Subversion Repositories HelenOS

Rev

Rev 1851 | Rev 1890 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief	Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
1757 jermar 81
/**
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
84
 */
756 jermar 85
as_operations_t *as_operations = NULL;
703 jermar 86
 
1415 jermar 87
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
88
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 89
 
90
/**
91
 * This list contains address spaces that are not active on any
92
 * processor and that have valid ASID.
93
 */
94
LIST_INITIALIZE(inactive_as_with_asid_head);
95
 
757 jermar 96
/** Kernel address space. */
97
as_t *AS_KERNEL = NULL;
98
 
1235 jermar 99
static int area_flags_to_page_flags(int aflags);
1780 jermar 100
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
101
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 102
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 103
 
756 jermar 104
/** Initialize address space subsystem. */
105
void as_init(void)
106
{
107
	as_arch_init();
789 palkovsky 108
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 109
	if (!AS_KERNEL)
110
		panic("can't create kernel address space\n");
111
 
756 jermar 112
}
113
 
757 jermar 114
/** Create address space.
115
 *
116
 * @param flags Flags that influence way in wich the address space is created.
117
 */
756 jermar 118
as_t *as_create(int flags)
703 jermar 119
{
120
	as_t *as;
121
 
822 palkovsky 122
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 123
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 124
	mutex_initialize(&as->lock);
1147 jermar 125
	btree_create(&as->as_area_btree);
822 palkovsky 126
 
127
	if (flags & FLAG_AS_KERNEL)
128
		as->asid = ASID_KERNEL;
129
	else
130
		as->asid = ASID_INVALID;
131
 
1468 jermar 132
	as->refcount = 0;
1415 jermar 133
	as->cpu_refcount = 0;
822 palkovsky 134
	as->page_table = page_table_create(flags);
703 jermar 135
 
136
	return as;
137
}
138
 
1468 jermar 139
/** Destroy adress space.
140
 *
141
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
142
 * the address space can be destroyed.
143
 */
144
void as_destroy(as_t *as)
973 palkovsky 145
{
1468 jermar 146
	ipl_t ipl;
1594 jermar 147
	bool cond;
973 palkovsky 148
 
1468 jermar 149
	ASSERT(as->refcount == 0);
150
 
151
	/*
152
	 * Since there is no reference to this area,
153
	 * it is safe not to lock its mutex.
154
	 */
155
	ipl = interrupts_disable();
156
	spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 157
	if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 158
		if (as != AS && as->cpu_refcount == 0)
1587 jermar 159
			list_remove(&as->inactive_as_with_asid_link);
1468 jermar 160
		asid_put(as->asid);
161
	}
162
	spinlock_unlock(&inactive_as_with_asid_lock);
163
 
164
	/*
165
	 * Destroy address space areas of the address space.
1594 jermar 166
	 * The B+tee must be walked carefully because it is
167
	 * also being destroyed.
1468 jermar 168
	 */	
1594 jermar 169
	for (cond = true; cond; ) {
1468 jermar 170
		btree_node_t *node;
1594 jermar 171
 
172
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
173
		node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
174
 
175
		if ((cond = node->keys)) {
176
			as_area_destroy(as, node->key[0]);
177
		}
1468 jermar 178
	}
1495 jermar 179
 
1483 jermar 180
	btree_destroy(&as->as_area_btree);
1468 jermar 181
	page_table_destroy(as->page_table);
182
 
183
	interrupts_restore(ipl);
184
 
973 palkovsky 185
	free(as);
186
}
187
 
703 jermar 188
/** Create address space area of common attributes.
189
 *
190
 * The created address space area is added to the target address space.
191
 *
192
 * @param as Target address space.
1239 jermar 193
 * @param flags Flags of the area memory.
1048 jermar 194
 * @param size Size of area.
703 jermar 195
 * @param base Base address of area.
1239 jermar 196
 * @param attrs Attributes of the area.
1409 jermar 197
 * @param backend Address space area backend. NULL if no backend is used.
198
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 199
 *
200
 * @return Address space area on success or NULL on failure.
201
 */
1780 jermar 202
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 203
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 204
{
205
	ipl_t ipl;
206
	as_area_t *a;
207
 
208
	if (base % PAGE_SIZE)
1048 jermar 209
		return NULL;
210
 
1233 jermar 211
	if (!size)
212
		return NULL;
213
 
1048 jermar 214
	/* Writeable executable areas are not supported. */
215
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
216
		return NULL;
703 jermar 217
 
218
	ipl = interrupts_disable();
1380 jermar 219
	mutex_lock(&as->lock);
703 jermar 220
 
1048 jermar 221
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 222
		mutex_unlock(&as->lock);
1048 jermar 223
		interrupts_restore(ipl);
224
		return NULL;
225
	}
703 jermar 226
 
822 palkovsky 227
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 228
 
1380 jermar 229
	mutex_initialize(&a->lock);
822 palkovsky 230
 
1424 jermar 231
	a->as = as;
1026 jermar 232
	a->flags = flags;
1239 jermar 233
	a->attributes = attrs;
1048 jermar 234
	a->pages = SIZE2FRAMES(size);
822 palkovsky 235
	a->base = base;
1409 jermar 236
	a->sh_info = NULL;
237
	a->backend = backend;
1424 jermar 238
	if (backend_data)
239
		a->backend_data = *backend_data;
240
	else
1780 jermar 241
		memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 242
 
1387 jermar 243
	btree_create(&a->used_space);
822 palkovsky 244
 
1147 jermar 245
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 246
 
1380 jermar 247
	mutex_unlock(&as->lock);
703 jermar 248
	interrupts_restore(ipl);
704 jermar 249
 
703 jermar 250
	return a;
251
}
252
 
1235 jermar 253
/** Find address space area and change it.
254
 *
255
 * @param as Address space.
256
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
257
 * @param size New size of the virtual memory block starting at address. 
258
 * @param flags Flags influencing the remap operation. Currently unused.
259
 *
1306 jermar 260
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 261
 */ 
1780 jermar 262
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 263
{
1306 jermar 264
	as_area_t *area;
1235 jermar 265
	ipl_t ipl;
266
	size_t pages;
267
 
