1048 jermar 961
 
1147 jermar 962
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
963
		if (a != avoid_area)
964
			return false;
965
	}
966
 
967
	/* First, check the two border cases. */
1150 jermar 968
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 969
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 970
		mutex_lock(&a->lock);
1147 jermar 971
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 972
			mutex_unlock(&a->lock);
1147 jermar 973
			return false;
974
		}
1380 jermar 975
		mutex_unlock(&a->lock);
1147 jermar 976
	}
1150 jermar 977
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 978
		a = (as_area_t *) node->value[0];
1380 jermar 979
		mutex_lock(&a->lock);
1147 jermar 980
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 981
			mutex_unlock(&a->lock);
1147 jermar 982
			return false;
983
		}
1380 jermar 984
		mutex_unlock(&a->lock);
1147 jermar 985
	}
986
 
987
	/* Second, check the leaf node. */
988
	for (i = 0; i < leaf->keys; i++) {
989
		a = (as_area_t *) leaf->value[i];
990
 
1048 jermar 991
		if (a == avoid_area)
992
			continue;
1147 jermar 993
 
1380 jermar 994
		mutex_lock(&a->lock);
1147 jermar 995
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 996
			mutex_unlock(&a->lock);
1147 jermar 997
			return false;
998
		}
1380 jermar 999
		mutex_unlock(&a->lock);
1048 jermar 1000
	}
1001
 
1070 jermar 1002
	/*
1003
	 * So far, the area does not conflict with other areas.
1004
	 * Check if it doesn't conflict with kernel address space.
1005
	 */	 
1006
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1007
		return !overlaps(va, size, 
1008
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1009
	}
1010
 
1048 jermar 1011
	return true;
1012
}
1235 jermar 1013
 
1380 jermar 1014
/** Return size of the address space area with given base.  */
1329 palkovsky 1015
size_t as_get_size(__address base)
1016
{
1017
	ipl_t ipl;
1018
	as_area_t *src_area;
1019
	size_t size;
1020
 
1021
	ipl = interrupts_disable();
1022
	src_area = find_area_and_lock(AS, base);
1023
	if (src_area){
1024
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1025
		mutex_unlock(&src_area->lock);
1329 palkovsky 1026
	} else {
1027
		size = 0;
1028
	}
1029
	interrupts_restore(ipl);
1030
	return size;
1031
}
1032
 
1387 jermar 1033
/** Mark portion of address space area as used.
1034
 *
1035
 * The address space area must be already locked.
1036
 *
1037
 * @param a Address space area.
1038
 * @param page First page to be marked.
1039
 * @param count Number of page to be marked.
1040
 *
1041
 * @return 0 on failure and 1 on success.
1042
 */
1043
int used_space_insert(as_area_t *a, __address page, count_t count)
1044
{
1045
	btree_node_t *leaf, *node;
1046
	count_t pages;
1047
	int i;
1048
 
1049
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1050
	ASSERT(count);
1051
 
1052
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1053
	if (pages) {
1054
		/*
1055
		 * We hit the beginning of some used space.
1056
		 */
1057
		return 0;
1058
	}
1059
 
1060
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1061
	if (node) {
1062
		__address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1063
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1064
 
1065
		/*
1066
		 * Examine the possibility that the interval fits
1067
		 * somewhere between the rightmost interval of
1068
		 * the left neigbour and the first interval of the leaf.
1069
		 */
1070
 
