Subversion Repositories HelenOS-historic

Rev

Rev 898 | Rev 907 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
378 jermar 32
#include <mm/frame.h>
33
#include <mm/page.h>
703 jermar 34
#include <mm/as.h>
378 jermar 35
#include <arch/asm.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
38
#include <synch/spinlock.h>
1 jermar 39
#include <config.h>
40
#include <context.h>
41
#include <func.h>
42
#include <arch.h>
788 jermar 43
#include <adt/list.h>
68 decky 44
#include <panic.h>
1 jermar 45
#include <typedefs.h>
378 jermar 46
#include <cpu.h>
195 vana 47
#include <print.h>
227 jermar 48
#include <debug.h>
1 jermar 49
 
898 jermar 50
static void scheduler_separated_stack(void);
195 vana 51
 
898 jermar 52
atomic_t nrdy;	/**< Number of ready threads in the system. */
53
 
897 jermar 54
/** Take actions before new thread runs.
107 decky 55
 *
118 jermar 56
 * Perform actions that need to be
57
 * taken before the newly selected
58
 * tread is passed control.
107 decky 59
 *
827 palkovsky 60
 * THREAD->lock is locked on entry
61
 *
107 decky 62
 */
52 vana 63
void before_thread_runs(void)
64
{
309 palkovsky 65
	before_thread_runs_arch();
906 palkovsky 66
#ifdef CONFIG_FPU_LAZY
309 palkovsky 67
	if(THREAD==CPU->fpu_owner) 
68
		fpu_enable();
69
	else
70
		fpu_disable(); 
906 palkovsky 71
#else
309 palkovsky 72
	fpu_enable();
73
	if (THREAD->fpu_context_exists)
906 palkovsky 74
		fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 75
	else {
906 palkovsky 76
		fpu_init();
309 palkovsky 77
		THREAD->fpu_context_exists=1;
78
	}
906 palkovsky 79
#endif
52 vana 80
}
81
 
898 jermar 82
/** Take actions after THREAD had run.
897 jermar 83
 *
84
 * Perform actions that need to be
85
 * taken after the running thread
898 jermar 86
 * had been preempted by the scheduler.
897 jermar 87
 *
88
 * THREAD->lock is locked on entry
89
 *
90
 */
91
void after_thread_ran(void)
92
{
93
	after_thread_ran_arch();
94
}
95
 
458 decky 96
#ifdef CONFIG_FPU_LAZY
309 palkovsky 97
void scheduler_fpu_lazy_request(void)
98
{
99
	fpu_enable();
827 palkovsky 100
	spinlock_lock(&CPU->lock);
101
 
102
	/* Save old context */
309 palkovsky 103
	if (CPU->fpu_owner != NULL) {  
827 palkovsky 104
		spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 105
		fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 106
		/* don't prevent migration */
107
		CPU->fpu_owner->fpu_context_engaged=0; 
827 palkovsky 108
		spinlock_unlock(&CPU->fpu_owner->lock);
309 palkovsky 109
	}
827 palkovsky 110
 
111
	spinlock_lock(&THREAD->lock);
898 jermar 112
	if (THREAD->fpu_context_exists) {
906 palkovsky 113
		fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 114
	} else {
906 palkovsky 115
		/* Allocate FPU context */
116
		if (!THREAD->saved_fpu_context) {
117
			/* Might sleep */
118
			spinlock_unlock(&THREAD->lock);
119
			THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
120
							       0);
121
			spinlock_lock(&THREAD->lock);
122
		}
123
		fpu_init();
309 palkovsky 124
		THREAD->fpu_context_exists=1;
125
	}
126
	CPU->fpu_owner=THREAD;
127
	THREAD->fpu_context_engaged = 1;
898 jermar 128
	spinlock_unlock(&THREAD->lock);
827 palkovsky 129
 
130
	spinlock_unlock(&CPU->lock);
309 palkovsky 131
}
132
#endif
52 vana 133
 
107 decky 134
/** Initialize scheduler
135
 *
136
 * Initialize kernel scheduler.
137
 *
138
 */
1 jermar 139
void scheduler_init(void)
140
{
141
}
142
 
107 decky 143
/** Get thread to be scheduled
144
 *
145
 * Get the optimal thread to be scheduled
109 jermar 146
 * according to thread accounting and scheduler
107 decky 147
 * policy.
148
 *
149
 * @return Thread to be scheduled.
150
 *
151
 */
483 jermar 152
static thread_t *find_best_thread(void)
1 jermar 153
{
154
	thread_t *t;
155
	runq_t *r;
783 palkovsky 156
	int i;
1 jermar 157
 