268
	ipl = interrupts_disable();
1380 jermar 269
	mutex_lock(&as->lock);
1235 jermar 270
 
271
	/*
272
	 * Locate the area.
273
	 */
274
	area = find_area_and_lock(as, address);
275
	if (!area) {
1380 jermar 276
		mutex_unlock(&as->lock);
1235 jermar 277
		interrupts_restore(ipl);
1306 jermar 278
		return ENOENT;
1235 jermar 279
	}
280
 
1424 jermar 281
	if (area->backend == &phys_backend) {
1235 jermar 282
		/*
283
		 * Remapping of address space areas associated
284
		 * with memory mapped devices is not supported.
285
		 */
1380 jermar 286
		mutex_unlock(&area->lock);
287
		mutex_unlock(&as->lock);
1235 jermar 288
		interrupts_restore(ipl);
1306 jermar 289
		return ENOTSUP;
1235 jermar 290
	}
1409 jermar 291
	if (area->sh_info) {
292
		/*
293
		 * Remapping of shared address space areas 
294
		 * is not supported.
295
		 */
296
		mutex_unlock(&area->lock);
297
		mutex_unlock(&as->lock);
298
		interrupts_restore(ipl);
299
		return ENOTSUP;
300
	}
1235 jermar 301
 
302
	pages = SIZE2FRAMES((address - area->base) + size);
303
	if (!pages) {
304
		/*
305
		 * Zero size address space areas are not allowed.
306
		 */
1380 jermar 307
		mutex_unlock(&area->lock);
308
		mutex_unlock(&as->lock);
1235 jermar 309
		interrupts_restore(ipl);
1306 jermar 310
		return EPERM;
1235 jermar 311
	}
312
 
313
	if (pages < area->pages) {
1403 jermar 314
		bool cond;
1780 jermar 315
		uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 316
 
317
		/*
318
		 * Shrinking the area.
319
		 * No need to check for overlaps.
320
		 */
1403 jermar 321
 
322
		/*
1436 jermar 323
		 * Start TLB shootdown sequence.
324
		 */
325
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
326
 
327
		/*
1403 jermar 328
		 * Remove frames belonging to used space starting from
329
		 * the highest addresses downwards until an overlap with
330
		 * the resized address space area is found. Note that this
331
		 * is also the right way to remove part of the used_space
332
		 * B+tree leaf list.
333
		 */		
334
		for (cond = true; cond;) {
335
			btree_node_t *node;
336
 
337
			ASSERT(!list_empty(&area->used_space.leaf_head));
338
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
339
			if ((cond = (bool) node->keys)) {
1780 jermar 340
				uintptr_t b = node->key[node->keys - 1];
1403 jermar 341
				count_t c = (count_t) node->value[node->keys - 1];
342
				int i = 0;
1235 jermar 343
 
1403 jermar 344
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
345
 
346
					if (b + c*PAGE_SIZE <= start_free) {
347
						/*
348
						 * The whole interval fits completely
349
						 * in the resized address space area.
350
						 */
351
						break;
352
					}
353
 
354
					/*
355
					 * Part of the interval corresponding to b and c
356
					 * overlaps with the resized address space area.
357
					 */
358
 
359
					cond = false;	/* we are almost done */
360
					i = (start_free - b) >> PAGE_WIDTH;
361
					if (!used_space_remove(area, start_free, c - i))
1889 jermar 362
						panic("Could not remove used space.\n");
1403 jermar 363
				} else {
364
					/*
365
					 * The interval of used space can be completely removed.
366
					 */
367
					if (!used_space_remove(area, b, c))
368
						panic("Could not remove used space.\n");
369
				}
370
 
371
				for (; i < c; i++) {
372
					pte_t *pte;
373
 
374
					page_table_lock(as, false);
375
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
376
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 377
					if (area->backend && area->backend->frame_free) {
378
						area->backend->frame_free(area,
1409 jermar 379
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
380
					}
1403 jermar 381
					page_mapping_remove(as, b + i*PAGE_SIZE);
382
					page_table_unlock(as, false);
383
				}
1235 jermar 384
			}
385
		}
1436 jermar 386
 
1235 jermar 387
		/*
1436 jermar 388
		 * Finish TLB shootdown sequence.
1235 jermar 389
		 */
390
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
391
		tlb_shootdown_finalize();
1889 jermar 392
 
393
		/*
394
		 * Invalidate software translation caches (e.g. TSB on sparc64).
395
		 */
396
		as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 397
	} else {
398
		/*
399
		 * Growing the area.
400
		 * Check for overlaps with other address space areas.
401
		 */
402
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 403
			mutex_unlock(&area->lock);
404
			mutex_unlock(&as->lock);		
1235 jermar 405
			interrupts_restore(ipl);
1306 jermar 406
			return EADDRNOTAVAIL;
1235 jermar 407
		}
408
	} 
409
 
410
	area->pages = pages;
411
 
1380 jermar 412
	mutex_unlock(&area->lock);
413
	mutex_unlock(&as->lock);
1235 jermar 414
	interrupts_restore(ipl);
415
 
1306 jermar 416
	return 0;
1235 jermar 417
}
418
 
1306 jermar 419
/** Destroy address space area.
420
 *
421
 * @param as Address space.
422
 * @param address Address withing the area to be deleted.
423
 *
424
 * @return Zero on success or a value from @ref errno.h on failure. 
425
 */
1780 jermar 426
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 427
{
428
	as_area_t *area;
1780 jermar 429
	uintptr_t base;
1495 jermar 430
	link_t *cur;
1306 jermar 431
	ipl_t ipl;
432
 
433
	ipl = interrupts_disable();
1380 jermar 434
	mutex_lock(&as->lock);
1306 jermar 435
 
436
	area = find_area_and_lock(as, address);
437
	if (!area) {
1380 jermar 438
		mutex_unlock(&as->lock);
1306 jermar 439
		interrupts_restore(ipl);
440
		return ENOENT;
441
	}
442
 
