Subversion Repositories HelenOS-historic

Rev

Rev 1468 | Rev 1495 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file	as.c
31
 * @brief	Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
	as_arch_init();
789 palkovsky 100
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
	if (!AS_KERNEL)
102
		panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
	as_t *as;
113
 
822 palkovsky 114
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
	mutex_initialize(&as->lock);
1147 jermar 117
	btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
	if (flags & FLAG_AS_KERNEL)
120
		as->asid = ASID_KERNEL;
121
	else
122
		as->asid = ASID_INVALID;
123
 
1468 jermar 124
	as->refcount = 0;
1415 jermar 125
	as->cpu_refcount = 0;
822 palkovsky 126
	as->page_table = page_table_create(flags);
703 jermar 127
 
128
	return as;
129
}
130
 
1468 jermar 131
/** Destroy adress space.
132
 *
133
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
134
 * the address space can be destroyed.
135
 */
136
void as_destroy(as_t *as)
973 palkovsky 137
{
1468 jermar 138
	ipl_t ipl;
139
	bool cond;
973 palkovsky 140
 
1468 jermar 141
	ASSERT(as->refcount == 0);
142
 
143
	/*
144
	 * Since there is no reference to this area,
145
	 * it is safe not to lock its mutex.
146
	 */
147
 
148
	ipl = interrupts_disable();
149
	spinlock_lock(&inactive_as_with_asid_lock);
150
	if (as->asid != ASID_INVALID && as->asid != ASID_KERNEL) {
151
		list_remove(&as->inactive_as_with_asid_link);
152
		asid_put(as->asid);
153
	}
154
	spinlock_unlock(&inactive_as_with_asid_lock);
155
 
156
	/*
157
	 * Destroy address space areas of the address space.
158
	 */	
159
	for (cond = true; cond; ) {
160
		btree_node_t *node;
161
 
162
		ASSERT(!list_empty(&as->as_area_btree.leaf_head));
163
		node = list_get_instance(&as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
1483 jermar 164
		if ((cond = node->keys))
1468 jermar 165
			as_area_destroy(as, node->key[0]);
166
	}
167
 
1483 jermar 168
	btree_destroy(&as->as_area_btree);
1468 jermar 169
	page_table_destroy(as->page_table);
170
 
171
	interrupts_restore(ipl);
172
 
973 palkovsky 173
	free(as);
174
}
175
 
703 jermar 176
/** Create address space area of common attributes.
177
 *
178
 * The created address space area is added to the target address space.
179
 *
180
 * @param as Target address space.
1239 jermar 181
 * @param flags Flags of the area memory.
1048 jermar 182
 * @param size Size of area.
703 jermar 183
 * @param base Base address of area.
1239 jermar 184
 * @param attrs Attributes of the area.
1409 jermar 185
 * @param backend Address space area backend. NULL if no backend is used.
186
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 187
 *
188
 * @return Address space area on success or NULL on failure.
189
 */
1409 jermar 190
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 191
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 192
{
193
	ipl_t ipl;
194
	as_area_t *a;
195
 
196
	if (base % PAGE_SIZE)
1048 jermar 197
		return NULL;
198
 
1233 jermar 199
	if (!size)
200
		return NULL;
201
 
1048 jermar 202
	/* Writeable executable areas are not supported. */
203
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
204
		return NULL;
703 jermar 205
 
206
	ipl = interrupts_disable();
1380 jermar 207
	mutex_lock(&as->lock);
703 jermar 208
 
1048 jermar 209
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 210
		mutex_unlock(&as->lock);
1048 jermar 211
		interrupts_restore(ipl);
212
		return NULL;
213
	}
703 jermar 214
 
822 palkovsky 215
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 216
 
1380 jermar 217
	mutex_initialize(&a->lock);
822 palkovsky 218
 
1424 jermar 219
	a->as = as;
1026 jermar 220
	a->flags = flags;
1239 jermar 221
	a->attributes = attrs;
1048 jermar 222
	a->pages = SIZE2FRAMES(size);
822 palkovsky 223
	a->base = base;
1409 jermar 224
	a->sh_info = NULL;
225
	a->backend = backend;
1424 jermar 226
	if (backend_data)
227
		a->backend_data = *backend_data;
228
	else
229
		memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
230
 
1387 jermar 231
	btree_create(&a->used_space);
822 palkovsky 232
 
1147 jermar 233
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 234
 
1380 jermar 235
	mutex_unlock(&as->lock);
703 jermar 236
	interrupts_restore(ipl);
704 jermar 237
 
703 jermar 238
	return a;
239
}
240
 
1235 jermar 241
/** Find address space area and change it.
242
 *
243
 * @param as Address space.
244
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
245
 * @param size New size of the virtual memory block starting at address. 
246
 * @param flags Flags influencing the remap operation. Currently unused.
247
 *
1306 jermar 248
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 249
 */ 
1306 jermar 250
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 251
{
1306 jermar 252
	as_area_t *area;
1235 jermar 253
	ipl_t ipl;
254
	size_t pages;
255
 
256
	ipl = interrupts_disable();
1380 jermar 257
	mutex_lock(&as->lock);
1235 jermar 258
 
259
	/*
260
	 * Locate the area.
261
	 */
262
	area = find_area_and_lock(as, address);
263
	if (!area) {
1380 jermar 264
		mutex_unlock(&as->lock);
1235 jermar 265
		interrupts_restore(ipl);
1306 jermar 266
		return ENOENT;
1235 jermar 267
	}
268
 
