Subversion Repositories HelenOS-historic

Rev

Rev 1007 | Rev 1086 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
378 jermar 32
#include <mm/frame.h>
33
#include <mm/page.h>
703 jermar 34
#include <mm/as.h>
378 jermar 35
#include <arch/asm.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
38
#include <synch/spinlock.h>
1 jermar 39
#include <config.h>
40
#include <context.h>
41
#include <func.h>
42
#include <arch.h>
788 jermar 43
#include <adt/list.h>
68 decky 44
#include <panic.h>
1 jermar 45
#include <typedefs.h>
378 jermar 46
#include <cpu.h>
195 vana 47
#include <print.h>
227 jermar 48
#include <debug.h>
1 jermar 49
 
898 jermar 50
static void scheduler_separated_stack(void);
195 vana 51
 
898 jermar 52
atomic_t nrdy;	/**< Number of ready threads in the system. */
53
 
897 jermar 54
/** Take actions before new thread runs.
107 decky 55
 *
118 jermar 56
 * Perform actions that need to be
57
 * taken before the newly selected
58
 * tread is passed control.
107 decky 59
 *
827 palkovsky 60
 * THREAD->lock is locked on entry
61
 *
107 decky 62
 */
52 vana 63
void before_thread_runs(void)
64
{
309 palkovsky 65
	before_thread_runs_arch();
906 palkovsky 66
#ifdef CONFIG_FPU_LAZY
309 palkovsky 67
	if(THREAD==CPU->fpu_owner) 
68
		fpu_enable();
69
	else
70
		fpu_disable(); 
906 palkovsky 71
#else
309 palkovsky 72
	fpu_enable();
73
	if (THREAD->fpu_context_exists)
906 palkovsky 74
		fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 75
	else {
906 palkovsky 76
		fpu_init();
309 palkovsky 77
		THREAD->fpu_context_exists=1;
78
	}
906 palkovsky 79
#endif
52 vana 80
}
81
 
898 jermar 82
/** Take actions after THREAD had run.
897 jermar 83
 *
84
 * Perform actions that need to be
85
 * taken after the running thread
898 jermar 86
 * had been preempted by the scheduler.
897 jermar 87
 *
88
 * THREAD->lock is locked on entry
89
 *
90
 */
91
void after_thread_ran(void)
92
{
93
	after_thread_ran_arch();
94
}
95
 
458 decky 96
#ifdef CONFIG_FPU_LAZY
309 palkovsky 97
void scheduler_fpu_lazy_request(void)
98
{
907 palkovsky 99
restart:
309 palkovsky 100
	fpu_enable();
827 palkovsky 101
	spinlock_lock(&CPU->lock);
102
 
103
	/* Save old context */
309 palkovsky 104
	if (CPU->fpu_owner != NULL) {  
827 palkovsky 105
		spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 106
		fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 107
		/* don't prevent migration */
108
		CPU->fpu_owner->fpu_context_engaged=0; 
827 palkovsky 109
		spinlock_unlock(&CPU->fpu_owner->lock);
907 palkovsky 110
		CPU->fpu_owner = NULL;
309 palkovsky 111
	}
827 palkovsky 112
 
113
	spinlock_lock(&THREAD->lock);
898 jermar 114
	if (THREAD->fpu_context_exists) {
906 palkovsky 115
		fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 116
	} else {
906 palkovsky 117
		/* Allocate FPU context */
118
		if (!THREAD->saved_fpu_context) {
119
			/* Might sleep */
120
			spinlock_unlock(&THREAD->lock);
907 palkovsky 121
			spinlock_unlock(&CPU->lock);
906 palkovsky 122
			THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
123
							       0);
907 palkovsky 124
			/* We may have switched CPUs during slab_alloc */
125
			goto restart; 
906 palkovsky 126
		}
127
		fpu_init();
309 palkovsky 128
		THREAD->fpu_context_exists=1;
129
	}
130
	CPU->fpu_owner=THREAD;
131
	THREAD->fpu_context_engaged = 1;
898 jermar 132
	spinlock_unlock(&THREAD->lock);
827 palkovsky 133
 
134
	spinlock_unlock(&CPU->lock);
309 palkovsky 135
}
136
#endif
52 vana 137
 
107 decky 138
/** Initialize scheduler
139
 *
140
 * Initialize kernel scheduler.
141
 *
142
 */
1 jermar 143
void scheduler_init(void)
144
{
145
}
146
 