1403 jermar 443
	base = area->base;
444
 
1411 jermar 445
	/*
1436 jermar 446
	 * Start TLB shootdown sequence.
447
	 */
1889 jermar 448
	tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 449
 
450
	/*
1411 jermar 451
	 * Visit only the pages mapped by used_space B+tree.
452
	 */
1495 jermar 453
	for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 454
		btree_node_t *node;
1495 jermar 455
		int i;
1403 jermar 456
 
1495 jermar 457
		node = list_get_instance(cur, btree_node_t, leaf_link);
458
		for (i = 0; i < node->keys; i++) {
1780 jermar 459
			uintptr_t b = node->key[i];
1495 jermar 460
			count_t j;
1411 jermar 461
			pte_t *pte;
1403 jermar 462
 
1495 jermar 463
			for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 464
				page_table_lock(as, false);
1495 jermar 465
				pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 466
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 467
				if (area->backend && area->backend->frame_free) {
468
					area->backend->frame_free(area,
1495 jermar 469
						b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 470
				}
1889 jermar 471
				page_mapping_remove(as, b + j*PAGE_SIZE);				
1411 jermar 472
				page_table_unlock(as, false);
1306 jermar 473
			}
474
		}
475
	}
1403 jermar 476
 
1306 jermar 477
	/*
1436 jermar 478
	 * Finish TLB shootdown sequence.
1306 jermar 479
	 */
1889 jermar 480
	tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 481
	tlb_shootdown_finalize();
1436 jermar 482
 
1889 jermar 483
	/*
484
	 * Invalidate potential software translation caches (e.g. TSB on sparc64).
485
	 */
486
	as_invalidate_translation_cache(as, area->base, area->pages);
487
 
1436 jermar 488
	btree_destroy(&area->used_space);
1306 jermar 489
 
1309 jermar 490
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 491
 
492
	if (area->sh_info)
493
		sh_info_remove_reference(area->sh_info);
494
 
1380 jermar 495
	mutex_unlock(&area->lock);
1306 jermar 496
 
497
	/*
498
	 * Remove the empty area from address space.
499
	 */
1889 jermar 500
	btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 501
 
1309 jermar 502
	free(area);
503
 
1889 jermar 504
	mutex_unlock(&as->lock);
1306 jermar 505
	interrupts_restore(ipl);
506
	return 0;
507
}
508
 
1413 jermar 509
/** Share address space area with another or the same address space.
1235 jermar 510
 *
1424 jermar 511
 * Address space area mapping is shared with a new address space area.
512
 * If the source address space area has not been shared so far,
513
 * a new sh_info is created. The new address space area simply gets the
514
 * sh_info of the source area. The process of duplicating the
515
 * mapping is done through the backend share function.
1413 jermar 516
 * 
1417 jermar 517
 * @param src_as Pointer to source address space.
1239 jermar 518
 * @param src_base Base address of the source address space area.
1417 jermar 519
 * @param acc_size Expected size of the source area.
1428 palkovsky 520
 * @param dst_as Pointer to destination address space.
1417 jermar 521
 * @param dst_base Target base address.
522
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 523
 *
1306 jermar 524
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 525
 *	   if there is no such address space area,
526
 *	   EPERM if there was a problem in accepting the area or
527
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 528
 *	   address space area. ENOTSUP is returned if an attempt
529
 *	   to share non-anonymous address space area is detected.
1235 jermar 530
 */
1780 jermar 531
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
532
		  as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 533
{
534
	ipl_t ipl;
1239 jermar 535
	int src_flags;
536
	size_t src_size;
537
	as_area_t *src_area, *dst_area;
1413 jermar 538
	share_info_t *sh_info;
1424 jermar 539
	mem_backend_t *src_backend;
540
	mem_backend_data_t src_backend_data;
1434 palkovsky 541
 
1235 jermar 542
	ipl = interrupts_disable();
1380 jermar 543
	mutex_lock(&src_as->lock);
1329 palkovsky 544
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 545
	if (!src_area) {
1238 jermar 546
		/*
547
		 * Could not find the source address space area.
548
		 */
1380 jermar 549
		mutex_unlock(&src_as->lock);
1238 jermar 550
		interrupts_restore(ipl);
551
		return ENOENT;
552
	}
1413 jermar 553
 
1424 jermar 554
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 555
		/*
1851 jermar 556
		 * There is no backend or the backend does not
1424 jermar 557
		 * know how to share the area.
1413 jermar 558
		 */
559
		mutex_unlock(&src_area->lock);
560
		mutex_unlock(&src_as->lock);
561
		interrupts_restore(ipl);
562
		return ENOTSUP;
563
	}
564
 
1239 jermar 565
	src_size = src_area->pages * PAGE_SIZE;
566
	src_flags = src_area->flags;
1424 jermar 567
	src_backend = src_area->backend;
568
	src_backend_data = src_area->backend_data;
1544 palkovsky 569
 
570
	/* Share the cacheable flag from the original mapping */
571
	if (src_flags & AS_AREA_CACHEABLE)
572
		dst_flags_mask |= AS_AREA_CACHEABLE;
573
 
1461 palkovsky 574
	if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 575
		mutex_unlock(&src_area->lock);
576
		mutex_unlock(&src_as->lock);
1235 jermar 577
		interrupts_restore(ipl);
578
		return EPERM;
579
	}
1413 jermar 580
 
1235 jermar 581
	/*
1413 jermar 582
	 * Now we are committed to sharing the area.
583
	 * First prepare the area for sharing.
584
	 * Then it will be safe to unlock it.
585
	 */
586
	sh_info = src_area->sh_info;
587
	if (!sh_info) {
588
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
589
		mutex_initialize(&sh_info->lock);
590
		sh_info->refcount = 2;
591
		btree_create(&sh_info->pagemap);
592
		src_area->sh_info = sh_info;
593
	} else {
594
		mutex_lock(&sh_info->lock);
595
		sh_info->refcount++;
596
		mutex_unlock(&sh_info->lock);
597
	}
598
 