1424 jermar 269
	if (area->backend == &phys_backend) {
1235 jermar 270
		/*
271
		 * Remapping of address space areas associated
272
		 * with memory mapped devices is not supported.
273
		 */
1380 jermar 274
		mutex_unlock(&area->lock);
275
		mutex_unlock(&as->lock);
1235 jermar 276
		interrupts_restore(ipl);
1306 jermar 277
		return ENOTSUP;
1235 jermar 278
	}
1409 jermar 279
	if (area->sh_info) {
280
		/*
281
		 * Remapping of shared address space areas 
282
		 * is not supported.
283
		 */
284
		mutex_unlock(&area->lock);
285
		mutex_unlock(&as->lock);
286
		interrupts_restore(ipl);
287
		return ENOTSUP;
288
	}
1235 jermar 289
 
290
	pages = SIZE2FRAMES((address - area->base) + size);
291
	if (!pages) {
292
		/*
293
		 * Zero size address space areas are not allowed.
294
		 */
1380 jermar 295
		mutex_unlock(&area->lock);
296
		mutex_unlock(&as->lock);
1235 jermar 297
		interrupts_restore(ipl);
1306 jermar 298
		return EPERM;
1235 jermar 299
	}
300
 
301
	if (pages < area->pages) {
1403 jermar 302
		bool cond;
303
		__address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 304
 
305
		/*
306
		 * Shrinking the area.
307
		 * No need to check for overlaps.
308
		 */
1403 jermar 309
 
310
		/*
1436 jermar 311
		 * Start TLB shootdown sequence.
312
		 */
313
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
314
 
315
		/*
1403 jermar 316
		 * Remove frames belonging to used space starting from
317
		 * the highest addresses downwards until an overlap with
318
		 * the resized address space area is found. Note that this
319
		 * is also the right way to remove part of the used_space
320
		 * B+tree leaf list.
321
		 */		
322
		for (cond = true; cond;) {
323
			btree_node_t *node;
324
 
325
			ASSERT(!list_empty(&area->used_space.leaf_head));
326
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
327
			if ((cond = (bool) node->keys)) {
328
				__address b = node->key[node->keys - 1];
329
				count_t c = (count_t) node->value[node->keys - 1];
330
				int i = 0;
1235 jermar 331
 
1403 jermar 332
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
333
 
334
					if (b + c*PAGE_SIZE <= start_free) {
335
						/*
336
						 * The whole interval fits completely
337
						 * in the resized address space area.
338
						 */
339
						break;
340
					}
341
 
342
					/*
343
					 * Part of the interval corresponding to b and c
344
					 * overlaps with the resized address space area.
345
					 */
346
 
347
					cond = false;	/* we are almost done */
348
					i = (start_free - b) >> PAGE_WIDTH;
349
					if (!used_space_remove(area, start_free, c - i))
350
						panic("Could not remove used space.");
351
				} else {
352
					/*
353
					 * The interval of used space can be completely removed.
354
					 */
355
					if (!used_space_remove(area, b, c))
356
						panic("Could not remove used space.\n");
357
				}
358
 
359
				for (; i < c; i++) {
360
					pte_t *pte;
361
 
362
					page_table_lock(as, false);
363
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
364
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 365
					if (area->backend && area->backend->frame_free) {
366
						area->backend->frame_free(area,
1409 jermar 367
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
368
					}
1403 jermar 369
					page_mapping_remove(as, b + i*PAGE_SIZE);
370
					page_table_unlock(as, false);
371
				}
1235 jermar 372
			}
373
		}
1436 jermar 374
 
1235 jermar 375
		/*
1436 jermar 376
		 * Finish TLB shootdown sequence.
1235 jermar 377
		 */
378
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
379
		tlb_shootdown_finalize();
380
	} else {
381
		/*
382
		 * Growing the area.
383
		 * Check for overlaps with other address space areas.
384
		 */
385
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 386
			mutex_unlock(&area->lock);
387
			mutex_unlock(&as->lock);		
1235 jermar 388
			interrupts_restore(ipl);
1306 jermar 389
			return EADDRNOTAVAIL;
1235 jermar 390
		}
391
	} 
392
 
393
	area->pages = pages;
394
 
1380 jermar 395
	mutex_unlock(&area->lock);
396
	mutex_unlock(&as->lock);
1235 jermar 397
	interrupts_restore(ipl);
398
 
1306 jermar 399
	return 0;
1235 jermar 400
}
401
 
1306 jermar 402
/** Destroy address space area.
403
 *
404
 * @param as Address space.
405
 * @param address Address withing the area to be deleted.
406
 *
407
 * @return Zero on success or a value from @ref errno.h on failure. 
408
 */
409
int as_area_destroy(as_t *as, __address address)
410
{
411
	as_area_t *area;
412
	__address base;
413
	ipl_t ipl;
1411 jermar 414
	bool cond;
1306 jermar 415
 
416
	ipl = interrupts_disable();
1380 jermar 417
	mutex_lock(&as->lock);
1306 jermar 418
 
419
	area = find_area_and_lock(as, address);
420
	if (!area) {
1380 jermar 421
		mutex_unlock(&as->lock);
1306 jermar 422
		interrupts_restore(ipl);
423
		return ENOENT;
424
	}
425
 
1403 jermar 426
	base = area->base;
427
 
1411 jermar 428
	/*
1436 jermar 429
	 * Start TLB shootdown sequence.
430
	 */
431
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
432
 
433
	/*
1411 jermar 434
	 * Visit only the pages mapped by used_space B+tree.
435
	 * Note that we must be very careful when walking the tree
436
	 * leaf list and removing used space as the leaf list changes
437
	 * unpredictibly after each remove. The solution is to actually
438
	 * not walk the tree at all, but to remove items from the head
439
	 * of the leaf list until there are some keys left.
440
	 */
441
	for (cond = true; cond;) {
442
		btree_node_t *node;
1403 jermar 443
 
1411 jermar 444
		ASSERT(!list_empty(&area->used_space.leaf_head));
445
		node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
446
		if ((cond = (bool) node->keys)) {
447
			__address b = node->key[0];
448
			count_t i;
449
			pte_t *pte;
1403 jermar 450
 