1071
		if (page >= right_pg) {
1072
			/* Do nothing. */
1073
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1074
			/* The interval intersects with the left interval. */
1075
			return 0;
1076
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1077
			/* The interval intersects with the right interval. */
1078
			return 0;			
1079
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1080
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1081
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1082
			btree_remove(&a->used_space, right_pg, leaf);
1083
			return 1; 
1084
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1085
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1086
			node->value[node->keys - 1] += count;
1387 jermar 1087
			return 1;
1088
		} else if (page + count*PAGE_SIZE == right_pg) {
1089
			/*
1090
			 * The interval can be addded by simply moving base of the right
1091
			 * interval down and increasing its size accordingly.
1092
			 */
1403 jermar 1093
			leaf->value[0] += count;
1387 jermar 1094
			leaf->key[0] = page;
1095
			return 1;
1096
		} else {
1097
			/*
1098
			 * The interval is between both neigbouring intervals,
1099
			 * but cannot be merged with any of them.
1100
			 */
1101
			btree_insert(&a->used_space, page, (void *) count, leaf);
1102
			return 1;
1103
		}
1104
	} else if (page < leaf->key[0]) {
1105
		__address right_pg = leaf->key[0];
1106
		count_t right_cnt = (count_t) leaf->value[0];
1107
 
1108
		/*
1109
		 * Investigate the border case in which the left neighbour does not
1110
		 * exist but the interval fits from the left.
1111
		 */
1112
 
1113
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1114
			/* The interval intersects with the right interval. */
1115
			return 0;
1116
		} else if (page + count*PAGE_SIZE == right_pg) {
1117
			/*
1118
			 * The interval can be added by moving the base of the right interval down
1119
			 * and increasing its size accordingly.
1120
			 */
1121
			leaf->key[0] = page;
1403 jermar 1122
			leaf->value[0] += count;
1387 jermar 1123
			return 1;
1124
		} else {
1125
			/*
1126
			 * The interval doesn't adjoin with the right interval.
1127
			 * It must be added individually.
1128
			 */
1129
			btree_insert(&a->used_space, page, (void *) count, leaf);
1130
			return 1;
1131
		}
1132
	}
1133
 
1134
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1135
	if (node) {
1136
		__address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1137
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1138
 
1139
		/*
1140
		 * Examine the possibility that the interval fits
1141
		 * somewhere between the leftmost interval of
1142
		 * the right neigbour and the last interval of the leaf.
1143
		 */
1144
 
1145
		if (page < left_pg) {
1146
			/* Do nothing. */
1147
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1148
			/* The interval intersects with the left interval. */
1149
			return 0;
1150
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1151
			/* The interval intersects with the right interval. */
1152
			return 0;			
1153
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1154
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1155
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1156
			btree_remove(&a->used_space, right_pg, node);
1157
			return 1; 
1158
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1159
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1160
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1161
			return 1;
1162
		} else if (page + count*PAGE_SIZE == right_pg) {
1163
			/*
1164
			 * The interval can be addded by simply moving base of the right
1165
			 * interval down and increasing its size accordingly.
1166
			 */
1403 jermar 1167
			node->value[0] += count;
1387 jermar 1168
			node->key[0] = page;
1169
			return 1;
1170
		} else {
1171
			/*
1172
			 * The interval is between both neigbouring intervals,
1173
			 * but cannot be merged with any of them.
1174
			 */
1175
			btree_insert(&a->used_space, page, (void *) count, leaf);
1176
			return 1;
1177
		}
1178
	} else if (page >= leaf->key[leaf->keys - 1]) {
1179
		__address left_pg = leaf->key[leaf->keys - 1];
1180
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1181
 
1182
		/*
1183
		 * Investigate the border case in which the right neighbour does not
1184
		 * exist but the interval fits from the right.
1185
		 */
1186
 
1187
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1188
			/* The interval intersects with the left interval. */
1387 jermar 1189
			return 0;
1190
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1191
			/* The interval can be added by growing the left interval. */
1403 jermar 1192
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1193
			return 1;
1194
		} else {
1195
			/*
1196
			 * The interval doesn't adjoin with the left interval.
1197
			 * It must be added individually.
1198
			 */
1199
			btree_insert(&a->used_space, page, (void *) count, leaf);
1200
			return 1;
1201
		}
1202
	}
1203
 
1204
	/*
1205
	 * Note that if the algorithm made it thus far, the interval can fit only
1206
	 * between two other intervals of the leaf. The two border cases were already
1207
	 * resolved.
1208
	 */
1209
	for (i = 1; i < leaf->keys; i++) {
1210
		if (page < leaf->key[i]) {
1211
			__address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1212
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1213
 
