Rev 1221 | Rev 1483 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1248 | jermar | 29 | /** |
30 | * @file btree.c |
||
31 | * @brief B+tree implementation. |
||
1101 | jermar | 32 | * |
1248 | jermar | 33 | * This file implements B+tree type and operations. |
34 | * |
||
35 | * The B+tree has the following properties: |
||
36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
37 | * @li values (i.e. pointers to values) are stored only in leaves |
||
38 | * @li leaves are linked in a list |
||
39 | * |
||
1134 | jermar | 40 | * Be carefull when using these trees. They need to allocate |
41 | * and deallocate memory for their index nodes and as such |
||
42 | * can sleep. |
||
1101 | jermar | 43 | */ |
44 | |||
45 | #include <adt/btree.h> |
||
46 | #include <adt/list.h> |
||
47 | #include <mm/slab.h> |
||
48 | #include <debug.h> |
||
49 | #include <panic.h> |
||
50 | #include <typedefs.h> |
||
51 | #include <print.h> |
||
52 | |||
1177 | jermar | 53 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
54 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
1101 | jermar | 55 | static void node_initialize(btree_node_t *node); |
1177 | jermar | 56 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
57 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
58 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
59 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
60 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
1142 | jermar | 61 | static btree_node_t *node_combine(btree_node_t *node); |
1136 | jermar | 62 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
1142 | jermar | 63 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
64 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
1177 | jermar | 65 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
66 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
1142 | jermar | 67 | static bool try_rotation_from_left(btree_node_t *rnode); |
68 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
1101 | jermar | 69 | |
70 | #define ROOT_NODE(n) (!(n)->parent) |
||
71 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
72 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
73 | |||
1140 | jermar | 74 | #define FILL_FACTOR ((BTREE_M-1)/2) |
75 | |||
1101 | jermar | 76 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
77 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
78 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
79 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
80 | |||
1164 | jermar | 81 | static slab_cache_t *btree_node_slab; |
82 | |||
83 | /** Initialize B-trees. */ |
||
84 | void btree_init(void) |
||
85 | { |
||
86 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
87 | } |
||
88 | |||
1101 | jermar | 89 | /** Create empty B-tree. |
90 | * |
||
91 | * @param t B-tree. |
||
92 | */ |
||
93 | void btree_create(btree_t *t) |
||
94 | { |
||
95 | list_initialize(&t->leaf_head); |
||
1164 | jermar | 96 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 97 | node_initialize(t->root); |
98 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
99 | } |
||
100 | |||
101 | /** Destroy empty B-tree. */ |
||
102 | void btree_destroy(btree_t *t) |
||
103 | { |
||
104 | ASSERT(!t->root->keys); |
||
1164 | jermar | 105 | slab_free(btree_node_slab, t->root); |
1101 | jermar | 106 | } |
107 | |||
108 | /** Insert key-value pair into B-tree. |
||
109 | * |
||
110 | * @param t B-tree. |
||
111 | * @param key Key to be inserted. |
||
112 | * @param value Value to be inserted. |
||
113 | * @param leaf_node Leaf node where the insertion should begin. |
||
114 | */ |
||
1177 | jermar | 115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
1101 | jermar | 116 | { |
117 | btree_node_t *lnode; |
||
118 | |||
119 | ASSERT(value); |
||
120 | |||
121 | lnode = leaf_node; |
||
122 | if (!lnode) { |
||
123 | if (btree_search(t, key, &lnode)) { |
||
1221 | decky | 124 | panic("B-tree %p already contains key %d\n", t, key); |
1101 | jermar | 125 | } |
126 | } |
||
127 | |||
128 | _btree_insert(t, key, value, NULL, lnode); |
||
129 | } |
||
130 | |||
131 | /** Recursively insert into B-tree. |
||
132 | * |
||
133 | * @param t B-tree. |
||
134 | * @param key Key to be inserted. |
||
