Rev 68 | Rev 75 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <proc/scheduler.h> |
||
30 | #include <proc/thread.h> |
||
31 | #include <proc/task.h> |
||
32 | #include <cpu.h> |
||
33 | #include <mm/vm.h> |
||
34 | #include <config.h> |
||
35 | #include <context.h> |
||
36 | #include <func.h> |
||
37 | #include <arch.h> |
||
38 | #include <arch/asm.h> |
||
39 | #include <list.h> |
||
68 | decky | 40 | #include <panic.h> |
1 | jermar | 41 | #include <typedefs.h> |
42 | #include <mm/page.h> |
||
43 | #include <synch/spinlock.h> |
||
44 | |||
45 | #ifdef __SMP__ |
||
11 | jermar | 46 | #include <arch/smp/atomic.h> |
1 | jermar | 47 | #endif /* __SMP__ */ |
48 | |||
49 | /* |
||
50 | * NOTE ON ATOMIC READS: |
||
51 | * Some architectures cannot read __u32 atomically. |
||
52 | * For that reason, all accesses to nrdy and the likes must be protected by spinlock. |
||
53 | */ |
||
54 | |||
55 | spinlock_t nrdylock; |
||
56 | volatile int nrdy; |
||
57 | |||
52 | vana | 58 | void before_thread_runs(void) |
59 | { |
||
60 | before_thread_runs_arch(); |
||
57 | vana | 61 | fpu_context_restore(&(THREAD->saved_fpu_context)); |
52 | vana | 62 | } |
63 | |||
64 | |||
1 | jermar | 65 | void scheduler_init(void) |
66 | { |
||
67 | spinlock_initialize(&nrdylock); |
||
68 | } |
||
69 | |||
70 | /* cpu_priority_high()'d */ |
||
71 | struct thread *find_best_thread(void) |
||
72 | { |
||
73 | thread_t *t; |
||
74 | runq_t *r; |
||
75 | int i, n; |
||
76 | |||
77 | loop: |
||
78 | cpu_priority_high(); |
||
79 | |||
15 | jermar | 80 | spinlock_lock(&CPU->lock); |
81 | n = CPU->nrdy; |
||
82 | spinlock_unlock(&CPU->lock); |
||
1 | jermar | 83 | |
84 | cpu_priority_low(); |
||
85 | |||
86 | if (n == 0) { |
||
87 | #ifdef __SMP__ |
||
88 | /* |
||
89 | * If the load balancing thread is not running, wake it up and |
||
90 | * set CPU-private flag that the kcpulb has been started. |
||
91 | */ |
||
15 | jermar | 92 | if (test_and_set(&CPU->kcpulbstarted) == 0) { |
93 | waitq_wakeup(&CPU->kcpulb_wq, 0); |
||
1 | jermar | 94 | goto loop; |
95 | } |
||
96 | #endif /* __SMP__ */ |
||
97 | |||
98 | /* |
||
99 | * For there was nothing to run, the CPU goes to sleep |
||
100 | * until a hardware interrupt or an IPI comes. |
||
101 | * This improves energy saving and hyperthreading. |
||
102 | * On the other hand, several hardware interrupts can be ignored. |
||
103 | */ |
||
104 | cpu_sleep(); |
||
105 | goto loop; |
||
106 | } |
||
107 | |||
108 | cpu_priority_high(); |
||
109 | |||
110 | for (i = 0; i<RQ_COUNT; i++) { |
||
15 | jermar | 111 | r = &CPU->rq[i]; |
1 | jermar | 112 | spinlock_lock(&r->lock); |
113 | if (r->n == 0) { |
||
114 | /* |
||
115 | * If this queue is empty, try a lower-priority queue. |
||
116 | */ |
||
117 | spinlock_unlock(&r->lock); |
||
118 | continue; |
||
119 | } |
||
120 | |||
121 | spinlock_lock(&nrdylock); |
||
122 | nrdy--; |
||
123 | spinlock_unlock(&nrdylock); |
||
124 | |||
15 | jermar | 125 | spinlock_lock(&CPU->lock); |
126 | CPU->nrdy--; |
||
127 | spinlock_unlock(&CPU->lock); |
||
1 | jermar | 128 | |
129 | r->n--; |
||
130 | |||
131 | /* |
||
132 | * Take the first thread from the queue. |