227 jermar 158
	ASSERT(CPU != NULL);
159
 
1 jermar 160
loop:
413 jermar 161
	interrupts_enable();
1 jermar 162
 
783 palkovsky 163
	if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 164
		/*
165
		 * For there was nothing to run, the CPU goes to sleep
166
		 * until a hardware interrupt or an IPI comes.
167
		 * This improves energy saving and hyperthreading.
168
		 */
785 jermar 169
 
170
		/*
171
		 * An interrupt might occur right now and wake up a thread.
172
		 * In such case, the CPU will continue to go to sleep
173
		 * even though there is a runnable thread.
174
		 */
175
 
1 jermar 176
		 cpu_sleep();
177
		 goto loop;
178
	}
179
 
413 jermar 180
	interrupts_disable();
114 jermar 181
 
898 jermar 182
	for (i = 0; i<RQ_COUNT; i++) {
15 jermar 183
		r = &CPU->rq[i];
1 jermar 184
		spinlock_lock(&r->lock);
185
		if (r->n == 0) {
186
			/*
187
			 * If this queue is empty, try a lower-priority queue.
188
			 */
189
			spinlock_unlock(&r->lock);
190
			continue;
191
		}
213 jermar 192
 
783 palkovsky 193
		atomic_dec(&CPU->nrdy);
475 jermar 194
		atomic_dec(&nrdy);
1 jermar 195
		r->n--;
196
 
197
		/*
198
		 * Take the first thread from the queue.
199
		 */
200
		t = list_get_instance(r->rq_head.next, thread_t, rq_link);
201
		list_remove(&t->rq_link);
202
 
203
		spinlock_unlock(&r->lock);
204
 
205
		spinlock_lock(&t->lock);
15 jermar 206
		t->cpu = CPU;
1 jermar 207
 
208
		t->ticks = us2ticks((i+1)*10000);
898 jermar 209
		t->priority = i;	/* correct rq index */
1 jermar 210
 
211
		/*
212
		 * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
213
		 */
214
		t->flags &= ~X_STOLEN;
215
		spinlock_unlock(&t->lock);
216
 
217
		return t;
218
	}
219
	goto loop;
220
 
221
}
222
 
107 decky 223
/** Prevent rq starvation
224
 *
225
 * Prevent low priority threads from starving in rq's.
226
 *
227
 * When the function decides to relink rq's, it reconnects
228
 * respective pointers so that in result threads with 'pri'
229
 * greater or equal 'start' are moved to a higher-priority queue.
230
 *
231
 * @param start Threshold priority.
232
 *
1 jermar 233
 */
452 decky 234
static void relink_rq(int start)
1 jermar 235
{
236
	link_t head;
237
	runq_t *r;
238
	int i, n;
239
 
240
	list_initialize(&head);
15 jermar 241
	spinlock_lock(&CPU->lock);
242
	if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 243
		for (i = start; i<RQ_COUNT-1; i++) {
244
			/* remember and empty rq[i + 1] */
15 jermar 245
			r = &CPU->rq[i + 1];
1 jermar 246
			spinlock_lock(&r->lock);
247
			list_concat(&head, &r->rq_head);
248
			n = r->n;
249
			r->n = 0;
250
			spinlock_unlock(&r->lock);
251
 
252
			/* append rq[i + 1] to rq[i] */
15 jermar 253
			r = &CPU->rq[i];
1 jermar 254
			spinlock_lock(&r->lock);
255
			list_concat(&r->rq_head, &head);
256
			r->n += n;
257
			spinlock_unlock(&r->lock);
258
		}
15 jermar 259
		CPU->needs_relink = 0;
1 jermar 260
	}
784 palkovsky 261
	spinlock_unlock(&CPU->lock);
1 jermar 262
 
263
}
264
 
898 jermar 265
/** The scheduler
266
 *
267
 * The thread scheduling procedure.
268
 * Passes control directly to
269
 * scheduler_separated_stack().
270
 *
271
 */
272
void scheduler(void)
273
{
274
	volatile ipl_t ipl;
107 decky 275
 
