Subversion Repositories HelenOS-historic

Rev

Rev 75 | Rev 81 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
32
#include <cpu.h>
33
#include <mm/vm.h>
34
#include <config.h>
35
#include <context.h>
36
#include <func.h>
37
#include <arch.h>
38
#include <arch/asm.h>
39
#include <list.h>
68 decky 40
#include <panic.h>
1 jermar 41
#include <typedefs.h>
42
#include <mm/page.h>
43
#include <synch/spinlock.h>
76 jermar 44
#include <arch/faddr.h>
1 jermar 45
 
46
#ifdef __SMP__
11 jermar 47
#include <arch/smp/atomic.h>
1 jermar 48
#endif /* __SMP__ */
49
 
50
/*
51
 * NOTE ON ATOMIC READS:
52
 * Some architectures cannot read __u32 atomically.
53
 * For that reason, all accesses to nrdy and the likes must be protected by spinlock.
54
 */
55
 
56
spinlock_t nrdylock;
57
volatile int nrdy;
58
 
52 vana 59
void before_thread_runs(void)
60
{
61
	before_thread_runs_arch(); 
57 vana 62
	fpu_context_restore(&(THREAD->saved_fpu_context));
52 vana 63
}
64
 
65
 
1 jermar 66
void scheduler_init(void)
67
{
68
	spinlock_initialize(&nrdylock);
69
}
70
 
71
/* cpu_priority_high()'d */
72
struct thread *find_best_thread(void)
73
{
74
	thread_t *t;
75
	runq_t *r;
76
	int i, n;
77
 
78
loop:
79
	cpu_priority_high();
80
 
15 jermar 81
	spinlock_lock(&CPU->lock);
82
	n = CPU->nrdy;
83
	spinlock_unlock(&CPU->lock);
1 jermar 84
 
85
	cpu_priority_low();
86
 
87
	if (n == 0) {
88
		#ifdef __SMP__
89
		/*
90
		 * If the load balancing thread is not running, wake it up and
91
		 * set CPU-private flag that the kcpulb has been started.
92
		 */
15 jermar 93
		if (test_and_set(&CPU->kcpulbstarted) == 0) {
94
    			waitq_wakeup(&CPU->kcpulb_wq, 0);
1 jermar 95
			goto loop;
96
		}
97
		#endif /* __SMP__ */
98
 
99
		/*
100
		 * For there was nothing to run, the CPU goes to sleep
101
		 * until a hardware interrupt or an IPI comes.
102
		 * This improves energy saving and hyperthreading.
103
		 * On the other hand, several hardware interrupts can be ignored.
104
		 */
105
		 cpu_sleep();
106
		 goto loop;
107
	}
108
 
109
	cpu_priority_high();
110
 
111
	for (i = 0; i<RQ_COUNT; i++) {
15 jermar 112
		r = &CPU->rq[i];
1 jermar 113
		spinlock_lock(&r->lock);
114
		if (r->n == 0) {
115
			/*
116
			 * If this queue is empty, try a lower-priority queue.
117
			 */
118
			spinlock_unlock(&r->lock);
119
			continue;
120
		}
121
 
122
		spinlock_lock(&nrdylock);
123
		nrdy--;
124
		spinlock_unlock(&nrdylock);		
125
 
15 jermar 126
		spinlock_lock(&CPU->lock);
127
		CPU->nrdy--;
128
		spinlock_unlock(&CPU->lock);
1 jermar 129
 
130
		r->n--;
131
 
132
		/*
133
		 * Take the first thread from the queue.
134
		 */
135
		t = list_get_instance(r->rq_head.next, thread_t, rq_link);
136
		list_remove(&t->rq_link);
137
 
138
		spinlock_unlock(&r->lock);
139
 
140
		spinlock_lock(&t->lock);
15 jermar 141
		t->cpu = CPU;
1 jermar 142
 
143
		t->ticks = us2ticks((i+1)*10000);
144
		t->pri = i;	/* eventually correct rq index */
145
 
146
		/*
147
		 * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
148
		 */
149
		t->flags &= ~X_STOLEN;
150
		spinlock_unlock(&t->lock);
151
 