135 | * @param value Value to be inserted. |
||
136 | * @param rsubtree Right subtree of the inserted key. |
||
137 | * @param node Start inserting into this node. |
||
138 | */ |
||
1177 | jermar | 139 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
1101 | jermar | 140 | { |
141 | if (node->keys < BTREE_MAX_KEYS) { |
||
142 | /* |
||
143 | * Node conatins enough space, the key can be stored immediately. |
||
144 | */ |
||
1142 | jermar | 145 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
146 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
1136 | jermar | 147 | /* |
148 | * The key-value-rsubtree triplet has been inserted because |
||
149 | * some keys could have been moved to the left sibling. |
||
150 | */ |
||
1142 | jermar | 151 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
1136 | jermar | 152 | /* |
153 | * The key-value-rsubtree triplet has been inserted because |
||
154 | * some keys could have been moved to the right sibling. |
||
155 | */ |
||
1101 | jermar | 156 | } else { |
157 | btree_node_t *rnode; |
||
1177 | jermar | 158 | btree_key_t median; |
1101 | jermar | 159 | |
160 | /* |
||
1136 | jermar | 161 | * Node is full and both siblings (if both exist) are full too. |
162 | * Split the node and insert the smallest key from the node containing |
||
163 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 164 | */ |
165 | |||
166 | rnode = node_split(node, key, value, rsubtree, &median); |
||
167 | |||
168 | if (LEAF_NODE(node)) { |
||
1144 | jermar | 169 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
1101 | jermar | 170 | } |
171 | |||
172 | if (ROOT_NODE(node)) { |
||
173 | /* |
||
174 | * We split the root node. Create new root. |
||
175 | */ |
||
1164 | jermar | 176 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 177 | node->parent = t->root; |
178 | rnode->parent = t->root; |
||
179 | node_initialize(t->root); |
||
180 | |||
181 | /* |
||
182 | * Left-hand side subtree will be the old root (i.e. node). |
||
183 | * Right-hand side subtree will be rnode. |
||
184 | */ |
||
185 | t->root->subtree[0] = node; |
||
186 | |||
187 | t->root->depth = node->depth + 1; |
||
188 | } |
||
189 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
190 | } |
||
191 | |||
192 | } |
||
193 | |||
1140 | jermar | 194 | /** Remove B-tree node. |
195 | * |
||
196 | * @param B-tree. |
||
197 | * @param key Key to be removed from the B-tree along with its associated value. |
||
198 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
199 | */ |
||
1177 | jermar | 200 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
1101 | jermar | 201 | { |
1140 | jermar | 202 | btree_node_t *lnode; |
203 | |||
204 | lnode = leaf_node; |
||
205 | if (!lnode) { |
||
206 | if (!btree_search(t, key, &lnode)) { |
||
1221 | decky | 207 | panic("B-tree %p does not contain key %d\n", t, key); |
1140 | jermar | 208 | } |
209 | } |
||
210 | |||
1142 | jermar | 211 | _btree_remove(t, key, lnode); |
212 | } |
||
1140 | jermar | 213 | |
1142 | jermar | 214 | /** Recursively remove B-tree node. |
215 | * |
||
216 | * @param B-tree. |
||
217 | * @param key Key to be removed from the B-tree along with its associated value. |
||
218 | * @param node Node where the key being removed resides. |
||
219 | */ |
||
1177 | jermar | 220 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
1142 | jermar | 221 | { |
222 | if (ROOT_NODE(node)) { |
||
223 | if (node->keys == 1 && node->subtree[0]) { |
||
224 | /* |
||
225 | * Free the current root and set new root. |
||
226 | */ |
||
227 | t->root = node->subtree[0]; |
||
228 | t->root->parent = NULL; |
||
1164 | jermar | 229 | slab_free(btree_node_slab, node); |
1142 | jermar | 230 | } else { |
231 | /* |
||
232 | * Remove the key from the root node. |
||
233 | * Note that the right subtree is removed because when |
||
234 | * combining two nodes, the left-side sibling is preserved |
||
235 | * and the right-side sibling is freed. |
||
236 | */ |
||
237 | node_remove_key_and_rsubtree(node, key); |
||
238 | } |
||
239 | return; |
||
240 | } |
||
241 | |||
242 | if (node->keys <= FILL_FACTOR) { |
||
243 | /* |
||
244 | * If the node is below the fill factor, |
||
245 | * try to borrow keys from left or right sibling. |
||
246 | */ |
||