898 jermar 276
	ASSERT(CPU != NULL);
277
 
278
	ipl = interrupts_disable();
279
 
280
	if (atomic_get(&haltstate))
281
		halt();
282
 
283
	if (THREAD) {
284
		spinlock_lock(&THREAD->lock);
906 palkovsky 285
#ifndef CONFIG_FPU_LAZY
286
		fpu_context_save(THREAD->saved_fpu_context);
287
#endif
898 jermar 288
		if (!context_save(&THREAD->saved_context)) {
289
			/*
290
			 * This is the place where threads leave scheduler();
291
			 */
292
			spinlock_unlock(&THREAD->lock);
293
			interrupts_restore(THREAD->saved_context.ipl);
294
			return;
295
		}
296
 
297
		/*
298
		 * Interrupt priority level of preempted thread is recorded here
299
		 * to facilitate scheduler() invocations from interrupts_disable()'d
300
		 * code (e.g. waitq_sleep_timeout()). 
301
		 */
302
		THREAD->saved_context.ipl = ipl;
303
	}
304
 
305
	/*
306
	 * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
307
	 * and preemption counter. At this point THE could be coming either
308
	 * from THREAD's or CPU's stack.
309
	 */
310
	the_copy(THE, (the_t *) CPU->stack);
311
 
312
	/*
313
	 * We may not keep the old stack.
314
	 * Reason: If we kept the old stack and got blocked, for instance, in
315
	 * find_best_thread(), the old thread could get rescheduled by another
316
	 * CPU and overwrite the part of its own stack that was also used by
317
	 * the scheduler on this CPU.
318
	 *
319
	 * Moreover, we have to bypass the compiler-generated POP sequence
320
	 * which is fooled by SP being set to the very top of the stack.
321
	 * Therefore the scheduler() function continues in
322
	 * scheduler_separated_stack().
323
	 */
324
	context_save(&CPU->saved_context);
325
	context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
326
	context_restore(&CPU->saved_context);
327
	/* not reached */
328
}
329
 
107 decky 330
/** Scheduler stack switch wrapper
331
 *
332
 * Second part of the scheduler() function
333
 * using new stack. Handling the actual context
334
 * switch to a new thread.
335
 *
787 palkovsky 336
 * Assume THREAD->lock is held.
107 decky 337
 */
898 jermar 338
void scheduler_separated_stack(void)
1 jermar 339
{
340
	int priority;
341
 
227 jermar 342
	ASSERT(CPU != NULL);
343
 
15 jermar 344
	if (THREAD) {
898 jermar 345
		/* must be run after the switch to scheduler stack */
897 jermar 346
		after_thread_ran();
347
 
15 jermar 348
		switch (THREAD->state) {
1 jermar 349
		    case Running:
125 jermar 350
			THREAD->state = Ready;
351
			spinlock_unlock(&THREAD->lock);
352
			thread_ready(THREAD);
353
			break;
1 jermar 354
 
355
		    case Exiting:
787 palkovsky 356
			thread_destroy(THREAD);
125 jermar 357
			break;
787 palkovsky 358
 
1 jermar 359
		    case Sleeping:
125 jermar 360
			/*
361
			 * Prefer the thread after it's woken up.
362
			 */
413 jermar 363
			THREAD->priority = -1;
1 jermar 364
 
125 jermar 365
			/*
366
			 * We need to release wq->lock which we locked in waitq_sleep().
367
			 * Address of wq->lock is kept in THREAD->sleep_queue.
368
			 */
369
			spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 370
 
125 jermar 371
			/*
372
			 * Check for possible requests for out-of-context invocation.
373
			 */
374
			if (THREAD->call_me) {
375
				THREAD->call_me(THREAD->call_me_with);
376
				THREAD->call_me = NULL;
377
				THREAD->call_me_with = NULL;
378
			}
1 jermar 379
 
125 jermar 380
			spinlock_unlock(&THREAD->lock);
1 jermar 381
 
125 jermar 382
			break;
383
 
1 jermar 384
		    default:
125 jermar 385
			/*
386
			 * Entering state is unexpected.
387
			 */
388
			panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
389
			break;
1 jermar 390
		}
897 jermar 391
 
15 jermar 392
		THREAD = NULL;
1 jermar 393
	}
198 jermar 394
 
15 jermar 395
	THREAD = find_best_thread();
1 jermar 396
 
15 jermar 397
	spinlock_lock(&THREAD->lock);
413 jermar 398
	priority = THREAD->priority;
15 jermar 399
	spinlock_unlock(&THREAD->lock);	
192 jermar 400
 