1214
			/*
1215
			 * The interval fits between left_pg and right_pg.
1216
			 */
1217
 
1218
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1219
				/* The interval intersects with the left interval. */
1220
				return 0;
1221
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1222
				/* The interval intersects with the right interval. */
1223
				return 0;			
1224
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1225
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1226
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1227
				btree_remove(&a->used_space, right_pg, leaf);
1228
				return 1; 
1229
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1230
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1231
				leaf->value[i - 1] += count;
1387 jermar 1232
				return 1;
1233
			} else if (page + count*PAGE_SIZE == right_pg) {
1234
				/*
1235
			         * The interval can be addded by simply moving base of the right
1236
			 	 * interval down and increasing its size accordingly.
1237
			 	 */
1403 jermar 1238
				leaf->value[i] += count;
1387 jermar 1239
				leaf->key[i] = page;
1240
				return 1;
1241
			} else {
1242
				/*
1243
				 * The interval is between both neigbouring intervals,
1244
				 * but cannot be merged with any of them.
1245
				 */
1246
				btree_insert(&a->used_space, page, (void *) count, leaf);
1247
				return 1;
1248
			}
1249
		}
1250
	}
1251
 
1252
	panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1253
}
1254
 
1255
/** Mark portion of address space area as unused.
1256
 *
1257
 * The address space area must be already locked.
1258
 *
1259
 * @param a Address space area.
1260
 * @param page First page to be marked.
1261
 * @param count Number of page to be marked.
1262
 *
1263
 * @return 0 on failure and 1 on success.
1264
 */
1265
int used_space_remove(as_area_t *a, __address page, count_t count)
1266
{
1267
	btree_node_t *leaf, *node;
1268
	count_t pages;
1269
	int i;
1270
 
1271
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1272
	ASSERT(count);
1273
 
1274
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1275
	if (pages) {
1276
		/*
1277
		 * We are lucky, page is the beginning of some interval.
1278
		 */
1279
		if (count > pages) {
1280
			return 0;
1281
		} else if (count == pages) {
1282
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1283
			return 1;
1387 jermar 1284
		} else {
1285
			/*
1286
			 * Find the respective interval.
1287
			 * Decrease its size and relocate its start address.
1288
			 */
1289
			for (i = 0; i < leaf->keys; i++) {
1290
				if (leaf->key[i] == page) {
1291
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1292
					leaf->value[i] -= count;
1387 jermar 1293
					return 1;
1294
				}
1295
			}
1296
			goto error;
1297
		}
1298
	}
1299
 
1300
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1301
	if (node && page < leaf->key[0]) {
1302
		__address left_pg = node->key[node->keys - 1];
1303
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1304
 
1305
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1306
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1307
				/*
1308
				 * The interval is contained in the rightmost interval
1309
				 * of the left neighbour and can be removed by
1310
				 * updating the size of the bigger interval.
1311
				 */
1403 jermar 1312
				node->value[node->keys - 1] -= count;
1387 jermar 1313
				return 1;
1314
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1315
				count_t new_cnt;
1387 jermar 1316
 
1317
				/*
1318
				 * The interval is contained in the rightmost interval
1319
				 * of the left neighbour but its removal requires
1320
				 * both updating the size of the original interval and
1321
				 * also inserting a new interval.
1322
				 */
1403 jermar 1323
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1324
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1325
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1326
				return 1;
1327
			}
1328
		}
1329
		return 0;
1330
	} else if (page < leaf->key[0]) {
1331
		return 0;
1332
	}
1333
 
1334
	if (page > leaf->key[leaf->keys - 1]) {
1335
		__address left_pg = leaf->key[leaf->keys - 1];
1336
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1337
 