247 | if (!try_rotation_from_left(node)) |
||
248 | try_rotation_from_right(node); |
||
249 | } |
||
250 | |||
251 | if (node->keys > FILL_FACTOR) { |
||
252 | int i; |
||
253 | |||
254 | /* |
||
255 | * The key can be immediatelly removed. |
||
256 | * |
||
257 | * Note that the right subtree is removed because when |
||
258 | * combining two nodes, the left-side sibling is preserved |
||
259 | * and the right-side sibling is freed. |
||
260 | */ |
||
261 | node_remove_key_and_rsubtree(node, key); |
||
262 | for (i = 0; i < node->parent->keys; i++) { |
||
263 | if (node->parent->key[i] == key) |
||
264 | node->parent->key[i] = node->key[0]; |
||
265 | } |
||
266 | |||
267 | } else { |
||
268 | index_t idx; |
||
269 | btree_node_t *rnode, *parent; |
||
270 | |||
271 | /* |
||
272 | * The node is below the fill factor as well as its left and right sibling. |
||
273 | * Resort to combining the node with one of its siblings. |
||
274 | * The node which is on the left is preserved and the node on the right is |
||
275 | * freed. |
||
276 | */ |
||
277 | parent = node->parent; |
||
278 | node_remove_key_and_rsubtree(node, key); |
||
279 | rnode = node_combine(node); |
||
280 | if (LEAF_NODE(rnode)) |
||
281 | list_remove(&rnode->leaf_link); |
||
282 | idx = find_key_by_subtree(parent, rnode, true); |
||
283 | ASSERT((int) idx != -1); |
||
1164 | jermar | 284 | slab_free(btree_node_slab, rnode); |
1142 | jermar | 285 | _btree_remove(t, parent->key[idx], parent); |
286 | } |
||
1101 | jermar | 287 | } |
288 | |||
289 | /** Search key in a B-tree. |
||
290 | * |
||
291 | * @param t B-tree. |
||
292 | * @param key Key to be searched. |
||
293 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
294 | * |
||
295 | * @return Pointer to value or NULL if there is no such key. |
||
296 | */ |
||
1177 | jermar | 297 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
1101 | jermar | 298 | { |
299 | btree_node_t *cur, *next; |
||
300 | |||
301 | /* |
||
1134 | jermar | 302 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 303 | */ |
304 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 305 | |
1101 | jermar | 306 | /* Last iteration will set this with proper leaf node address. */ |
307 | *leaf_node = cur; |
||
1134 | jermar | 308 | |
309 | /* |
||
310 | * The key can be in the leftmost subtree. |
||
311 | * Test it separately. |
||
312 | */ |
||
313 | if (key < cur->key[0]) { |
||
314 | next = cur->subtree[0]; |
||
315 | continue; |
||
316 | } else { |
||
317 | void *val; |
||
318 | int i; |
||
319 | |||
320 | /* |
||
321 | * Now if the key is smaller than cur->key[i] |
||
322 | * it can only mean that the value is in cur->subtree[i] |
||
323 | * or it is not in the tree at all. |
||
324 | */ |
||
325 | for (i = 1; i < cur->keys; i++) { |
||
326 | if (key < cur->key[i]) { |
||
327 | next = cur->subtree[i]; |
||
328 | val = cur->value[i - 1]; |
||
329 | |||
330 | if (LEAF_NODE(cur)) |
||
331 | return key == cur->key[i - 1] ? val : NULL; |
||
332 | |||
333 | goto descend; |
||
334 | } |
||
1101 | jermar | 335 | } |
1134 | jermar | 336 | |
337 | /* |
||
338 | * Last possibility is that the key is in the rightmost subtree. |
||
339 | */ |
||
340 | next = cur->subtree[i]; |
||
341 | val = cur->value[i - 1]; |
||
342 | if (LEAF_NODE(cur)) |
||
343 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 344 | } |
1134 | jermar | 345 | descend: |
346 | ; |
||
1101 | jermar | 347 | } |
348 | |||
349 | /* |
||
1134 | jermar | 350 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 351 | */ |
352 | return NULL; |
||
353 | } |
||
354 | |||
1150 | jermar | 355 | /** Return pointer to B-tree leaf node's left neighbour. |
1147 | jermar | 356 | * |
357 | * @param t B-tree. |
||
1150 | jermar | 358 | * @param node Node whose left neighbour will be returned. |
1147 | jermar | 359 | * |
1150 | jermar | 360 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
1147 | jermar | 361 | */ |
1150 | jermar | 362 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 363 | { |
364 | ASSERT(LEAF_NODE(node)); |
||
365 | if (node->leaf_link.prev != &t->leaf_head) |
||
366 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
367 | else |
||
368 | return NULL; |
||
369 | } |
||
370 | |||
1150 | jermar | 371 | /** Return pointer to B-tree leaf node's right neighbour. |