1 jermar 401
	relink_rq(priority);		
402
 
15 jermar 403
	spinlock_lock(&THREAD->lock);	
1 jermar 404
 
405
	/*
406
	 * If both the old and the new task are the same, lots of work is avoided.
407
	 */
15 jermar 408
	if (TASK != THREAD->task) {
703 jermar 409
		as_t *as1 = NULL;
410
		as_t *as2;
1 jermar 411
 
15 jermar 412
		if (TASK) {
413
			spinlock_lock(&TASK->lock);
703 jermar 414
			as1 = TASK->as;
15 jermar 415
			spinlock_unlock(&TASK->lock);
1 jermar 416
		}
417
 
15 jermar 418
		spinlock_lock(&THREAD->task->lock);
703 jermar 419
		as2 = THREAD->task->as;
15 jermar 420
		spinlock_unlock(&THREAD->task->lock);
1 jermar 421
 
422
		/*
703 jermar 423
		 * Note that it is possible for two tasks to share one address space.
1 jermar 424
		 */
703 jermar 425
		if (as1 != as2) {
1 jermar 426
			/*
703 jermar 427
			 * Both tasks and address spaces are different.
1 jermar 428
			 * Replace the old one with the new one.
429
			 */
823 jermar 430
			as_switch(as1, as2);
1 jermar 431
		}
906 palkovsky 432
		TASK = THREAD->task;
1 jermar 433
	}
434
 
15 jermar 435
	THREAD->state = Running;
1 jermar 436
 
906 palkovsky 437
#ifdef SCHEDULER_VERBOSE
823 jermar 438
	printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 439
#endif	
1 jermar 440
 
213 jermar 441
	/*
897 jermar 442
	 * Some architectures provide late kernel PA2KA(identity)
443
	 * mapping in a page fault handler. However, the page fault
444
	 * handler uses the kernel stack of the running thread and
445
	 * therefore cannot be used to map it. The kernel stack, if
446
	 * necessary, is to be mapped in before_thread_runs(). This
447
	 * function must be executed before the switch to the new stack.
448
	 */
449
	before_thread_runs();
450
 
451
	/*
213 jermar 452
	 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
453
	 */
184 jermar 454
	the_copy(THE, (the_t *) THREAD->kstack);
455
 
15 jermar 456
	context_restore(&THREAD->saved_context);
1 jermar 457
	/* not reached */
458
}
459
 
458 decky 460
#ifdef CONFIG_SMP
107 decky 461
/** Load balancing thread
462
 *
463
 * SMP load balancing thread, supervising thread supplies
464
 * for the CPU it's wired to.
465
 *
466
 * @param arg Generic thread argument (unused).
467
 *
1 jermar 468
 */
469
void kcpulb(void *arg)
470
{
471
	thread_t *t;
783 palkovsky 472
	int count, average, i, j, k = 0;
413 jermar 473
	ipl_t ipl;
1 jermar 474
 
475
loop:
476
	/*
779 jermar 477
	 * Work in 1s intervals.
1 jermar 478
	 */
779 jermar 479
	thread_sleep(1);
1 jermar 480
 
481
not_satisfied:
482
	/*
483
	 * Calculate the number of threads that will be migrated/stolen from
484
	 * other CPU's. Note that situation can have changed between two
485
	 * passes. Each time get the most up to date counts.
486
	 */
784 palkovsky 487
	average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 488
	count = average - atomic_get(&CPU->nrdy);
1 jermar 489
 
784 palkovsky 490
	if (count <= 0)
1 jermar 491
		goto satisfied;
492
 
493
	/*
494
	 * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
495
	 */
496
	for (j=RQ_COUNT-1; j >= 0; j--) {
497
		for (i=0; i < config.cpu_active; i++) {
498
			link_t *l;
499
			runq_t *r;
500
			cpu_t *cpu;
501
 
502
			cpu = &cpus[(i + k) % config.cpu_active];
503
 
504
			/*
505
			 * Not interested in ourselves.
506
			 * Doesn't require interrupt disabling for kcpulb is X_WIRED.
507
			 */
15 jermar 508
			if (CPU == cpu)
783 palkovsky 509
				continue;
510
			if (atomic_get(&cpu->nrdy) <= average)
511
				continue;
1 jermar 512
 
784 palkovsky 513
			ipl = interrupts_disable();
115 jermar 514
			r = &cpu->rq[j];
1 jermar 515
			spinlock_lock(&r->lock);
516
			if (r->n == 0) {
517
				spinlock_unlock(&r->lock);
413 jermar 518
				interrupts_restore(ipl);
1 jermar 519
				continue;
520
			}
521
 