1411 jermar 451
			for (i = 0; i < (count_t) node->value[0]; i++) {
452
				page_table_lock(as, false);
453
				pte = page_mapping_find(as, b + i*PAGE_SIZE);
454
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 455
				if (area->backend && area->backend->frame_free) {
456
					area->backend->frame_free(area,
1411 jermar 457
						b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 458
				}
1411 jermar 459
				page_mapping_remove(as, b + i*PAGE_SIZE);
460
				page_table_unlock(as, false);
1306 jermar 461
			}
462
		}
463
	}
1403 jermar 464
 
1306 jermar 465
	/*
1436 jermar 466
	 * Finish TLB shootdown sequence.
1306 jermar 467
	 */
468
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
469
	tlb_shootdown_finalize();
1436 jermar 470
 
471
	btree_destroy(&area->used_space);
1306 jermar 472
 
1309 jermar 473
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 474
 
475
	if (area->sh_info)
476
		sh_info_remove_reference(area->sh_info);
477
 
1380 jermar 478
	mutex_unlock(&area->lock);
1306 jermar 479
 
480
	/*
481
	 * Remove the empty area from address space.
482
	 */
483
	btree_remove(&AS->as_area_btree, base, NULL);
484
 
1309 jermar 485
	free(area);
486
 
1380 jermar 487
	mutex_unlock(&AS->lock);
1306 jermar 488
	interrupts_restore(ipl);
489
	return 0;
490
}
491
 
1413 jermar 492
/** Share address space area with another or the same address space.
1235 jermar 493
 *
1424 jermar 494
 * Address space area mapping is shared with a new address space area.
495
 * If the source address space area has not been shared so far,
496
 * a new sh_info is created. The new address space area simply gets the
497
 * sh_info of the source area. The process of duplicating the
498
 * mapping is done through the backend share function.
1413 jermar 499
 * 
1417 jermar 500
 * @param src_as Pointer to source address space.
1239 jermar 501
 * @param src_base Base address of the source address space area.
1417 jermar 502
 * @param acc_size Expected size of the source area.
1428 palkovsky 503
 * @param dst_as Pointer to destination address space.
1417 jermar 504
 * @param dst_base Target base address.
505
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 506
 *
1306 jermar 507
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 508
 *	   if there is no such address space area,
509
 *	   EPERM if there was a problem in accepting the area or
510
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 511
 *	   address space area. ENOTSUP is returned if an attempt
512
 *	   to share non-anonymous address space area is detected.
1235 jermar 513
 */
1413 jermar 514
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 515
		  as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 516
{
517
	ipl_t ipl;
1239 jermar 518
	int src_flags;
519
	size_t src_size;
520
	as_area_t *src_area, *dst_area;
1413 jermar 521
	share_info_t *sh_info;
1424 jermar 522
	mem_backend_t *src_backend;
523
	mem_backend_data_t src_backend_data;
1434 palkovsky 524
 
1235 jermar 525
	ipl = interrupts_disable();
1380 jermar 526
	mutex_lock(&src_as->lock);
1329 palkovsky 527
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 528
	if (!src_area) {
1238 jermar 529
		/*
530
		 * Could not find the source address space area.
531
		 */
1380 jermar 532
		mutex_unlock(&src_as->lock);
1238 jermar 533
		interrupts_restore(ipl);
534
		return ENOENT;
535
	}
1413 jermar 536
 
1424 jermar 537
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 538
		/*
1424 jermar 539
		 * There is now backend or the backend does not
540
		 * know how to share the area.
1413 jermar 541
		 */
542
		mutex_unlock(&src_area->lock);
543
		mutex_unlock(&src_as->lock);
544
		interrupts_restore(ipl);
545
		return ENOTSUP;
546
	}
547
 
1239 jermar 548
	src_size = src_area->pages * PAGE_SIZE;
549
	src_flags = src_area->flags;
1424 jermar 550
	src_backend = src_area->backend;
551
	src_backend_data = src_area->backend_data;
1413 jermar 552
 
1461 palkovsky 553
	if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 554
		mutex_unlock(&src_area->lock);
555
		mutex_unlock(&src_as->lock);
1235 jermar 556
		interrupts_restore(ipl);
557
		return EPERM;
558
	}
1413 jermar 559
 
1235 jermar 560
	/*
1413 jermar 561
	 * Now we are committed to sharing the area.
562
	 * First prepare the area for sharing.
563
	 * Then it will be safe to unlock it.
564
	 */
565
	sh_info = src_area->sh_info;
566
	if (!sh_info) {
567
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
568
		mutex_initialize(&sh_info->lock);
569
		sh_info->refcount = 2;
570
		btree_create(&sh_info->pagemap);
571
		src_area->sh_info = sh_info;
572
	} else {
573
		mutex_lock(&sh_info->lock);
574
		sh_info->refcount++;
575
		mutex_unlock(&sh_info->lock);
576
	}
577
 
1424 jermar 578
	src_area->backend->share(src_area);
1413 jermar 579
 
580
	mutex_unlock(&src_area->lock);
581
	mutex_unlock(&src_as->lock);
582
 
583
	/*
1239 jermar 584
	 * Create copy of the source address space area.
585
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
586
	 * attribute set which prevents race condition with
587
	 * preliminary as_page_fault() calls.
1417 jermar 588
	 * The flags of the source area are masked against dst_flags_mask
589
	 * to support sharing in less privileged mode.
1235 jermar 590
	 */
1461 palkovsky 591
	dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 592
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 593
	if (!dst_area) {
1235 jermar 594
		/*
595
		 * Destination address space area could not be created.
596
		 */
1413 jermar 597
		sh_info_remove_reference(sh_info);
598
 