||
133 | */ |
||
134 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
135 | list_remove(&t->rq_link); |
||
136 | |||
137 | spinlock_unlock(&r->lock); |
||
138 | |||
139 | spinlock_lock(&t->lock); |
||
15 | jermar | 140 | t->cpu = CPU; |
1 | jermar | 141 | |
142 | t->ticks = us2ticks((i+1)*10000); |
||
143 | t->pri = i; /* eventually correct rq index */ |
||
144 | |||
145 | /* |
||
146 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
147 | */ |
||
148 | t->flags &= ~X_STOLEN; |
||
149 | spinlock_unlock(&t->lock); |
||
150 | |||
151 | return t; |
||
152 | } |
||
153 | goto loop; |
||
154 | |||
155 | } |
||
156 | |||
157 | /* |
||
158 | * This function prevents low priority threads from starving in rq's. |
||
159 | * When it decides to relink rq's, it reconnects respective pointers |
||
160 | * so that in result threads with 'pri' greater or equal 'start' are |
||
161 | * moved to a higher-priority queue. |
||
162 | */ |
||
163 | void relink_rq(int start) |
||
164 | { |
||
165 | link_t head; |
||
166 | runq_t *r; |
||
167 | int i, n; |
||
168 | |||
169 | list_initialize(&head); |
||
15 | jermar | 170 | spinlock_lock(&CPU->lock); |
171 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
1 | jermar | 172 | for (i = start; i<RQ_COUNT-1; i++) { |
173 | /* remember and empty rq[i + 1] */ |
||
15 | jermar | 174 | r = &CPU->rq[i + 1]; |
1 | jermar | 175 | spinlock_lock(&r->lock); |
176 | list_concat(&head, &r->rq_head); |
||
177 | n = r->n; |
||
178 | r->n = 0; |
||
179 | spinlock_unlock(&r->lock); |
||
180 | |||
181 | /* append rq[i + 1] to rq[i] */ |
||
15 | jermar | 182 | r = &CPU->rq[i]; |
1 | jermar | 183 | spinlock_lock(&r->lock); |
184 | list_concat(&r->rq_head, &head); |
||
185 | r->n += n; |
||
186 | spinlock_unlock(&r->lock); |
||
187 | } |
||
15 | jermar | 188 | CPU->needs_relink = 0; |
1 | jermar | 189 | } |
15 | jermar | 190 | spinlock_unlock(&CPU->lock); |
1 | jermar | 191 | |
192 | } |
||
193 | |||
194 | /* |
||
195 | * The scheduler. |
||
196 | */ |
||
197 | void scheduler(void) |
||
198 | { |
||
199 | volatile pri_t pri; |
||
200 | |||
201 | pri = cpu_priority_high(); |
||
202 | |||
203 | if (haltstate) |
||
204 | halt(); |
||
205 | |||
15 | jermar | 206 | if (THREAD) { |
207 | spinlock_lock(&THREAD->lock); |
||
57 | vana | 208 | fpu_context_save(&(THREAD->saved_fpu_context)); |
15 | jermar | 209 | if (!context_save(&THREAD->saved_context)) { |
1 | jermar | 210 | /* |
211 | * This is the place where threads leave scheduler(); |
||
212 | */ |
||
22 | jermar | 213 | before_thread_runs(); |
15 | jermar | 214 | spinlock_unlock(&THREAD->lock); |
215 | cpu_priority_restore(THREAD->saved_context.pri); |
||
1 | jermar | 216 | return; |
217 | } |
||
15 | jermar | 218 | THREAD->saved_context.pri = pri; |
1 | jermar | 219 | } |
220 | |||
221 | /* |
||
222 | * We may not keep the old stack. |
||
223 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
224 | * find_best_thread(), the old thread could get rescheduled by another |
||
225 | * CPU and overwrite the part of its own stack that was also used by |
||
226 | * the scheduler on this CPU. |
||
227 | * |
||
228 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