1424 jermar 599
	src_area->backend->share(src_area);
1413 jermar 600
 
601
	mutex_unlock(&src_area->lock);
602
	mutex_unlock(&src_as->lock);
603
 
604
	/*
1239 jermar 605
	 * Create copy of the source address space area.
606
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
607
	 * attribute set which prevents race condition with
608
	 * preliminary as_page_fault() calls.
1417 jermar 609
	 * The flags of the source area are masked against dst_flags_mask
610
	 * to support sharing in less privileged mode.
1235 jermar 611
	 */
1461 palkovsky 612
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 613
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 614
	if (!dst_area) {
1235 jermar 615
		/*
616
		 * Destination address space area could not be created.
617
		 */
1413 jermar 618
		sh_info_remove_reference(sh_info);
619
 
1235 jermar 620
		interrupts_restore(ipl);
621
		return ENOMEM;
622
	}
623
 
624
	/*
1239 jermar 625
	 * Now the destination address space area has been
626
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 627
	 * attribute and set the sh_info.
1239 jermar 628
	 */	
1380 jermar 629
	mutex_lock(&dst_area->lock);
1239 jermar 630
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 631
	dst_area->sh_info = sh_info;
1380 jermar 632
	mutex_unlock(&dst_area->lock);
1235 jermar 633
 
634
	interrupts_restore(ipl);
635
 
636
	return 0;
637
}
638
 
1423 jermar 639
/** Check access mode for address space area.
640
 *
641
 * The address space area must be locked prior to this call.
642
 *
643
 * @param area Address space area.
644
 * @param access Access mode.
645
 *
646
 * @return False if access violates area's permissions, true otherwise.
647
 */
648
bool as_area_check_access(as_area_t *area, pf_access_t access)
649
{
650
	int flagmap[] = {
651
		[PF_ACCESS_READ] = AS_AREA_READ,
652
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
653
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
654
	};
655
 
656
	if (!(area->flags & flagmap[access]))
657
		return false;
658
 
659
	return true;
660
}
661
 
703 jermar 662
/** Handle page fault within the current address space.
663
 *
1409 jermar 664
 * This is the high-level page fault handler. It decides
665
 * whether the page fault can be resolved by any backend
666
 * and if so, it invokes the backend to resolve the page
667
 * fault.
668
 *
703 jermar 669
 * Interrupts are assumed disabled.
670
 *
671
 * @param page Faulting page.
1411 jermar 672
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 673
 * @param istate Pointer to interrupted state.
703 jermar 674
 *
1409 jermar 675
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
676
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 677
 */
1780 jermar 678
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 679
{
1044 jermar 680
	pte_t *pte;
977 jermar 681
	as_area_t *area;
703 jermar 682
 
1380 jermar 683
	if (!THREAD)
1409 jermar 684
		return AS_PF_FAULT;
1380 jermar 685
 
703 jermar 686
	ASSERT(AS);
1044 jermar 687
 
1380 jermar 688
	mutex_lock(&AS->lock);
977 jermar 689
	area = find_area_and_lock(AS, page);	
703 jermar 690
	if (!area) {
691
		/*
692
		 * No area contained mapping for 'page'.
693
		 * Signal page fault to low-level handler.
694
		 */
1380 jermar 695
		mutex_unlock(&AS->lock);
1288 jermar 696
		goto page_fault;
703 jermar 697
	}
698
 
1239 jermar 699
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
700
		/*
701
		 * The address space area is not fully initialized.
702
		 * Avoid possible race by returning error.
703
		 */
1380 jermar 704
		mutex_unlock(&area->lock);
705
		mutex_unlock(&AS->lock);
1288 jermar 706
		goto page_fault;		
1239 jermar 707
	}
708
 
1424 jermar 709
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 710
		/*
711
		 * The address space area is not backed by any backend
712
		 * or the backend cannot handle page faults.
713
		 */
714
		mutex_unlock(&area->lock);
715
		mutex_unlock(&AS->lock);
716
		goto page_fault;		
717
	}
1179 jermar 718
 
1044 jermar 719
	page_table_lock(AS, false);
720
 
703 jermar 721
	/*
1044 jermar 722
	 * To avoid race condition between two page faults
723
	 * on the same address, we need to make sure
724
	 * the mapping has not been already inserted.
725
	 */
726
	if ((pte = page_mapping_find(AS, page))) {
727
		if (PTE_PRESENT(pte)) {
1423 jermar 728
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
729
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
730
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
731
				page_table_unlock(AS, false);
732
				mutex_unlock(&area->lock);
733
				mutex_unlock(&AS->lock);
734
				return AS_PF_OK;
735
			}
1044 jermar 736
		}
737
	}
1409 jermar 738
 
1044 jermar 739
	/*
1409 jermar 740
	 * Resort to the backend page fault handler.
703 jermar 741
	 */
1424 jermar 742
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 743
		page_table_unlock(AS, false);
744
		mutex_unlock(&area->lock);
745
		mutex_unlock(&AS->lock);
746
		goto page_fault;
747
	}
703 jermar 748
 
1044 jermar 749
	page_table_unlock(AS, false);
1380 jermar 750
	mutex_unlock(&area->lock);
751
	mutex_unlock(&AS->lock);
1288 jermar 752
	return AS_PF_OK;
753
 
754
page_fault:
755
	if (THREAD->in_copy_from_uspace) {
756
		THREAD->in_copy_from_uspace = false;
1780 jermar 757
		istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 758
	} else if (THREAD->in_copy_to_uspace) {
759
		THREAD->in_copy_to_uspace = false;
1780 jermar 760
		istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 761
	} else {
762
		return AS_PF_FAULT;
763
	}
764
 
765
	return AS_PF_DEFER;
703 jermar 766
}
767
 
823 jermar 768
/** Switch address spaces.
703 jermar 769
 *
1380 jermar 770
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 771
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 772
 *
823 jermar 773
 * @param old Old address space or NULL.
774
 * @param new New address space.
703 jermar 775
 */
823 jermar 776
void as_switch(as_t *old, as_t *new)
703 jermar 777
{
778
	ipl_t ipl;
823 jermar 779
	bool needs_asid = false;
703 jermar 780
 