1147 | jermar | 372 | * |
373 | * @param t B-tree. |
||
1150 | jermar | 374 | * @param node Node whose right neighbour will be returned. |
1147 | jermar | 375 | * |
1150 | jermar | 376 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
1147 | jermar | 377 | */ |
1150 | jermar | 378 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 379 | { |
380 | ASSERT(LEAF_NODE(node)); |
||
381 | if (node->leaf_link.next != &t->leaf_head) |
||
382 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
383 | else |
||
384 | return NULL; |
||
385 | } |
||
386 | |||
1101 | jermar | 387 | /** Initialize B-tree node. |
388 | * |
||
389 | * @param node B-tree node. |
||
390 | */ |
||
391 | void node_initialize(btree_node_t *node) |
||
392 | { |
||
393 | int i; |
||
394 | |||
395 | node->keys = 0; |
||
396 | |||
397 | /* Clean also space for the extra key. */ |
||
398 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
399 | node->key[i] = 0; |
||
400 | node->value[i] = NULL; |
||
401 | node->subtree[i] = NULL; |
||
402 | } |
||
403 | node->subtree[i] = NULL; |
||
404 | |||
405 | node->parent = NULL; |
||
406 | |||
407 | link_initialize(&node->leaf_link); |
||
408 | |||
409 | link_initialize(&node->bfs_link); |
||
410 | node->depth = 0; |
||
411 | } |
||
412 | |||
1136 | jermar | 413 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 414 | * |
415 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 416 | * This feature is used during insert by right rotation. |
417 | * |
||
418 | * @param node B-tree node into wich the new key is to be inserted. |
||
419 | * @param key The key to be inserted. |
||
420 | * @param value Pointer to value to be inserted. |
||
421 | * @param lsubtree Pointer to the left subtree. |
||
422 | */ |
||
1177 | jermar | 423 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
1136 | jermar | 424 | { |
425 | int i; |
||
426 | |||
427 | for (i = 0; i < node->keys; i++) { |
||
428 | if (key < node->key[i]) { |
||
429 | int j; |
||
430 | |||
431 | for (j = node->keys; j > i; j--) { |
||
432 | node->key[j] = node->key[j - 1]; |
||
433 | node->value[j] = node->value[j - 1]; |
||
434 | node->subtree[j + 1] = node->subtree[j]; |
||
435 | } |
||
436 | node->subtree[j + 1] = node->subtree[j]; |
||
437 | break; |
||
438 | } |
||
439 | } |
||
440 | node->key[i] = key; |
||
441 | node->value[i] = value; |
||
442 | node->subtree[i] = lsubtree; |
||
443 | |||
444 | node->keys++; |
||
445 | } |
||
446 | |||
447 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
448 | * |
||
449 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 450 | * This feature is used during splitting the node when the |
1136 | jermar | 451 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
452 | * also makes use of this feature. |
||
1101 | jermar | 453 | * |
454 | * @param node B-tree node into wich the new key is to be inserted. |
||
455 | * @param key The key to be inserted. |
||
456 | * @param value Pointer to value to be inserted. |
||
457 | * @param rsubtree Pointer to the right subtree. |
||
458 | */ |
||
1177 | jermar | 459 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 460 | { |
461 | int i; |
||
462 | |||
463 | for (i = 0; i < node->keys; i++) { |
||
464 | if (key < node->key[i]) { |
||
465 | int j; |
||
466 | |||
467 | for (j = node->keys; j > i; j--) { |
||
468 | node->key[j] = node->key[j - 1]; |
||
469 | node->value[j] = node->value[j - 1]; |
||
470 | node->subtree[j + 1] = node->subtree[j]; |
||
471 | } |
||
472 | break; |
||
473 | } |
||
474 | } |
||
475 | node->key[i] = key; |
||
476 | node->value[i] = value; |
||
477 | node->subtree[i + 1] = rsubtree; |
||
478 | |||
479 | node->keys++; |
||
480 | } |
||
481 | |||
1144 | jermar | 482 | /** Remove key and its left subtree pointer from B-tree node. |
483 | * |
||
484 | * Remove the key and eliminate gaps in node->key array. |
||
485 | * Note that the value pointer and the left subtree pointer |
||
486 | * is removed from the node as well. |
||
487 | * |
||
488 | * @param node B-tree node. |
||
489 | * @param key Key to be removed. |
||
490 | */ |
||
1177 | jermar | 491 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 492 | { |
493 | int i, j; |
||
494 | |||
495 | for (i = 0; i < node->keys; i++) { |