229 | * which is fooled by SP being set to the very top of the stack. |
||
230 | * Therefore the scheduler() function continues in |
||
231 | * scheduler_separated_stack(). |
||
232 | */ |
||
15 | jermar | 233 | context_save(&CPU->saved_context); |
234 | CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-8]; |
||
235 | CPU->saved_context.pc = (__address) scheduler_separated_stack; |
||
236 | context_restore(&CPU->saved_context); |
||
1 | jermar | 237 | /* not reached */ |
238 | } |
||
239 | |||
240 | void scheduler_separated_stack(void) |
||
241 | { |
||
242 | int priority; |
||
243 | |||
15 | jermar | 244 | if (THREAD) { |
245 | switch (THREAD->state) { |
||
1 | jermar | 246 | case Running: |
15 | jermar | 247 | THREAD->state = Ready; |
248 | spinlock_unlock(&THREAD->lock); |
||
249 | thread_ready(THREAD); |
||
1 | jermar | 250 | break; |
251 | |||
252 | case Exiting: |
||
15 | jermar | 253 | frame_free((__address) THREAD->kstack); |
254 | if (THREAD->ustack) { |
||
255 | frame_free((__address) THREAD->ustack); |
||
1 | jermar | 256 | } |
257 | |||
258 | /* |
||
259 | * Detach from the containing task. |
||
260 | */ |
||
15 | jermar | 261 | spinlock_lock(&TASK->lock); |
262 | list_remove(&THREAD->th_link); |
||
263 | spinlock_unlock(&TASK->lock); |
||
1 | jermar | 264 | |
15 | jermar | 265 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 266 | |
267 | spinlock_lock(&threads_lock); |
||
15 | jermar | 268 | list_remove(&THREAD->threads_link); |
1 | jermar | 269 | spinlock_unlock(&threads_lock); |
73 | vana | 270 | |
271 | spinlock_lock(&THREAD->cpu->lock); |
||
272 | if(THREAD->cpu->arch.fpu_owner==THREAD) THREAD->cpu->arch.fpu_owner=NULL; |
||
273 | spinlock_unlock(&THREAD->cpu->lock); |
||
274 | |||
1 | jermar | 275 | |
15 | jermar | 276 | free(THREAD); |
1 | jermar | 277 | |
278 | break; |
||
279 | |||
280 | case Sleeping: |
||
281 | /* |
||
282 | * Prefer the thread after it's woken up. |
||
283 | */ |
||
15 | jermar | 284 | THREAD->pri = -1; |
1 | jermar | 285 | |
286 | /* |
||
287 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
15 | jermar | 288 | * Address of wq->lock is kept in THREAD->sleep_queue. |
1 | jermar | 289 | */ |
15 | jermar | 290 | spinlock_unlock(&THREAD->sleep_queue->lock); |
1 | jermar | 291 | |
292 | /* |
||
293 | * Check for possible requests for out-of-context invocation. |
||
294 | */ |
||
15 | jermar | 295 | if (THREAD->call_me) { |
296 | THREAD->call_me(THREAD->call_me_with); |
||
297 | THREAD->call_me = NULL; |
||
298 | THREAD->call_me_with = NULL; |
||
1 | jermar | 299 | } |
300 | |||
15 | jermar | 301 | spinlock_unlock(&THREAD->lock); |
1 | jermar | 302 | |
303 | break; |
||
304 | |||
305 | default: |
||
306 | /* |
||
307 | * Entering state is unexpected. |
||
308 | */ |
||
15 | jermar | 309 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
1 | jermar | 310 | break; |
311 | } |
||
15 | jermar | 312 | THREAD = NULL; |
1 | jermar | 313 | } |
314 | |||
15 | jermar | 315 | THREAD = find_best_thread(); |
1 | jermar | 316 | |
15 | jermar | 317 | spinlock_lock(&THREAD->lock); |
318 | priority = THREAD->pri; |
||
319 | spinlock_unlock(&THREAD->lock); |