152
		return t;
153
	}
154
	goto loop;
155
 
156
}
157
 
158
/*
159
 * This function prevents low priority threads from starving in rq's.
160
 * When it decides to relink rq's, it reconnects respective pointers
161
 * so that in result threads with 'pri' greater or equal 'start' are
162
 * moved to a higher-priority queue.
163
 */
164
void relink_rq(int start)
165
{
166
	link_t head;
167
	runq_t *r;
168
	int i, n;
169
 
170
	list_initialize(&head);
15 jermar 171
	spinlock_lock(&CPU->lock);
172
	if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 173
		for (i = start; i<RQ_COUNT-1; i++) {
174
			/* remember and empty rq[i + 1] */
15 jermar 175
			r = &CPU->rq[i + 1];
1 jermar 176
			spinlock_lock(&r->lock);
177
			list_concat(&head, &r->rq_head);
178
			n = r->n;
179
			r->n = 0;
180
			spinlock_unlock(&r->lock);
181
 
182
			/* append rq[i + 1] to rq[i] */
15 jermar 183
			r = &CPU->rq[i];
1 jermar 184
			spinlock_lock(&r->lock);
185
			list_concat(&r->rq_head, &head);
186
			r->n += n;
187
			spinlock_unlock(&r->lock);
188
		}
15 jermar 189
		CPU->needs_relink = 0;
1 jermar 190
	}
15 jermar 191
	spinlock_unlock(&CPU->lock);				
1 jermar 192
 
193
}
194
 
195
/*
196
 * The scheduler.
197
 */
198
void scheduler(void)
199
{
200
	volatile pri_t pri;
201
 
202
	pri = cpu_priority_high();
203
 
204
	if (haltstate)
205
		halt();
206
 
15 jermar 207
	if (THREAD) {
208
		spinlock_lock(&THREAD->lock);
57 vana 209
		fpu_context_save(&(THREAD->saved_fpu_context));
15 jermar 210
		if (!context_save(&THREAD->saved_context)) {
1 jermar 211
			/*
212
			 * This is the place where threads leave scheduler();
213
			 */
22 jermar 214
			before_thread_runs();
15 jermar 215
		    	spinlock_unlock(&THREAD->lock);
216
			cpu_priority_restore(THREAD->saved_context.pri);
1 jermar 217
			return;
218
		}
15 jermar 219
		THREAD->saved_context.pri = pri;
1 jermar 220
	}
221
 
222
	/*
223
	 * We may not keep the old stack.
224
	 * Reason: If we kept the old stack and got blocked, for instance, in
225
	 * find_best_thread(), the old thread could get rescheduled by another
226
	 * CPU and overwrite the part of its own stack that was also used by
227
	 * the scheduler on this CPU.
228
	 *
229
	 * Moreover, we have to bypass the compiler-generated POP sequence
230
	 * which is fooled by SP being set to the very top of the stack.
231
	 * Therefore the scheduler() function continues in
232
	 * scheduler_separated_stack().
233
	 */
15 jermar 234
	context_save(&CPU->saved_context);
235
	CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-8];
76 jermar 236
	CPU->saved_context.pc = FADDR(scheduler_separated_stack);
15 jermar 237
	context_restore(&CPU->saved_context);
1 jermar 238
	/* not reached */
239
}
240
 
241
void scheduler_separated_stack(void)
242
{
243
	int priority;
244
 
15 jermar 245
	if (THREAD) {
246
		switch (THREAD->state) {
1 jermar 247
		    case Running:
15 jermar 248
			    THREAD->state = Ready;
249
			    spinlock_unlock(&THREAD->lock);
250
			    thread_ready(THREAD);
1 jermar 251
			    break;
252
 
253
		    case Exiting:
15 jermar 254
			    frame_free((__address) THREAD->kstack);
255
			    if (THREAD->ustack) {
256
				    frame_free((__address) THREAD->ustack);
1 jermar 257
			    }
258
 
259
			    /*
260
			     * Detach from the containing task.
261
			     */
15 jermar 262
			    spinlock_lock(&TASK->lock);
263
			    list_remove(&THREAD->th_link);
264
			    spinlock_unlock(&TASK->lock);
1 jermar 265
 
15 jermar 266
			    spinlock_unlock(&THREAD->lock);
1 jermar 267
 
268
			    spinlock_lock(&threads_lock);
15 jermar 269
			    list_remove(&THREAD->threads_link);
1 jermar 270
			    spinlock_unlock(&threads_lock);
73 vana 271
 