1235 jermar 599
		interrupts_restore(ipl);
600
		return ENOMEM;
601
	}
602
 
603
	/*
1239 jermar 604
	 * Now the destination address space area has been
605
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 606
	 * attribute and set the sh_info.
1239 jermar 607
	 */	
1380 jermar 608
	mutex_lock(&dst_area->lock);
1239 jermar 609
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 610
	dst_area->sh_info = sh_info;
1380 jermar 611
	mutex_unlock(&dst_area->lock);
1235 jermar 612
 
613
	interrupts_restore(ipl);
614
 
615
	return 0;
616
}
617
 
1423 jermar 618
/** Check access mode for address space area.
619
 *
620
 * The address space area must be locked prior to this call.
621
 *
622
 * @param area Address space area.
623
 * @param access Access mode.
624
 *
625
 * @return False if access violates area's permissions, true otherwise.
626
 */
627
bool as_area_check_access(as_area_t *area, pf_access_t access)
628
{
629
	int flagmap[] = {
630
		[PF_ACCESS_READ] = AS_AREA_READ,
631
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
632
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
633
	};
634
 
635
	if (!(area->flags & flagmap[access]))
636
		return false;
637
 
638
	return true;
639
}
640
 
703 jermar 641
/** Handle page fault within the current address space.
642
 *
1409 jermar 643
 * This is the high-level page fault handler. It decides
644
 * whether the page fault can be resolved by any backend
645
 * and if so, it invokes the backend to resolve the page
646
 * fault.
647
 *
703 jermar 648
 * Interrupts are assumed disabled.
649
 *
650
 * @param page Faulting page.
1411 jermar 651
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 652
 * @param istate Pointer to interrupted state.
703 jermar 653
 *
1409 jermar 654
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
655
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 656
 */
1411 jermar 657
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 658
{
1044 jermar 659
	pte_t *pte;
977 jermar 660
	as_area_t *area;
703 jermar 661
 
1380 jermar 662
	if (!THREAD)
1409 jermar 663
		return AS_PF_FAULT;
1380 jermar 664
 
703 jermar 665
	ASSERT(AS);
1044 jermar 666
 
1380 jermar 667
	mutex_lock(&AS->lock);
977 jermar 668
	area = find_area_and_lock(AS, page);	
703 jermar 669
	if (!area) {
670
		/*
671
		 * No area contained mapping for 'page'.
672
		 * Signal page fault to low-level handler.
673
		 */
1380 jermar 674
		mutex_unlock(&AS->lock);
1288 jermar 675
		goto page_fault;
703 jermar 676
	}
677
 
1239 jermar 678
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
679
		/*
680
		 * The address space area is not fully initialized.
681
		 * Avoid possible race by returning error.
682
		 */
1380 jermar 683
		mutex_unlock(&area->lock);
684
		mutex_unlock(&AS->lock);
1288 jermar 685
		goto page_fault;		
1239 jermar 686
	}
687
 
1424 jermar 688
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 689
		/*
690
		 * The address space area is not backed by any backend
691
		 * or the backend cannot handle page faults.
692
		 */
693
		mutex_unlock(&area->lock);
694
		mutex_unlock(&AS->lock);
695
		goto page_fault;		
696
	}
1179 jermar 697
 
1044 jermar 698
	page_table_lock(AS, false);
699
 
703 jermar 700
	/*
1044 jermar 701
	 * To avoid race condition between two page faults
702
	 * on the same address, we need to make sure
703
	 * the mapping has not been already inserted.
704
	 */
705
	if ((pte = page_mapping_find(AS, page))) {
706
		if (PTE_PRESENT(pte)) {
1423 jermar 707
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
708
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
709
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
710
				page_table_unlock(AS, false);
711
				mutex_unlock(&area->lock);
712
				mutex_unlock(&AS->lock);
713
				return AS_PF_OK;
714
			}
1044 jermar 715
		}
716
	}
1409 jermar 717
 
1044 jermar 718
	/*
1409 jermar 719
	 * Resort to the backend page fault handler.
703 jermar 720
	 */
1424 jermar 721
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 722
		page_table_unlock(AS, false);
723
		mutex_unlock(&area->lock);
724
		mutex_unlock(&AS->lock);
725
		goto page_fault;
726
	}
703 jermar 727
 
1044 jermar 728
	page_table_unlock(AS, false);
1380 jermar 729
	mutex_unlock(&area->lock);
730
	mutex_unlock(&AS->lock);
1288 jermar 731
	return AS_PF_OK;
732
 
733
page_fault:
734
	if (THREAD->in_copy_from_uspace) {
735
		THREAD->in_copy_from_uspace = false;
736
		istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
737
	} else if (THREAD->in_copy_to_uspace) {
738
		THREAD->in_copy_to_uspace = false;
739
		istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
740
	} else {
741
		return AS_PF_FAULT;
742
	}
743
 
744
	return AS_PF_DEFER;
703 jermar 745
}
746
 
823 jermar 747
/** Switch address spaces.
703 jermar 748
 *
1380 jermar 749
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 750
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 751
 *
823 jermar 752
 * @param old Old address space or NULL.
753
 * @param new New address space.
703 jermar 754
 */
823 jermar 755
void as_switch(as_t *old, as_t *new)
703 jermar 756
{
757
	ipl_t ipl;
823 jermar 758
	bool needs_asid = false;
703 jermar 759
 
760
	ipl = interrupts_disable();
1415 jermar 761
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 762
 
763
	/*
823 jermar 764
	 * First, take care of the old address space.
765
	 */	
766
	if (old) {
1380 jermar 767
		mutex_lock_active(&old->lock);
1415 jermar 768
		ASSERT(old->cpu_refcount);
769
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 770
			/*
771
			 * The old address space is no longer active on
772
			 * any processor. It can be appended to the
773
			 * list of inactive address spaces with assigned
774
			 * ASID.
775
			 */
776
			 ASSERT(old->asid != ASID_INVALID);
777
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
778
		}
1380 jermar 779
		mutex_unlock(&old->lock);
823 jermar 780
	}
781
 