||
1 | jermar | 320 | |
321 | relink_rq(priority); |
||
322 | |||
15 | jermar | 323 | spinlock_lock(&THREAD->lock); |
1 | jermar | 324 | |
325 | /* |
||
326 | * If both the old and the new task are the same, lots of work is avoided. |
||
327 | */ |
||
15 | jermar | 328 | if (TASK != THREAD->task) { |
1 | jermar | 329 | vm_t *m1 = NULL; |
330 | vm_t *m2; |
||
331 | |||
15 | jermar | 332 | if (TASK) { |
333 | spinlock_lock(&TASK->lock); |
||
334 | m1 = TASK->vm; |
||
335 | spinlock_unlock(&TASK->lock); |
||
1 | jermar | 336 | } |
337 | |||
15 | jermar | 338 | spinlock_lock(&THREAD->task->lock); |
339 | m2 = THREAD->task->vm; |
||
340 | spinlock_unlock(&THREAD->task->lock); |
||
1 | jermar | 341 | |
342 | /* |
||
343 | * Note that it is possible for two tasks to share one vm mapping. |
||
344 | */ |
||
345 | if (m1 != m2) { |
||
346 | /* |
||
347 | * Both tasks and vm mappings are different. |
||
348 | * Replace the old one with the new one. |
||
349 | */ |
||
350 | if (m1) { |
||
351 | vm_uninstall(m1); |
||
352 | } |
||
353 | vm_install(m2); |
||
354 | } |
||
15 | jermar | 355 | TASK = THREAD->task; |
1 | jermar | 356 | } |
357 | |||
15 | jermar | 358 | THREAD->state = Running; |
1 | jermar | 359 | |
360 | #ifdef SCHEDULER_VERBOSE |
||
15 | jermar | 361 | printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy); |
1 | jermar | 362 | #endif |
363 | |||
15 | jermar | 364 | context_restore(&THREAD->saved_context); |
1 | jermar | 365 | /* not reached */ |
366 | } |
||
367 | |||
368 | #ifdef __SMP__ |
||
369 | /* |
||
370 | * This is the load balancing thread. |
||
371 | * It supervises thread supplies for the CPU it's wired to. |
||
372 | */ |
||
373 | void kcpulb(void *arg) |
||
374 | { |
||
375 | thread_t *t; |
||
376 | int count, i, j, k = 0; |
||
377 | pri_t pri; |
||
378 | |||
379 | loop: |
||
380 | /* |
||
381 | * Sleep until there's some work to do. |
||
382 | */ |
||
15 | jermar | 383 | waitq_sleep(&CPU->kcpulb_wq); |
1 | jermar | 384 | |
385 | not_satisfied: |
||
386 | /* |
||
387 | * Calculate the number of threads that will be migrated/stolen from |
||
388 | * other CPU's. Note that situation can have changed between two |
||
389 | * passes. Each time get the most up to date counts. |
||
390 | */ |
||
391 | pri = cpu_priority_high(); |
||
15 | jermar | 392 | spinlock_lock(&CPU->lock); |
1 | jermar | 393 | count = nrdy / config.cpu_active; |
15 | jermar | 394 | count -= CPU->nrdy; |
395 | spinlock_unlock(&CPU->lock); |
||
1 | jermar | 396 | cpu_priority_restore(pri); |
397 | |||
398 | if (count <= 0) |
||
399 | goto satisfied; |
||
400 | |||
401 | /* |
||
402 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
403 | */ |
||
404 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
405 | for (i=0; i < config.cpu_active; i++) { |
||
406 | link_t *l; |
||
407 | runq_t *r; |
||
408 | cpu_t *cpu; |
||
409 | |||
410 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
411 | r = &cpu->rq[j]; |
||
412 | |||
413 | /* |
||
414 | * Not interested in ourselves. |
||
415 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
416 | */ |
||
15 | jermar | 417 | if (CPU == cpu) |
1 | jermar | 418 | continue; |