107 decky 147
/** Get thread to be scheduled
148
 *
149
 * Get the optimal thread to be scheduled
109 jermar 150
 * according to thread accounting and scheduler
107 decky 151
 * policy.
152
 *
153
 * @return Thread to be scheduled.
154
 *
155
 */
483 jermar 156
static thread_t *find_best_thread(void)
1 jermar 157
{
158
	thread_t *t;
159
	runq_t *r;
783 palkovsky 160
	int i;
1 jermar 161
 
227 jermar 162
	ASSERT(CPU != NULL);
163
 
1 jermar 164
loop:
413 jermar 165
	interrupts_enable();
1 jermar 166
 
783 palkovsky 167
	if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 168
		/*
169
		 * For there was nothing to run, the CPU goes to sleep
170
		 * until a hardware interrupt or an IPI comes.
171
		 * This improves energy saving and hyperthreading.
172
		 */
785 jermar 173
 
174
		/*
175
		 * An interrupt might occur right now and wake up a thread.
176
		 * In such case, the CPU will continue to go to sleep
177
		 * even though there is a runnable thread.
178
		 */
179
 
1 jermar 180
		 cpu_sleep();
181
		 goto loop;
182
	}
183
 
413 jermar 184
	interrupts_disable();
114 jermar 185
 
898 jermar 186
	for (i = 0; i<RQ_COUNT; i++) {
15 jermar 187
		r = &CPU->rq[i];
1 jermar 188
		spinlock_lock(&r->lock);
189
		if (r->n == 0) {
190
			/*
191
			 * If this queue is empty, try a lower-priority queue.
192
			 */
193
			spinlock_unlock(&r->lock);
194
			continue;
195
		}
213 jermar 196
 
783 palkovsky 197
		atomic_dec(&CPU->nrdy);
475 jermar 198
		atomic_dec(&nrdy);
1 jermar 199
		r->n--;
200
 
201
		/*
202
		 * Take the first thread from the queue.
203
		 */
204
		t = list_get_instance(r->rq_head.next, thread_t, rq_link);
205
		list_remove(&t->rq_link);
206
 
207
		spinlock_unlock(&r->lock);
208
 
209
		spinlock_lock(&t->lock);
15 jermar 210
		t->cpu = CPU;
1 jermar 211
 
212
		t->ticks = us2ticks((i+1)*10000);
898 jermar 213
		t->priority = i;	/* correct rq index */
1 jermar 214
 
215
		/*
216
		 * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
217
		 */
218
		t->flags &= ~X_STOLEN;
219
		spinlock_unlock(&t->lock);
220
 
221
		return t;
222
	}
223
	goto loop;
224
 
225
}
226
 
107 decky 227
/** Prevent rq starvation
228
 *
229
 * Prevent low priority threads from starving in rq's.
230
 *
231
 * When the function decides to relink rq's, it reconnects
232
 * respective pointers so that in result threads with 'pri'
233
 * greater or equal 'start' are moved to a higher-priority queue.
234
 *
235
 * @param start Threshold priority.
236
 *
1 jermar 237
 */
452 decky 238
static void relink_rq(int start)
1 jermar 239
{
240
	link_t head;
241
	runq_t *r;
242
	int i, n;
243
 
244
	list_initialize(&head);
15 jermar 245
	spinlock_lock(&CPU->lock);
246
	if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 247
		for (i = start; i<RQ_COUNT-1; i++) {
248
			/* remember and empty rq[i + 1] */
15 jermar 249
			r = &CPU->rq[i + 1];
1 jermar 250
			spinlock_lock(&r->lock);
251
			list_concat(&head, &r->rq_head);
252
			n = r->n;
253
			r->n = 0;
254
			spinlock_unlock(&r->lock);
255
 
256
			/* append rq[i + 1] to rq[i] */
15 jermar 257
			r = &CPU->rq[i];
1 jermar 258
			spinlock_lock(&r->lock);
259
			list_concat(&r->rq_head, &head);
260
			r->n += n;
261
			spinlock_unlock(&r->lock);
262
		}
15 jermar 263
		CPU->needs_relink = 0;
1 jermar 264
	}
784 palkovsky 265
	spinlock_unlock(&CPU->lock);
1 jermar 266
 
267
}
268
 
898 jermar 269
/** The scheduler
270
 *
271
 * The thread scheduling procedure.
272
 * Passes control directly to
273
 * scheduler_separated_stack().
274
 *
275
 */
276
void scheduler(void)
277
{
278
	volatile ipl_t ipl;
107 decky 279
 