||
496 | if (key == node->key[i]) { |
||
497 | for (j = i + 1; j < node->keys; j++) { |
||
498 | node->key[j - 1] = node->key[j]; |
||
499 | node->value[j - 1] = node->value[j]; |
||
500 | node->subtree[j - 1] = node->subtree[j]; |
||
501 | } |
||
502 | node->subtree[j - 1] = node->subtree[j]; |
||
503 | node->keys--; |
||
504 | return; |
||
505 | } |
||
506 | } |
||
1221 | decky | 507 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 508 | } |
509 | |||
510 | /** Remove key and its right subtree pointer from B-tree node. |
||
511 | * |
||
512 | * Remove the key and eliminate gaps in node->key array. |
||
513 | * Note that the value pointer and the right subtree pointer |
||
514 | * is removed from the node as well. |
||
515 | * |
||
516 | * @param node B-tree node. |
||
517 | * @param key Key to be removed. |
||
518 | */ |
||
1177 | jermar | 519 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 520 | { |
521 | int i, j; |
||
522 | |||
523 | for (i = 0; i < node->keys; i++) { |
||
524 | if (key == node->key[i]) { |
||
525 | for (j = i + 1; j < node->keys; j++) { |
||
526 | node->key[j - 1] = node->key[j]; |
||
527 | node->value[j - 1] = node->value[j]; |
||
528 | node->subtree[j] = node->subtree[j + 1]; |
||
529 | } |
||
530 | node->keys--; |
||
531 | return; |
||
532 | } |
||
533 | } |
||
1221 | decky | 534 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 535 | } |
536 | |||
1134 | jermar | 537 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 538 | * |
539 | * This function will split a node and return pointer to a newly created |
||
1134 | jermar | 540 | * node containing keys greater than or equal to the greater of medians |
541 | * (or median) of the old keys and the newly added key. It will also write |
||
542 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 543 | * |
1134 | jermar | 544 | * If the node being split is an index node, the median will not be |
545 | * included in the new node. If the node is a leaf node, |
||
546 | * the median will be copied there. |
||
1101 | jermar | 547 | * |
548 | * @param node B-tree node wich is going to be split. |
||
549 | * @param key The key to be inserted. |
||
550 | * @param value Pointer to the value to be inserted. |
||
551 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
552 | * @param median Address in memory, where the median key will be stored. |
||
553 | * |
||
554 | * @return Newly created right sibling of node. |
||
555 | */ |
||
1177 | jermar | 556 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
1101 | jermar | 557 | { |
558 | btree_node_t *rnode; |
||
559 | int i, j; |
||
560 | |||
561 | ASSERT(median); |
||
562 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 563 | |
1101 | jermar | 564 | /* |
565 | * Use the extra space to store the extra node. |
||
566 | */ |
||
1142 | jermar | 567 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
1101 | jermar | 568 | |
569 | /* |
||
570 | * Compute median of keys. |
||
571 | */ |
||
1134 | jermar | 572 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 573 | |
1134 | jermar | 574 | /* |
575 | * Allocate and initialize new right sibling. |
||
576 | */ |
||
1164 | jermar | 577 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 578 | node_initialize(rnode); |
579 | rnode->parent = node->parent; |
||
580 | rnode->depth = node->depth; |
||
581 | |||
582 | /* |
||
583 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 584 | * If this is an index node, do not copy the median. |
1101 | jermar | 585 | */ |
1134 | jermar | 586 | i = (int) INDEX_NODE(node); |
587 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 588 | rnode->key[j] = node->key[i]; |
589 | rnode->value[j] = node->value[i]; |
||
590 | rnode->subtree[j] = node->subtree[i]; |
||
591 | |||
592 | /* |
||
593 | * Fix parent links in subtrees. |
||
594 | */ |
||
595 | if (rnode->subtree[j]) |
||
596 | rnode->subtree[j]->parent = rnode; |
||
597 | |||
598 | } |
||
599 | rnode->subtree[j] = node->subtree[i]; |
||
600 | if (rnode->subtree[j]) |
||
601 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 602 | |
603 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
604 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 605 | |
606 | return rnode; |
||
607 | } |