781
	ipl = interrupts_disable();
1415 jermar 782
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 783
 
784
	/*
823 jermar 785
	 * First, take care of the old address space.
786
	 */	
787
	if (old) {
1380 jermar 788
		mutex_lock_active(&old->lock);
1415 jermar 789
		ASSERT(old->cpu_refcount);
790
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 791
			/*
792
			 * The old address space is no longer active on
793
			 * any processor. It can be appended to the
794
			 * list of inactive address spaces with assigned
795
			 * ASID.
796
			 */
797
			 ASSERT(old->asid != ASID_INVALID);
798
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
799
		}
1380 jermar 800
		mutex_unlock(&old->lock);
823 jermar 801
	}
802
 
803
	/*
804
	 * Second, prepare the new address space.
805
	 */
1380 jermar 806
	mutex_lock_active(&new->lock);
1415 jermar 807
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 808
		if (new->asid != ASID_INVALID)
809
			list_remove(&new->inactive_as_with_asid_link);
810
		else
811
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
812
	}
813
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 814
	mutex_unlock(&new->lock);
823 jermar 815
 
816
	if (needs_asid) {
817
		/*
818
		 * Allocation of new ASID was deferred
819
		 * until now in order to avoid deadlock.
820
		 */
821
		asid_t asid;
822
 
823
		asid = asid_get();
1380 jermar 824
		mutex_lock_active(&new->lock);
823 jermar 825
		new->asid = asid;
1380 jermar 826
		mutex_unlock(&new->lock);
823 jermar 827
	}
1415 jermar 828
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 829
	interrupts_restore(ipl);
830
 
831
	/*
703 jermar 832
	 * Perform architecture-specific steps.
727 jermar 833
	 * (e.g. write ASID to hardware register etc.)
703 jermar 834
	 */
823 jermar 835
	as_install_arch(new);
703 jermar 836
 
823 jermar 837
	AS = new;
703 jermar 838
}
754 jermar 839
 
1235 jermar 840
/** Convert address space area flags to page flags.
754 jermar 841
 *
1235 jermar 842
 * @param aflags Flags of some address space area.
754 jermar 843
 *
1235 jermar 844
 * @return Flags to be passed to page_mapping_insert().
754 jermar 845
 */
1235 jermar 846
int area_flags_to_page_flags(int aflags)
754 jermar 847
{
848
	int flags;
849
 
1178 jermar 850
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 851
 
1235 jermar 852
	if (aflags & AS_AREA_READ)
1026 jermar 853
		flags |= PAGE_READ;
854
 
1235 jermar 855
	if (aflags & AS_AREA_WRITE)
1026 jermar 856
		flags |= PAGE_WRITE;
857
 
1235 jermar 858
	if (aflags & AS_AREA_EXEC)
1026 jermar 859
		flags |= PAGE_EXEC;
860
 
1424 jermar 861
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 862
		flags |= PAGE_CACHEABLE;
863
 
754 jermar 864
	return flags;
865
}
756 jermar 866
 
1235 jermar 867
/** Compute flags for virtual address translation subsytem.
868
 *
869
 * The address space area must be locked.
870
 * Interrupts must be disabled.
871
 *
872
 * @param a Address space area.
873
 *
874
 * @return Flags to be used in page_mapping_insert().
875
 */
1409 jermar 876
int as_area_get_flags(as_area_t *a)
1235 jermar 877
{
878
	return area_flags_to_page_flags(a->flags);
879
}
880
 
756 jermar 881
/** Create page table.
882
 *
883
 * Depending on architecture, create either address space
884
 * private or global page table.
885
 *
886
 * @param flags Flags saying whether the page table is for kernel address space.
887
 *
888
 * @return First entry of the page table.
889
 */
890
pte_t *page_table_create(int flags)
891
{
892
        ASSERT(as_operations);
893
        ASSERT(as_operations->page_table_create);
894
 
895
        return as_operations->page_table_create(flags);
896
}
977 jermar 897
 
1468 jermar 898
/** Destroy page table.
899
 *
900
 * Destroy page table in architecture specific way.
901
 *
902
 * @param page_table Physical address of PTL0.
903
 */
904
void page_table_destroy(pte_t *page_table)
905
{
906
        ASSERT(as_operations);
907
        ASSERT(as_operations->page_table_destroy);
908
 
909
        as_operations->page_table_destroy(page_table);
910
}
911
 
1044 jermar 912
/** Lock page table.
913
 *
914
 * This function should be called before any page_mapping_insert(),
915
 * page_mapping_remove() and page_mapping_find().
916
 * 
917
 * Locking order is such that address space areas must be locked
918
 * prior to this call. Address space can be locked prior to this
919
 * call in which case the lock argument is false.
920
 *
921
 * @param as Address space.
1248 jermar 922
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 923
 */
924
void page_table_lock(as_t *as, bool lock)
925
{
926
	ASSERT(as_operations);
927
	ASSERT(as_operations->page_table_lock);
928
 
929
	as_operations->page_table_lock(as, lock);
930
}
931
 
932
/** Unlock page table.
933
 *
934
 * @param as Address space.
1248 jermar 935
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 936
 */
937
void page_table_unlock(as_t *as, bool unlock)
938
{
939
	ASSERT(as_operations);
940
	ASSERT(as_operations->page_table_unlock);
941
 
942
	as_operations->page_table_unlock(as, unlock);
943
}
944
 
977 jermar 945
 
946
/** Find address space area and lock it.
947
 *
948
 * The address space must be locked and interrupts must be disabled.
949
 *
950
 * @param as Address space.
951
 * @param va Virtual address.
952
 *
953
 * @return Locked address space area containing va on success or NULL on failure.
954
 */
1780 jermar 955
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 956
{
957
	as_area_t *a;
1147 jermar 958
	btree_node_t *leaf, *lnode;
959
	int i;
977 jermar 960
 
1147 jermar 961
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
962
	if (a) {
963
		/* va is the base address of an address space area */
1380 jermar 964
		mutex_lock(&a->lock);
1147 jermar 965
		return a;
966
	}
967
 