1338
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1339
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1340
				/*
1341
				 * The interval is contained in the rightmost interval
1342
				 * of the leaf and can be removed by updating the size
1343
				 * of the bigger interval.
1344
				 */
1403 jermar 1345
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1346
				return 1;
1347
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1348
				count_t new_cnt;
1387 jermar 1349
 
1350
				/*
1351
				 * The interval is contained in the rightmost interval
1352
				 * of the leaf but its removal requires both updating
1353
				 * the size of the original interval and
1354
				 * also inserting a new interval.
1355
				 */
1403 jermar 1356
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1357
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1358
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1359
				return 1;
1360
			}
1361
		}
1362
		return 0;
1363
	}	
1364
 
1365
	/*
1366
	 * The border cases have been already resolved.
1367
	 * Now the interval can be only between intervals of the leaf. 
1368
	 */
1369
	for (i = 1; i < leaf->keys - 1; i++) {
1370
		if (page < leaf->key[i]) {
1371
			__address left_pg = leaf->key[i - 1];
1372
			count_t left_cnt = (count_t) leaf->value[i - 1];
1373
 
1374
			/*
1375
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1376
			 */
1377
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1378
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1379
					/*
1380
				 	* The interval is contained in the interval (i - 1)
1381
					 * of the leaf and can be removed by updating the size
1382
					 * of the bigger interval.
1383
					 */
1403 jermar 1384
					leaf->value[i - 1] -= count;
1387 jermar 1385
					return 1;
1386
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1387
					count_t new_cnt;
1387 jermar 1388
 
1389
					/*
1390
					 * The interval is contained in the interval (i - 1)
1391
					 * of the leaf but its removal requires both updating
1392
					 * the size of the original interval and
1393
					 * also inserting a new interval.
1394
					 */
1403 jermar 1395
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1396
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1397
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1398
					return 1;
1399
				}
1400
			}
1401
			return 0;
1402
		}
1403
	}
1404
 
1405
error:
1406
	panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1407
}
1408
 
1409 jermar 1409
/** Remove reference to address space area share info.
1410
 *
1411
 * If the reference count drops to 0, the sh_info is deallocated.
1412
 *
1413
 * @param sh_info Pointer to address space area share info.
1414
 */
1415
void sh_info_remove_reference(share_info_t *sh_info)
1416
{
1417
	bool dealloc = false;
1418
 
1419
	mutex_lock(&sh_info->lock);
1420
	ASSERT(sh_info->refcount);
1421
	if (--sh_info->refcount == 0) {
1422
		dealloc = true;
1423
		bool cond;
1424
 
1425
		/*
1426
		 * Now walk carefully the pagemap B+tree and free/remove
1427
		 * reference from all frames found there.
1428
		 */
1429
		for (cond = true; cond;) {
1430
			btree_node_t *node;
1431
 
1432
			ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1433
			node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1434
			if ((cond = node->keys)) {
1435
				frame_free(ADDR2PFN((__address) node->value[0]));
1436
				btree_remove(&sh_info->pagemap, node->key[0], node);
1437
			}
1438
		}
1439
 
1440
	}
1441
	mutex_unlock(&sh_info->lock);
1442
 
1443
	if (dealloc) {
1444
		btree_destroy(&sh_info->pagemap);
1445
		free(sh_info);
1446
	}
1447
}
1448
 
1235 jermar 1449
/*
1450
 * Address space related syscalls.
1451
 */
1452
 
1453
/** Wrapper for as_area_create(). */
1454
__native sys_as_area_create(__address address, size_t size, int flags)
1455
{
1424 jermar 1456
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1457
		return (__native) address;
1458
	else
1459
		return (__native) -1;
1460
}
1461
 
1462
/** Wrapper for as_area_resize. */
1463
__native sys_as_area_resize(__address address, size_t size, int flags)
1464
{
1306 jermar 1465
	return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1466
}
1467
 
1306 jermar 1468
/** Wrapper for as_area_destroy. */
1469
__native sys_as_area_destroy(__address address)
1470
{
1471
	return (__native) as_area_destroy(AS, address);
1472
}