||
608 | |||
1142 | jermar | 609 | /** Combine node with any of its siblings. |
610 | * |
||
611 | * The siblings are required to be below the fill factor. |
||
612 | * |
||
613 | * @param node Node to combine with one of its siblings. |
||
614 | * |
||
615 | * @return Pointer to the rightmost of the two nodes. |
||
616 | */ |
||
617 | btree_node_t *node_combine(btree_node_t *node) |
||
618 | { |
||
619 | index_t idx; |
||
620 | btree_node_t *rnode; |
||
621 | int i; |
||
622 | |||
623 | ASSERT(!ROOT_NODE(node)); |
||
624 | |||
625 | idx = find_key_by_subtree(node->parent, node, false); |
||
626 | if (idx == node->parent->keys) { |
||
627 | /* |
||
628 | * Rightmost subtree of its parent, combine with the left sibling. |
||
629 | */ |
||
630 | idx--; |
||
631 | rnode = node; |
||
632 | node = node->parent->subtree[idx]; |
||
633 | } else { |
||
634 | rnode = node->parent->subtree[idx + 1]; |
||
635 | } |
||
636 | |||
637 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
638 | if (INDEX_NODE(node)) |
||
639 | node->key[node->keys++] = node->parent->key[idx]; |
||
640 | |||
641 | /* Copy the key-value-subtree triplets from the right node. */ |
||
642 | for (i = 0; i < rnode->keys; i++) { |
||
643 | node->key[node->keys + i] = rnode->key[i]; |
||
644 | node->value[node->keys + i] = rnode->value[i]; |
||
645 | if (INDEX_NODE(node)) { |
||
646 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
647 | rnode->subtree[i]->parent = node; |
||
648 | } |
||
649 | } |
||
650 | if (INDEX_NODE(node)) { |
||
651 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
652 | rnode->subtree[i]->parent = node; |
||
653 | } |
||
654 | |||
655 | node->keys += rnode->keys; |
||
656 | |||
657 | return rnode; |
||
658 | } |
||
659 | |||
1136 | jermar | 660 | /** Find key by its left or right subtree. |
661 | * |
||
662 | * @param node B-tree node. |
||
663 | * @param subtree Left or right subtree of a key found in node. |
||
664 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
665 | * |
||
666 | * @return Index of the key associated with the subtree. |
||
667 | */ |
||
668 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
669 | { |
||
670 | int i; |
||
671 | |||
672 | for (i = 0; i < node->keys + 1; i++) { |
||
673 | if (subtree == node->subtree[i]) |
||
674 | return i - (int) (right != false); |
||
675 | } |
||
1221 | decky | 676 | panic("node %p does not contain subtree %p\n", node, subtree); |
1136 | jermar | 677 | } |
678 | |||
1142 | jermar | 679 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
680 | * |
||
681 | * The biggest key and its value and right subtree is rotated from the left node |
||
682 | * to the right. If the node is an index node, than the parent node key belonging to |
||
683 | * the left node takes part in the rotation. |
||
684 | * |
||
685 | * @param lnode Left sibling. |
||
686 | * @param rnode Right sibling. |
||
687 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
688 | */ |
||
689 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
690 | { |
||
1177 | jermar | 691 | btree_key_t key; |
1142 | jermar | 692 | |
693 | key = lnode->key[lnode->keys - 1]; |
||
694 | |||
695 | if (LEAF_NODE(lnode)) { |
||
696 | void *value; |
||
697 | |||
698 | value = lnode->value[lnode->keys - 1]; |
||
699 | node_remove_key_and_rsubtree(lnode, key); |
||
700 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
701 | lnode->parent->key[idx] = key; |
||
702 | } else { |
||
703 | btree_node_t *rsubtree; |
||
704 | |||
705 | rsubtree = lnode->subtree[lnode->keys]; |
||
706 | node_remove_key_and_rsubtree(lnode, key); |
||
707 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
708 | lnode->parent->key[idx] = key; |
||
709 | |||
710 | /* Fix parent link of the reconnected right subtree. */ |
||
711 | rsubtree->parent = rnode; |
||
712 | } |
||
713 | |||
714 | } |
||
715 | |||
716 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
717 | * |
||
718 | * The smallest key and its value and left subtree is rotated from the right node |
||
719 | * to the left. If the node is an index node, than the parent node key belonging to |
||
720 | * the right node takes part in the rotation. |
||
721 | * |
||
722 | * @param lnode Left sibling. |
||
723 | * @param rnode Right sibling. |
||