898 jermar 280
	ASSERT(CPU != NULL);
281
 
282
	ipl = interrupts_disable();
283
 
284
	if (atomic_get(&haltstate))
285
		halt();
1007 decky 286
 
898 jermar 287
	if (THREAD) {
288
		spinlock_lock(&THREAD->lock);
906 palkovsky 289
#ifndef CONFIG_FPU_LAZY
290
		fpu_context_save(THREAD->saved_fpu_context);
291
#endif
898 jermar 292
		if (!context_save(&THREAD->saved_context)) {
293
			/*
294
			 * This is the place where threads leave scheduler();
295
			 */
296
			spinlock_unlock(&THREAD->lock);
297
			interrupts_restore(THREAD->saved_context.ipl);
1007 decky 298
 
898 jermar 299
			return;
300
		}
301
 
302
		/*
303
		 * Interrupt priority level of preempted thread is recorded here
304
		 * to facilitate scheduler() invocations from interrupts_disable()'d
305
		 * code (e.g. waitq_sleep_timeout()). 
306
		 */
307
		THREAD->saved_context.ipl = ipl;
308
	}
309
 
310
	/*
311
	 * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
312
	 * and preemption counter. At this point THE could be coming either
313
	 * from THREAD's or CPU's stack.
314
	 */
315
	the_copy(THE, (the_t *) CPU->stack);
316
 
317
	/*
318
	 * We may not keep the old stack.
319
	 * Reason: If we kept the old stack and got blocked, for instance, in
320
	 * find_best_thread(), the old thread could get rescheduled by another
321
	 * CPU and overwrite the part of its own stack that was also used by
322
	 * the scheduler on this CPU.
323
	 *
324
	 * Moreover, we have to bypass the compiler-generated POP sequence
325
	 * which is fooled by SP being set to the very top of the stack.
326
	 * Therefore the scheduler() function continues in
327
	 * scheduler_separated_stack().
328
	 */
329
	context_save(&CPU->saved_context);
330
	context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
331
	context_restore(&CPU->saved_context);
332
	/* not reached */
333
}
334
 
107 decky 335
/** Scheduler stack switch wrapper
336
 *
337
 * Second part of the scheduler() function
338
 * using new stack. Handling the actual context
339
 * switch to a new thread.
340
 *
787 palkovsky 341
 * Assume THREAD->lock is held.
107 decky 342
 */
898 jermar 343
void scheduler_separated_stack(void)
1 jermar 344
{
345
	int priority;
1007 decky 346
 
227 jermar 347
	ASSERT(CPU != NULL);
1007 decky 348
 
15 jermar 349
	if (THREAD) {
898 jermar 350
		/* must be run after the switch to scheduler stack */
897 jermar 351
		after_thread_ran();
352
 
15 jermar 353
		switch (THREAD->state) {
1 jermar 354
		    case Running:
125 jermar 355
			THREAD->state = Ready;
356
			spinlock_unlock(&THREAD->lock);
357
			thread_ready(THREAD);
358
			break;
1 jermar 359
 
360
		    case Exiting:
787 palkovsky 361
			thread_destroy(THREAD);
125 jermar 362
			break;
787 palkovsky 363
 
1 jermar 364
		    case Sleeping:
125 jermar 365
			/*
366
			 * Prefer the thread after it's woken up.
367
			 */
413 jermar 368
			THREAD->priority = -1;
1 jermar 369
 
125 jermar 370
			/*
371
			 * We need to release wq->lock which we locked in waitq_sleep().
372
			 * Address of wq->lock is kept in THREAD->sleep_queue.
373
			 */
374
			spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 375
 
125 jermar 376
			/*
377
			 * Check for possible requests for out-of-context invocation.
378
			 */
379
			if (THREAD->call_me) {
380
				THREAD->call_me(THREAD->call_me_with);
381
				THREAD->call_me = NULL;
382
				THREAD->call_me_with = NULL;
383
			}
1 jermar 384
 
125 jermar 385
			spinlock_unlock(&THREAD->lock);
1 jermar 386
 
125 jermar 387
			break;
388
 
1 jermar 389
		    default:
125 jermar 390
			/*
391
			 * Entering state is unexpected.
392
			 */
393
			panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
394
			break;
1 jermar 395
		}
897 jermar 396
 
15 jermar 397
		THREAD = NULL;
1 jermar 398
	}
198 jermar 399
 
15 jermar 400
	THREAD = find_best_thread();
1 jermar 401
 
15 jermar 402
	spinlock_lock(&THREAD->lock);
413 jermar 403
	priority = THREAD->priority;
15 jermar 404
	spinlock_unlock(&THREAD->lock);	
192 jermar 405
 