968
	/*
1150 jermar 969
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 970
	 * to find out whether this is a miss or va belongs to an address
971
	 * space area found there.
972
	 */
973
 
974
	/* First, search the leaf node itself. */
975
	for (i = 0; i < leaf->keys; i++) {
976
		a = (as_area_t *) leaf->value[i];
1380 jermar 977
		mutex_lock(&a->lock);
1147 jermar 978
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
979
			return a;
980
		}
1380 jermar 981
		mutex_unlock(&a->lock);
1147 jermar 982
	}
977 jermar 983
 
1147 jermar 984
	/*
1150 jermar 985
	 * Second, locate the left neighbour and test its last record.
1148 jermar 986
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 987
	 */
1150 jermar 988
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 989
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 990
		mutex_lock(&a->lock);
1147 jermar 991
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 992
			return a;
1147 jermar 993
		}
1380 jermar 994
		mutex_unlock(&a->lock);
977 jermar 995
	}
996
 
997
	return NULL;
998
}
1048 jermar 999
 
1000
/** Check area conflicts with other areas.
1001
 *
1002
 * The address space must be locked and interrupts must be disabled.
1003
 *
1004
 * @param as Address space.
1005
 * @param va Starting virtual address of the area being tested.
1006
 * @param size Size of the area being tested.
1007
 * @param avoid_area Do not touch this area. 
1008
 *
1009
 * @return True if there is no conflict, false otherwise.
1010
 */
1780 jermar 1011
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1012
{
1013
	as_area_t *a;
1147 jermar 1014
	btree_node_t *leaf, *node;
1015
	int i;
1048 jermar 1016
 
1070 jermar 1017
	/*
1018
	 * We don't want any area to have conflicts with NULL page.
1019
	 */
1020
	if (overlaps(va, size, NULL, PAGE_SIZE))
1021
		return false;
1022
 
1147 jermar 1023
	/*
1024
	 * The leaf node is found in O(log n), where n is proportional to
1025
	 * the number of address space areas belonging to as.
1026
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1027
	 * record in the left neighbour, the leftmost record in the right
1028
	 * neighbour and all records in the leaf node itself.
1147 jermar 1029
	 */
1048 jermar 1030
 
1147 jermar 1031
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1032
		if (a != avoid_area)
1033
			return false;
1034
	}
1035
 
1036
	/* First, check the two border cases. */
1150 jermar 1037
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1038
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1039
		mutex_lock(&a->lock);
1147 jermar 1040
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1041
			mutex_unlock(&a->lock);
1147 jermar 1042
			return false;
1043
		}
1380 jermar 1044
		mutex_unlock(&a->lock);
1147 jermar 1045
	}
1150 jermar 1046
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1047
		a = (as_area_t *) node->value[0];
1380 jermar 1048
		mutex_lock(&a->lock);
1147 jermar 1049
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1050
			mutex_unlock(&a->lock);
1147 jermar 1051
			return false;
1052
		}
1380 jermar 1053
		mutex_unlock(&a->lock);
1147 jermar 1054
	}
1055
 
1056
	/* Second, check the leaf node. */
1057
	for (i = 0; i < leaf->keys; i++) {
1058
		a = (as_area_t *) leaf->value[i];
1059
 
1048 jermar 1060
		if (a == avoid_area)
1061
			continue;
1147 jermar 1062
 
1380 jermar 1063
		mutex_lock(&a->lock);
1147 jermar 1064
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1065
			mutex_unlock(&a->lock);
1147 jermar 1066
			return false;
1067
		}
1380 jermar 1068
		mutex_unlock(&a->lock);
1048 jermar 1069
	}
1070
 
1070 jermar 1071
	/*
1072
	 * So far, the area does not conflict with other areas.
1073
	 * Check if it doesn't conflict with kernel address space.
1074
	 */	 
1075
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1076
		return !overlaps(va, size, 
1077
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1078
	}
1079
 
1048 jermar 1080
	return true;
1081
}
1235 jermar 1082
 
1380 jermar 1083
/** Return size of the address space area with given base.  */
1780 jermar 1084
size_t as_get_size(uintptr_t base)
1329 palkovsky 1085
{
1086
	ipl_t ipl;
1087
	as_area_t *src_area;
1088
	size_t size;
1089
 
1090
	ipl = interrupts_disable();
1091
	src_area = find_area_and_lock(AS, base);
1092
	if (src_area){
1093
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1094
		mutex_unlock(&src_area->lock);
1329 palkovsky 1095
	} else {
1096
		size = 0;
1097
	}
1098
	interrupts_restore(ipl);
1099
	return size;
1100
}
1101
 
1387 jermar 1102
/** Mark portion of address space area as used.
1103
 *
1104
 * The address space area must be already locked.
1105
 *
1106
 * @param a Address space area.
1107
 * @param page First page to be marked.
1108
 * @param count Number of page to be marked.
1109
 *
1110
 * @return 0 on failure and 1 on success.
1111
 */
1780 jermar 1112
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1113
{
1114
	btree_node_t *leaf, *node;
1115
	count_t pages;
1116
	int i;
1117
 
1118
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1119
	ASSERT(count);
1120
 
1121
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1122
	if (pages) {
1123
		/*
1124
		 * We hit the beginning of some used space.
1125
		 */
1126
		return 0;
1127
	}
1128
 
1437 jermar 1129
	if (!leaf->keys) {
1130
		btree_insert(&a->used_space, page, (void *) count, leaf);
1131
		return 1;
1132
	}
1133
 
1387 jermar 1134
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1135
	if (node) {
1780 jermar 1136
		uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1137
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1138
 
1139
		/*
1140
		 * Examine the possibility that the interval fits
1141
		 * somewhere between the rightmost interval of
1142
		 * the left neigbour and the first interval of the leaf.
1143
		 */
1144
 