724 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
725 | */ |
||
726 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
727 | { |
||
1177 | jermar | 728 | btree_key_t key; |
1142 | jermar | 729 | |
730 | key = rnode->key[0]; |
||
731 | |||
732 | if (LEAF_NODE(rnode)) { |
||
733 | void *value; |
||
734 | |||
735 | value = rnode->value[0]; |
||
736 | node_remove_key_and_lsubtree(rnode, key); |
||
737 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
738 | rnode->parent->key[idx] = rnode->key[0]; |
||
739 | } else { |
||
740 | btree_node_t *lsubtree; |
||
741 | |||
742 | lsubtree = rnode->subtree[0]; |
||
743 | node_remove_key_and_lsubtree(rnode, key); |
||
744 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
745 | rnode->parent->key[idx] = key; |
||
746 | |||
747 | /* Fix parent link of the reconnected left subtree. */ |
||
748 | lsubtree->parent = lnode; |
||
749 | } |
||
750 | |||
751 | } |
||
752 | |||
1136 | jermar | 753 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
754 | * |
||
755 | * Left sibling of the node (if it exists) is checked for free space. |
||
756 | * If there is free space, the key is inserted and the smallest key of |
||
757 | * the node is moved there. The index node which is the parent of both |
||
758 | * nodes is fixed. |
||
759 | * |
||
760 | * @param node B-tree node. |
||
761 | * @param inskey Key to be inserted. |
||
762 | * @param insvalue Value to be inserted. |
||
763 | * @param rsubtree Right subtree of inskey. |
||
764 | * |
||
765 | * @return True if the rotation was performed, false otherwise. |
||
766 | */ |
||
1177 | jermar | 767 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 768 | { |
769 | index_t idx; |
||
770 | btree_node_t *lnode; |
||
771 | |||
772 | /* |
||
773 | * If this is root node, the rotation can not be done. |
||
774 | */ |
||
775 | if (ROOT_NODE(node)) |
||
776 | return false; |
||
777 | |||
778 | idx = find_key_by_subtree(node->parent, node, true); |
||
779 | if ((int) idx == -1) { |
||
780 | /* |
||
781 | * If this node is the leftmost subtree of its parent, |
||
782 | * the rotation can not be done. |
||
783 | */ |
||
784 | return false; |
||
785 | } |
||
786 | |||
787 | lnode = node->parent->subtree[idx]; |
||
788 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
789 | /* |
||
790 | * The rotaion can be done. The left sibling has free space. |
||
791 | */ |
||
1142 | jermar | 792 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
793 | rotate_from_right(lnode, node, idx); |
||
1136 | jermar | 794 | return true; |
795 | } |
||
796 | |||
797 | return false; |
||
798 | } |
||
799 | |||
800 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
801 | * |
||
802 | * Right sibling of the node (if it exists) is checked for free space. |
||
803 | * If there is free space, the key is inserted and the biggest key of |
||
804 | * the node is moved there. The index node which is the parent of both |
||
805 | * nodes is fixed. |
||
806 | * |
||
807 | * @param node B-tree node. |
||
808 | * @param inskey Key to be inserted. |
||
809 | * @param insvalue Value to be inserted. |
||
810 | * @param rsubtree Right subtree of inskey. |
||
811 | * |
||
812 | * @return True if the rotation was performed, false otherwise. |
||
813 | */ |
||
1177 | jermar | 814 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 815 | { |
816 | index_t idx; |
||
817 | btree_node_t *rnode; |
||
818 | |||
819 | /* |
||
820 | * If this is root node, the rotation can not be done. |
||
821 | */ |
||
822 | if (ROOT_NODE(node)) |
||
823 | return false; |
||
824 | |||
825 | idx = find_key_by_subtree(node->parent, node, false); |
||
826 | if (idx == node->parent->keys) { |
||
827 | /* |
||
828 | * If this node is the rightmost subtree of its parent, |
||
829 | * the rotation can not be done. |
||
830 | */ |
||
831 | return false; |
||
832 | } |
||
833 | |||
834 | rnode = node->parent->subtree[idx + 1]; |
||
835 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
836 | /* |
||
837 | * The rotaion can be done. The right sibling has free space. |
||
838 | */ |
||
1142 | jermar | 839 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
840 | rotate_from_left(node, rnode, idx); |
||
841 | return true; |
||
842 | } |
||
1136 | jermar | 843 | |