1 jermar 406
	relink_rq(priority);		
407
 
15 jermar 408
	spinlock_lock(&THREAD->lock);	
1 jermar 409
 
410
	/*
411
	 * If both the old and the new task are the same, lots of work is avoided.
412
	 */
15 jermar 413
	if (TASK != THREAD->task) {
703 jermar 414
		as_t *as1 = NULL;
415
		as_t *as2;
1 jermar 416
 
15 jermar 417
		if (TASK) {
418
			spinlock_lock(&TASK->lock);
703 jermar 419
			as1 = TASK->as;
15 jermar 420
			spinlock_unlock(&TASK->lock);
1 jermar 421
		}
422
 
15 jermar 423
		spinlock_lock(&THREAD->task->lock);
703 jermar 424
		as2 = THREAD->task->as;
15 jermar 425
		spinlock_unlock(&THREAD->task->lock);
1 jermar 426
 
427
		/*
703 jermar 428
		 * Note that it is possible for two tasks to share one address space.
1 jermar 429
		 */
703 jermar 430
		if (as1 != as2) {
1 jermar 431
			/*
703 jermar 432
			 * Both tasks and address spaces are different.
1 jermar 433
			 * Replace the old one with the new one.
434
			 */
823 jermar 435
			as_switch(as1, as2);
1 jermar 436
		}
906 palkovsky 437
		TASK = THREAD->task;
1 jermar 438
	}
439
 
15 jermar 440
	THREAD->state = Running;
1 jermar 441
 
906 palkovsky 442
#ifdef SCHEDULER_VERBOSE
823 jermar 443
	printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 444
#endif	
1 jermar 445
 
213 jermar 446
	/*
897 jermar 447
	 * Some architectures provide late kernel PA2KA(identity)
448
	 * mapping in a page fault handler. However, the page fault
449
	 * handler uses the kernel stack of the running thread and
450
	 * therefore cannot be used to map it. The kernel stack, if
451
	 * necessary, is to be mapped in before_thread_runs(). This
452
	 * function must be executed before the switch to the new stack.
453
	 */
454
	before_thread_runs();
455
 
456
	/*
213 jermar 457
	 * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
458
	 */
184 jermar 459
	the_copy(THE, (the_t *) THREAD->kstack);
460
 
15 jermar 461
	context_restore(&THREAD->saved_context);
1 jermar 462
	/* not reached */
463
}
464
 
458 decky 465
#ifdef CONFIG_SMP
107 decky 466
/** Load balancing thread
467
 *
468
 * SMP load balancing thread, supervising thread supplies
469
 * for the CPU it's wired to.
470
 *
471
 * @param arg Generic thread argument (unused).
472
 *
1 jermar 473
 */
474
void kcpulb(void *arg)
475
{
476
	thread_t *t;
783 palkovsky 477
	int count, average, i, j, k = 0;
413 jermar 478
	ipl_t ipl;
1 jermar 479
 
480
loop:
481
	/*
779 jermar 482
	 * Work in 1s intervals.
1 jermar 483
	 */
779 jermar 484
	thread_sleep(1);
1 jermar 485
 
486
not_satisfied:
487
	/*
488
	 * Calculate the number of threads that will be migrated/stolen from
489
	 * other CPU's. Note that situation can have changed between two
490
	 * passes. Each time get the most up to date counts.
491
	 */
784 palkovsky 492
	average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 493
	count = average - atomic_get(&CPU->nrdy);
1 jermar 494
 
784 palkovsky 495
	if (count <= 0)
1 jermar 496
		goto satisfied;
497
 
498
	/*
499
	 * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
500
	 */
501
	for (j=RQ_COUNT-1; j >= 0; j--) {
502
		for (i=0; i < config.cpu_active; i++) {
503
			link_t *l;
504
			runq_t *r;
505
			cpu_t *cpu;
506
 
507
			cpu = &cpus[(i + k) % config.cpu_active];
508
 
509
			/*
510
			 * Not interested in ourselves.
511
			 * Doesn't require interrupt disabling for kcpulb is X_WIRED.
512
			 */
15 jermar 513
			if (CPU == cpu)
783 palkovsky 514
				continue;
515
			if (atomic_get(&cpu->nrdy) <= average)
516
				continue;
1 jermar 517
 