419 | |||
420 | restart: pri = cpu_priority_high(); |
||
421 | spinlock_lock(&r->lock); |
||
422 | if (r->n == 0) { |
||
423 | spinlock_unlock(&r->lock); |
||
424 | cpu_priority_restore(pri); |
||
425 | continue; |
||
426 | } |
||
427 | |||
428 | t = NULL; |
||
429 | l = r->rq_head.prev; /* search rq from the back */ |
||
430 | while (l != &r->rq_head) { |
||
431 | t = list_get_instance(l, thread_t, rq_link); |
||
432 | /* |
||
433 | * We don't want to steal CPU-wired threads neither threads already stolen. |
||
434 | * The latter prevents threads from migrating between CPU's without ever being run. |
||
73 | vana | 435 | * We don't want to steal threads whose FPU context is still in CPU |
436 | */ |
||
1 | jermar | 437 | spinlock_lock(&t->lock); |
73 | vana | 438 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
1 | jermar | 439 | /* |
440 | * Remove t from r. |
||
441 | */ |
||
442 | |||
443 | spinlock_unlock(&t->lock); |
||
444 | |||
445 | /* |
||
446 | * Here we have to avoid deadlock with relink_rq(), |
||
447 | * because it locks cpu and r in a different order than we do. |
||
448 | */ |
||
449 | if (!spinlock_trylock(&cpu->lock)) { |
||
450 | /* Release all locks and try again. */ |
||
451 | spinlock_unlock(&r->lock); |
||
452 | cpu_priority_restore(pri); |
||
453 | goto restart; |
||
454 | } |
||
455 | cpu->nrdy--; |
||
456 | spinlock_unlock(&cpu->lock); |
||
457 | |||
458 | spinlock_lock(&nrdylock); |
||
459 | nrdy--; |
||
460 | spinlock_unlock(&nrdylock); |
||
461 | |||
462 | r->n--; |
||
463 | list_remove(&t->rq_link); |
||
464 | |||
465 | break; |
||
466 | } |
||
467 | spinlock_unlock(&t->lock); |
||
468 | l = l->prev; |
||
469 | t = NULL; |
||
470 | } |
||
471 | spinlock_unlock(&r->lock); |
||
472 | |||
473 | if (t) { |
||
474 | /* |
||
475 | * Ready t on local CPU |
||
476 | */ |
||
477 | spinlock_lock(&t->lock); |
||
478 | #ifdef KCPULB_VERBOSE |
||
15 | jermar | 479 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active); |
1 | jermar | 480 | #endif |
481 | t->flags |= X_STOLEN; |
||
482 | spinlock_unlock(&t->lock); |
||
483 | |||
484 | thread_ready(t); |
||
485 | |||
486 | cpu_priority_restore(pri); |
||
487 | |||
488 | if (--count == 0) |
||
489 | goto satisfied; |
||
490 | |||
491 | /* |
||
492 | * We are not satisfied yet, focus on another CPU next time. |
||
493 | */ |
||
494 | k++; |
||
495 | |||
496 | continue; |
||
497 | } |
||
498 | cpu_priority_restore(pri); |
||
499 | } |
||
500 | } |
||
501 | |||
15 | jermar | 502 | if (CPU->nrdy) { |
1 | jermar | 503 | /* |
504 | * Be a little bit light-weight and let migrated threads run. |
||
505 | */ |
||
506 | scheduler(); |
||
507 | } |
||
508 | else { |
||
509 | /* |
||
510 | * We failed to migrate a single thread. |
||
511 | * Something more sophisticated should be done. |
||
512 | */ |
||
513 | scheduler(); |
||
514 | } |
||
515 | |||
516 | goto not_satisfied; |
||
517 | |||
518 | satisfied: |
||
519 | /* |
||
520 | * Tell find_best_thread() to wake us up later again. |
||
521 | */ |
||
15 | jermar | 522 | CPU->kcpulbstarted = 0; |
1 | jermar | 523 | goto loop; |
524 | } |
||
525 | |||
526 | #endif /* __SMP__ */ |