1142 | jermar | 844 | return false; |
845 | } |
||
1136 | jermar | 846 | |
1142 | jermar | 847 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
848 | * |
||
849 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
850 | * |
||
851 | * @return True if the rotation was performed, false otherwise. |
||
852 | */ |
||
853 | bool try_rotation_from_left(btree_node_t *rnode) |
||
854 | { |
||
855 | index_t idx; |
||
856 | btree_node_t *lnode; |
||
1136 | jermar | 857 | |
1142 | jermar | 858 | /* |
859 | * If this is root node, the rotation can not be done. |
||
860 | */ |
||
861 | if (ROOT_NODE(rnode)) |
||
862 | return false; |
||
863 | |||
864 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
865 | if ((int) idx == -1) { |
||
866 | /* |
||
867 | * If this node is the leftmost subtree of its parent, |
||
868 | * the rotation can not be done. |
||
869 | */ |
||
870 | return false; |
||
871 | } |
||
872 | |||
873 | lnode = rnode->parent->subtree[idx]; |
||
874 | if (lnode->keys > FILL_FACTOR) { |
||
875 | rotate_from_left(lnode, rnode, idx); |
||
1136 | jermar | 876 | return true; |
877 | } |
||
1142 | jermar | 878 | |
879 | return false; |
||
880 | } |
||
1136 | jermar | 881 | |
1142 | jermar | 882 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
883 | * |
||
884 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
885 | * |
||
886 | * @return True if the rotation was performed, false otherwise. |
||
887 | */ |
||
888 | bool try_rotation_from_right(btree_node_t *lnode) |
||
889 | { |
||
890 | index_t idx; |
||
891 | btree_node_t *rnode; |
||
892 | |||
893 | /* |
||
894 | * If this is root node, the rotation can not be done. |
||
895 | */ |
||
896 | if (ROOT_NODE(lnode)) |
||
897 | return false; |
||
898 | |||
899 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
900 | if (idx == lnode->parent->keys) { |
||
901 | /* |
||
902 | * If this node is the rightmost subtree of its parent, |
||
903 | * the rotation can not be done. |
||
904 | */ |
||
905 | return false; |
||
906 | } |
||
907 | |||
908 | rnode = lnode->parent->subtree[idx + 1]; |
||
909 | if (rnode->keys > FILL_FACTOR) { |
||
910 | rotate_from_right(lnode, rnode, idx); |
||
911 | return true; |
||
912 | } |
||
913 | |||
1136 | jermar | 914 | return false; |
915 | } |
||
916 | |||
1101 | jermar | 917 | /** Print B-tree. |
918 | * |
||
919 | * @param t Print out B-tree. |
||
920 | */ |
||
921 | void btree_print(btree_t *t) |
||
922 | { |
||
923 | int i, depth = t->root->depth; |
||
1144 | jermar | 924 | link_t head, *cur; |
925 | |||
926 | printf("Printing B-tree:\n"); |
||
1101 | jermar | 927 | list_initialize(&head); |
928 | list_append(&t->root->bfs_link, &head); |
||
929 | |||
930 | /* |
||
931 | * Use BFS search to print out the tree. |
||
932 | * Levels are distinguished from one another by node->depth. |
||
933 | */ |
||
934 | while (!list_empty(&head)) { |
||
935 | link_t *hlp; |
||
936 | btree_node_t *node; |
||
937 | |||
938 | hlp = head.next; |
||
939 | ASSERT(hlp != &head); |
||
940 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
941 | list_remove(hlp); |
||
942 | |||
943 | ASSERT(node); |
||
944 | |||
945 | if (node->depth != depth) { |
||
946 | printf("\n"); |
||
947 | depth = node->depth; |
||
948 | } |
||
949 | |||
950 | printf("("); |
||
951 | for (i = 0; i < node->keys; i++) { |
||
1196 | cejka | 952 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1101 | jermar | 953 | if (node->depth && node->subtree[i]) { |
954 | list_append(&node->subtree[i]->bfs_link, &head); |
||
955 | } |
||
956 | } |
||
957 | if (node->depth && node->subtree[i]) { |
||
958 | list_append(&node->subtree[i]->bfs_link, &head); |
||
959 | } |
||
960 | printf(")"); |
||
961 | } |
||
962 | printf("\n"); |
||
1144 | jermar | 963 | |
964 | printf("Printing list of leaves:\n"); |
||
965 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
966 | btree_node_t *node; |
||
967 | |||
968 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
969 | |||
970 | ASSERT(node); |
||
971 | |||
972 | printf("("); |
||
973 | for (i = 0; i < node->keys; i++) |
||
1196 | cejka | 974 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1144 | jermar | 975 | printf(")"); |
976 | } |
||
977 | printf("\n"); |
||
1101 | jermar | 978 | } |