784 palkovsky 518
			ipl = interrupts_disable();
115 jermar 519
			r = &cpu->rq[j];
1 jermar 520
			spinlock_lock(&r->lock);
521
			if (r->n == 0) {
522
				spinlock_unlock(&r->lock);
413 jermar 523
				interrupts_restore(ipl);
1 jermar 524
				continue;
525
			}
526
 
527
			t = NULL;
528
			l = r->rq_head.prev;	/* search rq from the back */
529
			while (l != &r->rq_head) {
530
				t = list_get_instance(l, thread_t, rq_link);
531
				/*
125 jermar 532
				 * We don't want to steal CPU-wired threads neither threads already stolen.
1 jermar 533
				 * The latter prevents threads from migrating between CPU's without ever being run.
125 jermar 534
				 * We don't want to steal threads whose FPU context is still in CPU.
73 vana 535
				 */
1 jermar 536
				spinlock_lock(&t->lock);
73 vana 537
				if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 538
					/*
539
					 * Remove t from r.
540
					 */
541
					spinlock_unlock(&t->lock);
542
 
783 palkovsky 543
					atomic_dec(&cpu->nrdy);
475 jermar 544
					atomic_dec(&nrdy);
1 jermar 545
 
125 jermar 546
					r->n--;
1 jermar 547
					list_remove(&t->rq_link);
548
 
549
					break;
550
				}
551
				spinlock_unlock(&t->lock);
552
				l = l->prev;
553
				t = NULL;
554
			}
555
			spinlock_unlock(&r->lock);
556
 
557
			if (t) {
558
				/*
559
				 * Ready t on local CPU
560
				 */
561
				spinlock_lock(&t->lock);
906 palkovsky 562
#ifdef KCPULB_VERBOSE
783 palkovsky 563
				printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 564
#endif
1 jermar 565
				t->flags |= X_STOLEN;
566
				spinlock_unlock(&t->lock);
567
 
568
				thread_ready(t);
569
 
413 jermar 570
				interrupts_restore(ipl);
1 jermar 571
 
572
				if (--count == 0)
573
					goto satisfied;
574
 
575
				/*
125 jermar 576
				 * We are not satisfied yet, focus on another CPU next time.
1 jermar 577
				 */
578
				k++;
579
 
580
				continue;
581
			}
413 jermar 582
			interrupts_restore(ipl);
1 jermar 583
		}
584
	}
585
 
783 palkovsky 586
	if (atomic_get(&CPU->nrdy)) {
1 jermar 587
		/*
588
		 * Be a little bit light-weight and let migrated threads run.
589
		 */
590
		scheduler();
779 jermar 591
	} else {
1 jermar 592
		/*
593
		 * We failed to migrate a single thread.
779 jermar 594
		 * Give up this turn.
1 jermar 595
		 */
779 jermar 596
		goto loop;
1 jermar 597
	}
598
 
599
	goto not_satisfied;
125 jermar 600
 
1 jermar 601
satisfied:
602
	goto loop;
603
}
604
 
458 decky 605
#endif /* CONFIG_SMP */
775 palkovsky 606
 
607
 
608
/** Print information about threads & scheduler queues */
609
void sched_print_list(void)
610
{
611
	ipl_t ipl;
612
	int cpu,i;
613
	runq_t *r;
614
	thread_t *t;
615
	link_t *cur;
616
 
617
	/* We are going to mess with scheduler structures,
618
	 * let's not be interrupted */
619
	ipl = interrupts_disable();
620
	for (cpu=0;cpu < config.cpu_count; cpu++) {
898 jermar 621
 
775 palkovsky 622
		if (!cpus[cpu].active)
623
			continue;
898 jermar 624
 
775 palkovsky 625
		spinlock_lock(&cpus[cpu].lock);
1062 jermar 626
		printf("cpu%d: address=%P, nrdy=%d, needs_relink=%d\n",
627
		       cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 628
 
629
		for (i=0; i<RQ_COUNT; i++) {
630
			r = &cpus[cpu].rq[i];
631
			spinlock_lock(&r->lock);
632
			if (!r->n) {
633
				spinlock_unlock(&r->lock);
634
				continue;
635
			}
898 jermar 636
			printf("\trq[%d]: ", i);
775 palkovsky 637
			for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
638
				t = list_get_instance(cur, thread_t, rq_link);
639
				printf("%d(%s) ", t->tid,
640
				       thread_states[t->state]);
641
			}
642
			printf("\n");
643
			spinlock_unlock(&r->lock);
644
		}
645
		spinlock_unlock(&cpus[cpu].lock);
646
	}
647
 
648
	interrupts_restore(ipl);
649
}