1145
		if (page >= right_pg) {
1146
			/* Do nothing. */
1147
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1148
			/* The interval intersects with the left interval. */
1149
			return 0;
1150
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1151
			/* The interval intersects with the right interval. */
1152
			return 0;			
1153
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1154
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1155
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1156
			btree_remove(&a->used_space, right_pg, leaf);
1157
			return 1; 
1158
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1159
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1160
			node->value[node->keys - 1] += count;
1387 jermar 1161
			return 1;
1162
		} else if (page + count*PAGE_SIZE == right_pg) {
1163
			/*
1164
			 * The interval can be addded by simply moving base of the right
1165
			 * interval down and increasing its size accordingly.
1166
			 */
1403 jermar 1167
			leaf->value[0] += count;
1387 jermar 1168
			leaf->key[0] = page;
1169
			return 1;
1170
		} else {
1171
			/*
1172
			 * The interval is between both neigbouring intervals,
1173
			 * but cannot be merged with any of them.
1174
			 */
1175
			btree_insert(&a->used_space, page, (void *) count, leaf);
1176
			return 1;
1177
		}
1178
	} else if (page < leaf->key[0]) {
1780 jermar 1179
		uintptr_t right_pg = leaf->key[0];
1387 jermar 1180
		count_t right_cnt = (count_t) leaf->value[0];
1181
 
1182
		/*
1183
		 * Investigate the border case in which the left neighbour does not
1184
		 * exist but the interval fits from the left.
1185
		 */
1186
 
1187
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1188
			/* The interval intersects with the right interval. */
1189
			return 0;
1190
		} else if (page + count*PAGE_SIZE == right_pg) {
1191
			/*
1192
			 * The interval can be added by moving the base of the right interval down
1193
			 * and increasing its size accordingly.
1194
			 */
1195
			leaf->key[0] = page;
1403 jermar 1196
			leaf->value[0] += count;
1387 jermar 1197
			return 1;
1198
		} else {
1199
			/*
1200
			 * The interval doesn't adjoin with the right interval.
1201
			 * It must be added individually.
1202
			 */
1203
			btree_insert(&a->used_space, page, (void *) count, leaf);
1204
			return 1;
1205
		}
1206
	}
1207
 
1208
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1209
	if (node) {
1780 jermar 1210
		uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1211
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1212
 
1213
		/*
1214
		 * Examine the possibility that the interval fits
1215
		 * somewhere between the leftmost interval of
1216
		 * the right neigbour and the last interval of the leaf.
1217
		 */
1218
 
1219
		if (page < left_pg) {
1220
			/* Do nothing. */
1221
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1222
			/* The interval intersects with the left interval. */
1223
			return 0;
1224
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1225
			/* The interval intersects with the right interval. */
1226
			return 0;			
1227
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1228
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1229
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1230
			btree_remove(&a->used_space, right_pg, node);
1231
			return 1; 
1232
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1233
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1234
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1235
			return 1;
1236
		} else if (page + count*PAGE_SIZE == right_pg) {
1237
			/*
1238
			 * The interval can be addded by simply moving base of the right
1239
			 * interval down and increasing its size accordingly.
1240
			 */
1403 jermar 1241
			node->value[0] += count;
1387 jermar 1242
			node->key[0] = page;
1243
			return 1;
1244
		} else {
1245
			/*
1246
			 * The interval is between both neigbouring intervals,
1247
			 * but cannot be merged with any of them.
1248
			 */
1249
			btree_insert(&a->used_space, page, (void *) count, leaf);
1250
			return 1;
1251
		}
1252
	} else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1253
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1254
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1255
 
1256
		/*
1257
		 * Investigate the border case in which the right neighbour does not
1258
		 * exist but the interval fits from the right.
1259
		 */
1260
 
1261
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1262
			/* The interval intersects with the left interval. */
1387 jermar 1263
			return 0;
1264
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1265
			/* The interval can be added by growing the left interval. */
1403 jermar 1266
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1267
			return 1;
1268
		} else {
1269
			/*
1270
			 * The interval doesn't adjoin with the left interval.
1271
			 * It must be added individually.
1272
			 */
1273
			btree_insert(&a->used_space, page, (void *) count, leaf);
1274
			return 1;
1275
		}
1276
	}
1277
 
1278
	/*
1279
	 * Note that if the algorithm made it thus far, the interval can fit only
1280
	 * between two other intervals of the leaf. The two border cases were already
1281
	 * resolved.
1282
	 */
1283
	for (i = 1; i < leaf->keys; i++) {
1284
		if (page < leaf->key[i]) {
1780 jermar 1285
			uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1286
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1287
 
1288
			/*
1289
			 * The interval fits between left_pg and right_pg.
1290
			 */
1291
 
1292
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1293
				/* The interval intersects with the left interval. */
1294
				return 0;
1295
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1296
				/* The interval intersects with the right interval. */
1297
				return 0;			
1298
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1299
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1300
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1301
				btree_remove(&a->used_space, right_pg, leaf);
1302
				return 1; 
1303
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1304
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1305
				leaf->value[i - 1] += count;
1387 jermar 1306
				return 1;
1307
			} else if (page + count*PAGE_SIZE == right_pg) {
1308
				/*
1309
			         * The interval can be addded by simply moving base of the right
1310
			 	 * interval down and increasing its size accordingly.
1311
			 	 */
1403 jermar 1312
				leaf->value[i] += count;
1387 jermar 1313
				leaf->key[i] = page;
1314
				return 1;
1315
			} else {
1316
				/*
1317
				 * The interval is between both neigbouring intervals,
1318
				 * but cannot be merged with any of them.
1319
				 */
1320
				btree_insert(&a->used_space, page, (void *) count, leaf);
1321
				return 1;
1322
			}
1323
		}
1324
	}
1325
 
1735 decky 1326
	panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1327
}
1328
 
1329
/** Mark portion of address space area as unused.
1330
 *
1331
 * The address space area must be already locked.
1332
 *
1333
 * @param a Address space area.
1334
 * @param page First page to be marked.
1335
 * @param count Number of page to be marked.
1336
 *
1337
 * @return 0 on failure and 1 on success.
1338
 */
1780 jermar 1339
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1340
{
1341
	btree_node_t *leaf, *node;
1342
	count_t pages;
1343
	int i;
1344
 