272
			    spinlock_lock(&THREAD->cpu->lock);
75 vana 273
			    if(THREAD->cpu->fpu_owner==THREAD) THREAD->cpu->fpu_owner=NULL;
73 vana 274
			    spinlock_unlock(&THREAD->cpu->lock);
275
 
1 jermar 276
 
15 jermar 277
			    free(THREAD);
1 jermar 278
 
279
			    break;
280
 
281
		    case Sleeping:
282
			    /*
283
			     * Prefer the thread after it's woken up.
284
			     */
15 jermar 285
			    THREAD->pri = -1;
1 jermar 286
 
287
			    /*
288
			     * We need to release wq->lock which we locked in waitq_sleep().
15 jermar 289
			     * Address of wq->lock is kept in THREAD->sleep_queue.
1 jermar 290
			     */
15 jermar 291
			    spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 292
 
293
			    /*
294
			     * Check for possible requests for out-of-context invocation.
295
			     */
15 jermar 296
			    if (THREAD->call_me) {
297
				    THREAD->call_me(THREAD->call_me_with);
298
				    THREAD->call_me = NULL;
299
				    THREAD->call_me_with = NULL;
1 jermar 300
			    }
301
 
15 jermar 302
			    spinlock_unlock(&THREAD->lock);
1 jermar 303
 
304
			    break;
305
 
306
		    default:
307
			    /*
308
			     * Entering state is unexpected.
309
			     */
15 jermar 310
			    panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
1 jermar 311
			    break;
312
		}
15 jermar 313
		THREAD = NULL;
1 jermar 314
	}
315
 
15 jermar 316
	THREAD = find_best_thread();
1 jermar 317
 
15 jermar 318
	spinlock_lock(&THREAD->lock);
319
	priority = THREAD->pri;
320
	spinlock_unlock(&THREAD->lock);	
1 jermar 321
 
322
	relink_rq(priority);		
323
 
15 jermar 324
	spinlock_lock(&THREAD->lock);	
1 jermar 325
 
326
	/*
327
	 * If both the old and the new task are the same, lots of work is avoided.
328
	 */
15 jermar 329
	if (TASK != THREAD->task) {
1 jermar 330
		vm_t *m1 = NULL;
331
		vm_t *m2;
332
 
15 jermar 333
		if (TASK) {
334
			spinlock_lock(&TASK->lock);
335
			m1 = TASK->vm;
336
			spinlock_unlock(&TASK->lock);
1 jermar 337
		}
338
 
15 jermar 339
		spinlock_lock(&THREAD->task->lock);
340
		m2 = THREAD->task->vm;
341
		spinlock_unlock(&THREAD->task->lock);
1 jermar 342
 
343
		/*
344
		 * Note that it is possible for two tasks to share one vm mapping.
345
		 */
346
		if (m1 != m2) {
347
			/*
348
			 * Both tasks and vm mappings are different.
349
			 * Replace the old one with the new one.
350
			 */
351
			if (m1) {
352
				vm_uninstall(m1);
353
			}
354
			vm_install(m2);
355
		}
15 jermar 356
		TASK = THREAD->task;	
1 jermar 357
	}
358
 
15 jermar 359
	THREAD->state = Running;
1 jermar 360
 
361
	#ifdef SCHEDULER_VERBOSE
15 jermar 362
	printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
1 jermar 363
	#endif	
364
 
15 jermar 365
	context_restore(&THREAD->saved_context);
1 jermar 366
	/* not reached */
367
}
368
 
369
#ifdef __SMP__
370
/*
371
 * This is the load balancing thread. 
372
 * It supervises thread supplies for the CPU it's wired to.
373
 */
374
void kcpulb(void *arg)
375
{
376
	thread_t *t;
377
	int count, i, j, k = 0;
378
	pri_t pri;
379
 
380
loop:
381
	/*
382
	 * Sleep until there's some work to do.
383
	 */
15 jermar 384
	waitq_sleep(&CPU->kcpulb_wq);
1 jermar 385
 