782
	/*
783
	 * Second, prepare the new address space.
784
	 */
1380 jermar 785
	mutex_lock_active(&new->lock);
1415 jermar 786
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 787
		if (new->asid != ASID_INVALID)
788
			list_remove(&new->inactive_as_with_asid_link);
789
		else
790
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
791
	}
792
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 793
	mutex_unlock(&new->lock);
823 jermar 794
 
795
	if (needs_asid) {
796
		/*
797
		 * Allocation of new ASID was deferred
798
		 * until now in order to avoid deadlock.
799
		 */
800
		asid_t asid;
801
 
802
		asid = asid_get();
1380 jermar 803
		mutex_lock_active(&new->lock);
823 jermar 804
		new->asid = asid;
1380 jermar 805
		mutex_unlock(&new->lock);
823 jermar 806
	}
1415 jermar 807
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 808
	interrupts_restore(ipl);
809
 
810
	/*
703 jermar 811
	 * Perform architecture-specific steps.
727 jermar 812
	 * (e.g. write ASID to hardware register etc.)
703 jermar 813
	 */
823 jermar 814
	as_install_arch(new);
703 jermar 815
 
823 jermar 816
	AS = new;
703 jermar 817
}
754 jermar 818
 
1235 jermar 819
/** Convert address space area flags to page flags.
754 jermar 820
 *
1235 jermar 821
 * @param aflags Flags of some address space area.
754 jermar 822
 *
1235 jermar 823
 * @return Flags to be passed to page_mapping_insert().
754 jermar 824
 */
1235 jermar 825
int area_flags_to_page_flags(int aflags)
754 jermar 826
{
827
	int flags;
828
 
1178 jermar 829
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 830
 
1235 jermar 831
	if (aflags & AS_AREA_READ)
1026 jermar 832
		flags |= PAGE_READ;
833
 
1235 jermar 834
	if (aflags & AS_AREA_WRITE)
1026 jermar 835
		flags |= PAGE_WRITE;
836
 
1235 jermar 837
	if (aflags & AS_AREA_EXEC)
1026 jermar 838
		flags |= PAGE_EXEC;
839
 
1424 jermar 840
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 841
		flags |= PAGE_CACHEABLE;
842
 
754 jermar 843
	return flags;
844
}
756 jermar 845
 
1235 jermar 846
/** Compute flags for virtual address translation subsytem.
847
 *
848
 * The address space area must be locked.
849
 * Interrupts must be disabled.
850
 *
851
 * @param a Address space area.
852
 *
853
 * @return Flags to be used in page_mapping_insert().
854
 */
1409 jermar 855
int as_area_get_flags(as_area_t *a)
1235 jermar 856
{
857
	return area_flags_to_page_flags(a->flags);
858
}
859
 
756 jermar 860
/** Create page table.
861
 *
862
 * Depending on architecture, create either address space
863
 * private or global page table.
864
 *
865
 * @param flags Flags saying whether the page table is for kernel address space.
866
 *
867
 * @return First entry of the page table.
868
 */
869
pte_t *page_table_create(int flags)
870
{
871
        ASSERT(as_operations);
872
        ASSERT(as_operations->page_table_create);
873
 
874
        return as_operations->page_table_create(flags);
875
}
977 jermar 876
 
1468 jermar 877
/** Destroy page table.
878
 *
879
 * Destroy page table in architecture specific way.
880
 *
881
 * @param page_table Physical address of PTL0.
882
 */
883
void page_table_destroy(pte_t *page_table)
884
{
885
        ASSERT(as_operations);
886
        ASSERT(as_operations->page_table_destroy);
887
 
888
        as_operations->page_table_destroy(page_table);
889
}
890
 
1044 jermar 891
/** Lock page table.
892
 *
893
 * This function should be called before any page_mapping_insert(),
894
 * page_mapping_remove() and page_mapping_find().
895
 * 
896
 * Locking order is such that address space areas must be locked
897
 * prior to this call. Address space can be locked prior to this
898
 * call in which case the lock argument is false.
899
 *
900
 * @param as Address space.
1248 jermar 901
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 902
 */
903
void page_table_lock(as_t *as, bool lock)
904
{
905
	ASSERT(as_operations);
906
	ASSERT(as_operations->page_table_lock);
907
 
908
	as_operations->page_table_lock(as, lock);
909
}
910
 
911
/** Unlock page table.
912
 *
913
 * @param as Address space.
1248 jermar 914
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 915
 */
916
void page_table_unlock(as_t *as, bool unlock)
917
{
918
	ASSERT(as_operations);
919
	ASSERT(as_operations->page_table_unlock);
920
 
921
	as_operations->page_table_unlock(as, unlock);
922
}
923
 
977 jermar 924
 
925
/** Find address space area and lock it.
926
 *
927
 * The address space must be locked and interrupts must be disabled.
928
 *
929
 * @param as Address space.
930
 * @param va Virtual address.
931
 *
932
 * @return Locked address space area containing va on success or NULL on failure.
933
 */
934
as_area_t *find_area_and_lock(as_t *as, __address va)
935
{
936
	as_area_t *a;
1147 jermar 937
	btree_node_t *leaf, *lnode;
938
	int i;
977 jermar 939
 
1147 jermar 940
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
941
	if (a) {
942
		/* va is the base address of an address space area */
1380 jermar 943
		mutex_lock(&a->lock);
1147 jermar 944
		return a;
945
	}
946
 
947
	/*
1150 jermar 948
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 949
	 * to find out whether this is a miss or va belongs to an address
950
	 * space area found there.
951
	 */
952
 
953
	/* First, search the leaf node itself. */
954
	for (i = 0; i < leaf->keys; i++) {
955
		a = (as_area_t *) leaf->value[i];
1380 jermar 956
		mutex_lock(&a->lock);
1147 jermar 957
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
958
			return a;
959
		}
1380 jermar 960
		mutex_unlock(&a->lock);
1147 jermar 961
	}
977 jermar 962
 