1345
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1346
	ASSERT(count);
1347
 
1348
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1349
	if (pages) {
1350
		/*
1351
		 * We are lucky, page is the beginning of some interval.
1352
		 */
1353
		if (count > pages) {
1354
			return 0;
1355
		} else if (count == pages) {
1356
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1357
			return 1;
1387 jermar 1358
		} else {
1359
			/*
1360
			 * Find the respective interval.
1361
			 * Decrease its size and relocate its start address.
1362
			 */
1363
			for (i = 0; i < leaf->keys; i++) {
1364
				if (leaf->key[i] == page) {
1365
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1366
					leaf->value[i] -= count;
1387 jermar 1367
					return 1;
1368
				}
1369
			}
1370
			goto error;
1371
		}
1372
	}
1373
 
1374
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1375
	if (node && page < leaf->key[0]) {
1780 jermar 1376
		uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1377
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1378
 
1379
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1380
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1381
				/*
1382
				 * The interval is contained in the rightmost interval
1383
				 * of the left neighbour and can be removed by
1384
				 * updating the size of the bigger interval.
1385
				 */
1403 jermar 1386
				node->value[node->keys - 1] -= count;
1387 jermar 1387
				return 1;
1388
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1389
				count_t new_cnt;
1387 jermar 1390
 
1391
				/*
1392
				 * The interval is contained in the rightmost interval
1393
				 * of the left neighbour but its removal requires
1394
				 * both updating the size of the original interval and
1395
				 * also inserting a new interval.
1396
				 */
1403 jermar 1397
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1398
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1399
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1400
				return 1;
1401
			}
1402
		}
1403
		return 0;
1404
	} else if (page < leaf->key[0]) {
1405
		return 0;
1406
	}
1407
 
1408
	if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1409
		uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1410
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1411
 
1412
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1413
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1414
				/*
1415
				 * The interval is contained in the rightmost interval
1416
				 * of the leaf and can be removed by updating the size
1417
				 * of the bigger interval.
1418
				 */
1403 jermar 1419
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1420
				return 1;
1421
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1422
				count_t new_cnt;
1387 jermar 1423
 
1424
				/*
1425
				 * The interval is contained in the rightmost interval
1426
				 * of the leaf but its removal requires both updating
1427
				 * the size of the original interval and
1428
				 * also inserting a new interval.
1429
				 */
1403 jermar 1430
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1431
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1432
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1433
				return 1;
1434
			}
1435
		}
1436
		return 0;
1437
	}	
1438
 
1439
	/*
1440
	 * The border cases have been already resolved.
1441
	 * Now the interval can be only between intervals of the leaf. 
1442
	 */
1443
	for (i = 1; i < leaf->keys - 1; i++) {
1444
		if (page < leaf->key[i]) {
1780 jermar 1445
			uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1446
			count_t left_cnt = (count_t) leaf->value[i - 1];
1447
 
1448
			/*
1449
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1450
			 */
1451
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1452
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1453
					/*
1454
				 	* The interval is contained in the interval (i - 1)
1455
					 * of the leaf and can be removed by updating the size
1456
					 * of the bigger interval.
1457
					 */
1403 jermar 1458
					leaf->value[i - 1] -= count;
1387 jermar 1459
					return 1;
1460
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1461
					count_t new_cnt;
1387 jermar 1462
 
1463
					/*
1464
					 * The interval is contained in the interval (i - 1)
1465
					 * of the leaf but its removal requires both updating
1466
					 * the size of the original interval and
1467
					 * also inserting a new interval.
1468
					 */
1403 jermar 1469
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1470
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1471
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1472
					return 1;
1473
				}
1474
			}
1475
			return 0;
1476
		}
1477
	}
1478
 
1479
error:
1735 decky 1480
	panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1481
}
1482
 
1409 jermar 1483
/** Remove reference to address space area share info.
1484
 *
1485
 * If the reference count drops to 0, the sh_info is deallocated.
1486
 *
1487
 * @param sh_info Pointer to address space area share info.
1488
 */
1489
void sh_info_remove_reference(share_info_t *sh_info)
1490
{
1491
	bool dealloc = false;
1492
 
1493
	mutex_lock(&sh_info->lock);
1494
	ASSERT(sh_info->refcount);
1495
	if (--sh_info->refcount == 0) {
1496
		dealloc = true;
1495 jermar 1497
		link_t *cur;
1409 jermar 1498
 
1499
		/*
1500
		 * Now walk carefully the pagemap B+tree and free/remove
1501
		 * reference from all frames found there.
1502
		 */
1495 jermar 1503
		for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1504
			btree_node_t *node;
1495 jermar 1505
			int i;
1409 jermar 1506
 
1495 jermar 1507
			node = list_get_instance(cur, btree_node_t, leaf_link);
1508
			for (i = 0; i < node->keys; i++) 
1780 jermar 1509
				frame_free((uintptr_t) node->value[i]);
1409 jermar 1510
		}
1511
 
1512
	}
1513
	mutex_unlock(&sh_info->lock);
1514
 
1515
	if (dealloc) {
1516
		btree_destroy(&sh_info->pagemap);
1517
		free(sh_info);
1518
	}
1519
}
1520
 
1235 jermar 1521
/*
1522
 * Address space related syscalls.
1523
 */
1524
 
1525
/** Wrapper for as_area_create(). */
1780 jermar 1526
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1527
{
1424 jermar 1528
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1529
		return (unative_t) address;
1235 jermar 1530
	else
1780 jermar 1531
		return (unative_t) -1;
1235 jermar 1532
}
1533
 
1793 jermar 1534
/** Wrapper for as_area_resize(). */
1780 jermar 1535
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1536
{
1780 jermar 1537
	return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1538
}
1539
 
1793 jermar 1540
/** Wrapper for as_area_destroy(). */
1780 jermar 1541
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1542
{
1780 jermar 1543
	return (unative_t) as_area_destroy(AS, address);
1306 jermar 1544
}
1702 cejka 1545
 
1757 jermar 1546
/** @}
1702 cejka 1547
 */