386
not_satisfied:
387
	/*
388
	 * Calculate the number of threads that will be migrated/stolen from
389
	 * other CPU's. Note that situation can have changed between two
390
	 * passes. Each time get the most up to date counts.
391
	 */
392
	pri = cpu_priority_high();
15 jermar 393
	spinlock_lock(&CPU->lock);
1 jermar 394
	count = nrdy / config.cpu_active;
15 jermar 395
	count -= CPU->nrdy;
396
	spinlock_unlock(&CPU->lock);
1 jermar 397
	cpu_priority_restore(pri);
398
 
399
	if (count <= 0)
400
		goto satisfied;
401
 
402
	/*
403
	 * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
404
	 */
405
	for (j=RQ_COUNT-1; j >= 0; j--) {
406
		for (i=0; i < config.cpu_active; i++) {
407
			link_t *l;
408
			runq_t *r;
409
			cpu_t *cpu;
410
 
411
			cpu = &cpus[(i + k) % config.cpu_active];
412
			r = &cpu->rq[j];
413
 
414
			/*
415
			 * Not interested in ourselves.
416
			 * Doesn't require interrupt disabling for kcpulb is X_WIRED.
417
			 */
15 jermar 418
			if (CPU == cpu)
1 jermar 419
				continue;
420
 
421
restart:		pri = cpu_priority_high();
422
			spinlock_lock(&r->lock);
423
			if (r->n == 0) {
424
				spinlock_unlock(&r->lock);
425
				cpu_priority_restore(pri);
426
				continue;
427
			}
428
 
429
			t = NULL;
430
			l = r->rq_head.prev;	/* search rq from the back */
431
			while (l != &r->rq_head) {
432
				t = list_get_instance(l, thread_t, rq_link);
433
				/*
434
		    		 * We don't want to steal CPU-wired threads neither threads already stolen.
435
				 * The latter prevents threads from migrating between CPU's without ever being run.
73 vana 436
		        	 * We don't want to steal threads whose FPU context is still in CPU
437
				 */
1 jermar 438
				spinlock_lock(&t->lock);
73 vana 439
				if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 440
					/*
441
					 * Remove t from r.
442
					 */
443
 
444
					spinlock_unlock(&t->lock);
445
 
446
					/*
447
					 * Here we have to avoid deadlock with relink_rq(),
448
					 * because it locks cpu and r in a different order than we do.
449
					 */
450
					if (!spinlock_trylock(&cpu->lock)) {
451
						/* Release all locks and try again. */ 
452
						spinlock_unlock(&r->lock);
453
						cpu_priority_restore(pri);
454
						goto restart;
455
					}
456
					cpu->nrdy--;
457
					spinlock_unlock(&cpu->lock);
458
 
459
					spinlock_lock(&nrdylock);
460
					nrdy--;
461
					spinlock_unlock(&nrdylock);					
462
 
463
			    		r->n--;
464
					list_remove(&t->rq_link);
465
 
466
					break;
467
				}
468
				spinlock_unlock(&t->lock);
469
				l = l->prev;
470
				t = NULL;
471
			}
472
			spinlock_unlock(&r->lock);
473
 
474
			if (t) {
475
				/*
476
				 * Ready t on local CPU
477
				 */
478
				spinlock_lock(&t->lock);
479
				#ifdef KCPULB_VERBOSE
15 jermar 480
				printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
1 jermar 481
				#endif
482
				t->flags |= X_STOLEN;
483
				spinlock_unlock(&t->lock);
484
 
485
				thread_ready(t);
486
 
487
				cpu_priority_restore(pri);
488
 
489
				if (--count == 0)
490
					goto satisfied;
491
 
492
				/*
493
                    		 * We are not satisfied yet, focus on another CPU next time.
494
				 */
495
				k++;
496
 
497
				continue;
498
			}
499
			cpu_priority_restore(pri);
500
		}
501
	}
502
 
15 jermar 503
	if (CPU->nrdy) {
1 jermar 504
		/*
505
		 * Be a little bit light-weight and let migrated threads run.
506
		 */
507
		scheduler();
508
	} 
509
	else {
510
		/*
511
		 * We failed to migrate a single thread.
512
		 * Something more sophisticated should be done.
513
		 */
514
		scheduler();
515
	}
516
 
517
	goto not_satisfied;
518
 
519
satisfied:
520
	/*
521
	 * Tell find_best_thread() to wake us up later again.
522
	 */
15 jermar 523
	CPU->kcpulbstarted = 0;
1 jermar 524
	goto loop;
525
}
526
 
527
#endif /* __SMP__ */