1147 jermar 963
	/*
1150 jermar 964
	 * Second, locate the left neighbour and test its last record.
1148 jermar 965
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 966
	 */
1150 jermar 967
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 968
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 969
		mutex_lock(&a->lock);
1147 jermar 970
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 971
			return a;
1147 jermar 972
		}
1380 jermar 973
		mutex_unlock(&a->lock);
977 jermar 974
	}
975
 
976
	return NULL;
977
}
1048 jermar 978
 
979
/** Check area conflicts with other areas.
980
 *
981
 * The address space must be locked and interrupts must be disabled.
982
 *
983
 * @param as Address space.
984
 * @param va Starting virtual address of the area being tested.
985
 * @param size Size of the area being tested.
986
 * @param avoid_area Do not touch this area. 
987
 *
988
 * @return True if there is no conflict, false otherwise.
989
 */
990
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
991
{
992
	as_area_t *a;
1147 jermar 993
	btree_node_t *leaf, *node;
994
	int i;
1048 jermar 995
 
1070 jermar 996
	/*
997
	 * We don't want any area to have conflicts with NULL page.
998
	 */
999
	if (overlaps(va, size, NULL, PAGE_SIZE))
1000
		return false;
1001
 
1147 jermar 1002
	/*
1003
	 * The leaf node is found in O(log n), where n is proportional to
1004
	 * the number of address space areas belonging to as.
1005
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 1006
	 * record in the left neighbour, the leftmost record in the right
1007
	 * neighbour and all records in the leaf node itself.
1147 jermar 1008
	 */
1048 jermar 1009
 
1147 jermar 1010
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1011
		if (a != avoid_area)
1012
			return false;
1013
	}
1014
 
1015
	/* First, check the two border cases. */
1150 jermar 1016
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1017
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1018
		mutex_lock(&a->lock);
1147 jermar 1019
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1020
			mutex_unlock(&a->lock);
1147 jermar 1021
			return false;
1022
		}
1380 jermar 1023
		mutex_unlock(&a->lock);
1147 jermar 1024
	}
1150 jermar 1025
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1026
		a = (as_area_t *) node->value[0];
1380 jermar 1027
		mutex_lock(&a->lock);
1147 jermar 1028
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1029
			mutex_unlock(&a->lock);
1147 jermar 1030
			return false;
1031
		}
1380 jermar 1032
		mutex_unlock(&a->lock);
1147 jermar 1033
	}
1034
 
1035
	/* Second, check the leaf node. */
1036
	for (i = 0; i < leaf->keys; i++) {
1037
		a = (as_area_t *) leaf->value[i];
1038
 
1048 jermar 1039
		if (a == avoid_area)
1040
			continue;
1147 jermar 1041
 
1380 jermar 1042
		mutex_lock(&a->lock);
1147 jermar 1043
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1044
			mutex_unlock(&a->lock);
1147 jermar 1045
			return false;
1046
		}
1380 jermar 1047
		mutex_unlock(&a->lock);
1048 jermar 1048
	}
1049
 
1070 jermar 1050
	/*
1051
	 * So far, the area does not conflict with other areas.
1052
	 * Check if it doesn't conflict with kernel address space.
1053
	 */	 
1054
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1055
		return !overlaps(va, size, 
1056
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1057
	}
1058
 
1048 jermar 1059
	return true;
1060
}
1235 jermar 1061
 
1380 jermar 1062
/** Return size of the address space area with given base.  */
1329 palkovsky 1063
size_t as_get_size(__address base)
1064
{
1065
	ipl_t ipl;
1066
	as_area_t *src_area;
1067
	size_t size;
1068
 
1069
	ipl = interrupts_disable();
1070
	src_area = find_area_and_lock(AS, base);
1071
	if (src_area){
1072
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1073
		mutex_unlock(&src_area->lock);
1329 palkovsky 1074
	} else {
1075
		size = 0;
1076
	}
1077
	interrupts_restore(ipl);
1078
	return size;
1079
}
1080
 
1387 jermar 1081
/** Mark portion of address space area as used.
1082
 *
1083
 * The address space area must be already locked.
1084
 *
1085
 * @param a Address space area.
1086
 * @param page First page to be marked.
1087
 * @param count Number of page to be marked.
1088
 *
1089
 * @return 0 on failure and 1 on success.
1090
 */
1091
int used_space_insert(as_area_t *a, __address page, count_t count)
1092
{
1093
	btree_node_t *leaf, *node;
1094
	count_t pages;
1095
	int i;
1096
 
1097
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1098
	ASSERT(count);
1099
 
1100
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1101
	if (pages) {
1102
		/*
1103
		 * We hit the beginning of some used space.
1104
		 */
1105
		return 0;
1106
	}
1107
 
1437 jermar 1108
	if (!leaf->keys) {
1109
		btree_insert(&a->used_space, page, (void *) count, leaf);
1110
		return 1;
1111
	}
1112
 
1387 jermar 1113
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1114
	if (node) {
1115
		__address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1116
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1117
 
1118
		/*
1119
		 * Examine the possibility that the interval fits
1120
		 * somewhere between the rightmost interval of
1121
		 * the left neigbour and the first interval of the leaf.
1122
		 */
1123
 