522
			t = NULL;
523
			l = r->rq_head.prev;	/* search rq from the back */
524
			while (l != &r->rq_head) {
525
				t = list_get_instance(l, thread_t, rq_link);
526
				/*
125 jermar 527
				 * We don't want to steal CPU-wired threads neither threads already stolen.
1 jermar 528
				 * The latter prevents threads from migrating between CPU's without ever being run.
125 jermar 529
				 * We don't want to steal threads whose FPU context is still in CPU.
73 vana 530
				 */
1 jermar 531
				spinlock_lock(&t->lock);
73 vana 532
				if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 533
					/*
534
					 * Remove t from r.
535
					 */
536
					spinlock_unlock(&t->lock);
537
 
783 palkovsky 538
					atomic_dec(&cpu->nrdy);
475 jermar 539
					atomic_dec(&nrdy);
1 jermar 540
 
125 jermar 541
					r->n--;
1 jermar 542
					list_remove(&t->rq_link);
543
 
544
					break;
545
				}
546
				spinlock_unlock(&t->lock);
547
				l = l->prev;
548
				t = NULL;
549
			}
550
			spinlock_unlock(&r->lock);
551
 
552
			if (t) {
553
				/*
554
				 * Ready t on local CPU
555
				 */
556
				spinlock_lock(&t->lock);
906 palkovsky 557
#ifdef KCPULB_VERBOSE
783 palkovsky 558
				printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 559
#endif
1 jermar 560
				t->flags |= X_STOLEN;
561
				spinlock_unlock(&t->lock);
562
 
563
				thread_ready(t);
564
 
413 jermar 565
				interrupts_restore(ipl);
1 jermar 566
 
567
				if (--count == 0)
568
					goto satisfied;
569
 
570
				/*
125 jermar 571
				 * We are not satisfied yet, focus on another CPU next time.
1 jermar 572
				 */
573
				k++;
574
 
575
				continue;
576
			}
413 jermar 577
			interrupts_restore(ipl);
1 jermar 578
		}
579
	}
580
 
783 palkovsky 581
	if (atomic_get(&CPU->nrdy)) {
1 jermar 582
		/*
583
		 * Be a little bit light-weight and let migrated threads run.
584
		 */
585
		scheduler();
779 jermar 586
	} else {
1 jermar 587
		/*
588
		 * We failed to migrate a single thread.
779 jermar 589
		 * Give up this turn.
1 jermar 590
		 */
779 jermar 591
		goto loop;
1 jermar 592
	}
593
 
594
	goto not_satisfied;
125 jermar 595
 
1 jermar 596
satisfied:
597
	goto loop;
598
}
599
 
458 decky 600
#endif /* CONFIG_SMP */
775 palkovsky 601
 
602
 
603
/** Print information about threads & scheduler queues */
604
void sched_print_list(void)
605
{
606
	ipl_t ipl;
607
	int cpu,i;
608
	runq_t *r;
609
	thread_t *t;
610
	link_t *cur;
611
 
612
	/* We are going to mess with scheduler structures,
613
	 * let's not be interrupted */
614
	ipl = interrupts_disable();
898 jermar 615
	printf("Scheduler dump:\n");
775 palkovsky 616
	for (cpu=0;cpu < config.cpu_count; cpu++) {
898 jermar 617
 
775 palkovsky 618
		if (!cpus[cpu].active)
619
			continue;
898 jermar 620
 
775 palkovsky 621
		spinlock_lock(&cpus[cpu].lock);
898 jermar 622
		printf("cpu%d: nrdy: %d, needs_relink: %d\n",
783 palkovsky 623
		       cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 624
 
625
		for (i=0; i<RQ_COUNT; i++) {
626
			r = &cpus[cpu].rq[i];
627
			spinlock_lock(&r->lock);
628
			if (!r->n) {
629
				spinlock_unlock(&r->lock);
630
				continue;
631
			}
898 jermar 632
			printf("\trq[%d]: ", i);
775 palkovsky 633
			for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
634
				t = list_get_instance(cur, thread_t, rq_link);
635
				printf("%d(%s) ", t->tid,
636
				       thread_states[t->state]);
637
			}
638
			printf("\n");
639
			spinlock_unlock(&r->lock);
640
		}
641
		spinlock_unlock(&cpus[cpu].lock);
642
	}
643
 
644
	interrupts_restore(ipl);
645
}