1124
		if (page >= right_pg) {
1125
			/* Do nothing. */
1126
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1127
			/* The interval intersects with the left interval. */
1128
			return 0;
1129
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1130
			/* The interval intersects with the right interval. */
1131
			return 0;			
1132
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1133
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1134
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1135
			btree_remove(&a->used_space, right_pg, leaf);
1136
			return 1; 
1137
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1138
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1139
			node->value[node->keys - 1] += count;
1387 jermar 1140
			return 1;
1141
		} else if (page + count*PAGE_SIZE == right_pg) {
1142
			/*
1143
			 * The interval can be addded by simply moving base of the right
1144
			 * interval down and increasing its size accordingly.
1145
			 */
1403 jermar 1146
			leaf->value[0] += count;
1387 jermar 1147
			leaf->key[0] = page;
1148
			return 1;
1149
		} else {
1150
			/*
1151
			 * The interval is between both neigbouring intervals,
1152
			 * but cannot be merged with any of them.
1153
			 */
1154
			btree_insert(&a->used_space, page, (void *) count, leaf);
1155
			return 1;
1156
		}
1157
	} else if (page < leaf->key[0]) {
1158
		__address right_pg = leaf->key[0];
1159
		count_t right_cnt = (count_t) leaf->value[0];
1160
 
1161
		/*
1162
		 * Investigate the border case in which the left neighbour does not
1163
		 * exist but the interval fits from the left.
1164
		 */
1165
 
1166
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1167
			/* The interval intersects with the right interval. */
1168
			return 0;
1169
		} else if (page + count*PAGE_SIZE == right_pg) {
1170
			/*
1171
			 * The interval can be added by moving the base of the right interval down
1172
			 * and increasing its size accordingly.
1173
			 */
1174
			leaf->key[0] = page;
1403 jermar 1175
			leaf->value[0] += count;
1387 jermar 1176
			return 1;
1177
		} else {
1178
			/*
1179
			 * The interval doesn't adjoin with the right interval.
1180
			 * It must be added individually.
1181
			 */
1182
			btree_insert(&a->used_space, page, (void *) count, leaf);
1183
			return 1;
1184
		}
1185
	}
1186
 
1187
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1188
	if (node) {
1189
		__address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1190
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1191
 
1192
		/*
1193
		 * Examine the possibility that the interval fits
1194
		 * somewhere between the leftmost interval of
1195
		 * the right neigbour and the last interval of the leaf.
1196
		 */
1197
 
1198
		if (page < left_pg) {
1199
			/* Do nothing. */
1200
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1201
			/* The interval intersects with the left interval. */
1202
			return 0;
1203
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1204
			/* The interval intersects with the right interval. */
1205
			return 0;			
1206
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1207
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1208
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1209
			btree_remove(&a->used_space, right_pg, node);
1210
			return 1; 
1211
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1212
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1213
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1214
			return 1;
1215
		} else if (page + count*PAGE_SIZE == right_pg) {
1216
			/*
1217
			 * The interval can be addded by simply moving base of the right
1218
			 * interval down and increasing its size accordingly.
1219
			 */
1403 jermar 1220
			node->value[0] += count;
1387 jermar 1221
			node->key[0] = page;
1222
			return 1;
1223
		} else {
1224
			/*
1225
			 * The interval is between both neigbouring intervals,
1226
			 * but cannot be merged with any of them.
1227
			 */
1228
			btree_insert(&a->used_space, page, (void *) count, leaf);
1229
			return 1;
1230
		}
1231
	} else if (page >= leaf->key[leaf->keys - 1]) {
1232
		__address left_pg = leaf->key[leaf->keys - 1];
1233
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1234
 
1235
		/*
1236
		 * Investigate the border case in which the right neighbour does not
1237
		 * exist but the interval fits from the right.
1238
		 */
1239
 
1240
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1241
			/* The interval intersects with the left interval. */
1387 jermar 1242
			return 0;
1243
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1244
			/* The interval can be added by growing the left interval. */
1403 jermar 1245
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1246
			return 1;
1247
		} else {
1248
			/*
1249
			 * The interval doesn't adjoin with the left interval.
1250
			 * It must be added individually.
1251
			 */
1252
			btree_insert(&a->used_space, page, (void *) count, leaf);
1253
			return 1;
1254
		}
1255
	}
1256
 
1257
	/*
1258
	 * Note that if the algorithm made it thus far, the interval can fit only
1259
	 * between two other intervals of the leaf. The two border cases were already
1260
	 * resolved.
1261
	 */
1262
	for (i = 1; i < leaf->keys; i++) {
1263
		if (page < leaf->key[i]) {
1264
			__address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1265
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1266
 
1267
			/*
1268
			 * The interval fits between left_pg and right_pg.
1269
			 */
1270
 
1271
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1272
				/* The interval intersects with the left interval. */
1273
				return 0;
1274
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1275
				/* The interval intersects with the right interval. */
1276
				return 0;			
1277
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1278
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1279
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1280
				btree_remove(&a->used_space, right_pg, leaf);
1281
				return 1; 
1282
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1283
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1284
				leaf->value[i - 1] += count;
1387 jermar 1285
				return 1;
1286
			} else if (page + count*PAGE_SIZE == right_pg) {
1287
				/*
1288
			         * The interval can be addded by simply moving base of the right
1289
			 	 * interval down and increasing its size accordingly.
1290
			 	 */
1403 jermar 1291
				leaf->value[i] += count;
1387 jermar 1292
				leaf->key[i] = page;
1293
				return 1;
1294
			} else {
1295
				/*
1296
				 * The interval is between both neigbouring intervals,
1297
				 * but cannot be merged with any of them.
1298
				 */
1299
				btree_insert(&a->used_space, page, (void *) count, leaf);
1300
				return 1;
1301
			}
1302
		}
1303
	}
1304
 
1305
	panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1306
}
1307
 
1308
/** Mark portion of address space area as unused.
1309
 *
1310
 * The address space area must be already locked.
1311
 *
1312
 * @param a Address space area.
1313
 * @param page First page to be marked.
1314
 * @param count Number of page to be marked.
1315
 *
1316
 * @return 0 on failure and 1 on success.
1317
 */
1318
int used_space_remove(as_area_t *a, __address page, count_t count)
1319
{
1320
	btree_node_t *leaf, *node;
1321
	count_t pages;
1322
	int i;
1323
 
1324
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1325
	ASSERT(count);
1326
 
1327
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1328
	if (pages) {
1329
		/*
1330
		 * We are lucky, page is the beginning of some interval.
1331
		 */
1332
		if (count > pages) {
1333
			return 0;
1334
		} else if (count == pages) {
1335
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1336
			return 1;
1387 jermar 1337
		} else {
1338
			/*
1339
			 * Find the respective interval.
1340
			 * Decrease its size and relocate its start address.
1341
			 */
1342
			for (i = 0; i < leaf->keys; i++) {
1343
				if (leaf->key[i] == page) {
1344
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1345
					leaf->value[i] -= count;
1387 jermar 1346
					return 1;
1347
				}
1348
			}
1349
			goto error;
1350
		}
1351
	}
1352
 
1353
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1354
	if (node && page < leaf->key[0]) {
1355
		__address left_pg = node->key[node->keys - 1];
1356
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1357
 
1358
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1359
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1360
				/*
1361
				 * The interval is contained in the rightmost interval
1362
				 * of the left neighbour and can be removed by
1363
				 * updating the size of the bigger interval.
1364
				 */
1403 jermar 1365
				node->value[node->keys - 1] -= count;
1387 jermar 1366
				return 1;
1367
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1368
				count_t new_cnt;
1387 jermar 1369
 
1370
				/*
1371
				 * The interval is contained in the rightmost interval
1372
				 * of the left neighbour but its removal requires
1373
				 * both updating the size of the original interval and
1374
				 * also inserting a new interval.
1375
				 */
1403 jermar 1376
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1377
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1378
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1379
				return 1;
1380
			}
1381
		}
1382
		return 0;
1383
	} else if (page < leaf->key[0]) {
1384
		return 0;
1385
	}
1386
 
1387
	if (page > leaf->key[leaf->keys - 1]) {
1388
		__address left_pg = leaf->key[leaf->keys - 1];
1389
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1390
 
1391
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1392
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1393
				/*
1394
				 * The interval is contained in the rightmost interval
1395
				 * of the leaf and can be removed by updating the size
1396
				 * of the bigger interval.
1397
				 */
1403 jermar 1398
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1399
				return 1;
1400
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1401
				count_t new_cnt;
1387 jermar 1402
 
1403
				/*
1404
				 * The interval is contained in the rightmost interval
1405
				 * of the leaf but its removal requires both updating
1406
				 * the size of the original interval and
1407
				 * also inserting a new interval.
1408
				 */
1403 jermar 1409
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1410
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1411
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1412
				return 1;
1413
			}
1414
		}
1415
		return 0;
1416
	}	
1417
 
1418
	/*
1419
	 * The border cases have been already resolved.
1420
	 * Now the interval can be only between intervals of the leaf. 
1421
	 */
1422
	for (i = 1; i < leaf->keys - 1; i++) {
1423
		if (page < leaf->key[i]) {
1424
			__address left_pg = leaf->key[i - 1];
1425
			count_t left_cnt = (count_t) leaf->value[i - 1];
1426
 
1427
			/*
1428
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1429
			 */
1430
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1431
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1432
					/*
1433
				 	* The interval is contained in the interval (i - 1)
1434
					 * of the leaf and can be removed by updating the size
1435
					 * of the bigger interval.
1436
					 */
1403 jermar 1437
					leaf->value[i - 1] -= count;
1387 jermar 1438
					return 1;
1439
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1440
					count_t new_cnt;
1387 jermar 1441
 
1442
					/*
1443
					 * The interval is contained in the interval (i - 1)
1444
					 * of the leaf but its removal requires both updating
1445
					 * the size of the original interval and
1446
					 * also inserting a new interval.
1447
					 */
1403 jermar 1448
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1449
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1450
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1451
					return 1;
1452
				}
1453
			}
1454
			return 0;
1455
		}
1456
	}
1457
 
1458
error:
1459
	panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1460
}
1461
 
1409 jermar 1462
/** Remove reference to address space area share info.
1463
 *
1464
 * If the reference count drops to 0, the sh_info is deallocated.
1465
 *
1466
 * @param sh_info Pointer to address space area share info.
1467
 */
1468
void sh_info_remove_reference(share_info_t *sh_info)
1469
{
1470
	bool dealloc = false;
1471
 
1472
	mutex_lock(&sh_info->lock);
1473
	ASSERT(sh_info->refcount);
1474
	if (--sh_info->refcount == 0) {
1475
		dealloc = true;
1476
		bool cond;
1477
 
1478
		/*
1479
		 * Now walk carefully the pagemap B+tree and free/remove
1480
		 * reference from all frames found there.
1481
		 */
1482
		for (cond = true; cond;) {
1483
			btree_node_t *node;
1484
 
1485
			ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1486
			node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1487
			if ((cond = node->keys)) {
1488
				frame_free(ADDR2PFN((__address) node->value[0]));
1489
			}
1490
		}
1491
 
1492
	}
1493
	mutex_unlock(&sh_info->lock);
1494
 
1495
	if (dealloc) {
1496
		btree_destroy(&sh_info->pagemap);
1497
		free(sh_info);
1498
	}
1499
}
1500
 
1235 jermar 1501
/*
1502
 * Address space related syscalls.
1503
 */
1504
 
1505
/** Wrapper for as_area_create(). */
1506
__native sys_as_area_create(__address address, size_t size, int flags)
1507
{
1424 jermar 1508
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1509
		return (__native) address;
1510
	else
1511
		return (__native) -1;
1512
}
1513
 
1514
/** Wrapper for as_area_resize. */
1515
__native sys_as_area_resize(__address address, size_t size, int flags)
1516
{
1306 jermar 1517
	return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1518
}
1519
 
1306 jermar 1520
/** Wrapper for as_area_destroy. */
1521
__native sys_as_area_destroy(__address address)
1522
{
1523
	return (__native) as_area_destroy(AS, address);
1524
}