Subversion Repositories HelenOS-historic

Rev

Rev 1428 | Rev 1436 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1248 jermar 29
/**
30
 * @file	as.c
31
 * @brief	Address space related functions.
32
 *
703 jermar 33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 36
 *
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
39
 * address space areas.
40
 *
41
 * @see page.c
42
 *
703 jermar 43
 */
44
 
45
#include <mm/as.h>
756 jermar 46
#include <arch/mm/as.h>
703 jermar 47
#include <mm/page.h>
48
#include <mm/frame.h>
814 palkovsky 49
#include <mm/slab.h>
703 jermar 50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
1108 jermar 53
#include <genarch/mm/page_ht.h>
727 jermar 54
#include <mm/asid.h>
703 jermar 55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
1380 jermar 57
#include <synch/mutex.h>
788 jermar 58
#include <adt/list.h>
1147 jermar 59
#include <adt/btree.h>
1235 jermar 60
#include <proc/task.h>
1288 jermar 61
#include <proc/thread.h>
1235 jermar 62
#include <arch/asm.h>
703 jermar 63
#include <panic.h>
64
#include <debug.h>
1235 jermar 65
#include <print.h>
703 jermar 66
#include <memstr.h>
1070 jermar 67
#include <macros.h>
703 jermar 68
#include <arch.h>
1235 jermar 69
#include <errno.h>
70
#include <config.h>
1387 jermar 71
#include <align.h>
1235 jermar 72
#include <arch/types.h>
73
#include <typedefs.h>
1288 jermar 74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
703 jermar 76
 
756 jermar 77
as_operations_t *as_operations = NULL;
703 jermar 78
 
1415 jermar 79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 81
 
82
/**
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
757 jermar 88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
90
 
1235 jermar 91
static int area_flags_to_page_flags(int aflags);
977 jermar 92
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 94
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 95
 
756 jermar 96
/** Initialize address space subsystem. */
97
void as_init(void)
98
{
99
	as_arch_init();
789 palkovsky 100
	AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 101
	if (!AS_KERNEL)
102
		panic("can't create kernel address space\n");
103
 
756 jermar 104
}
105
 
757 jermar 106
/** Create address space.
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
756 jermar 110
as_t *as_create(int flags)
703 jermar 111
{
112
	as_t *as;
113
 
822 palkovsky 114
	as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 115
	link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 116
	mutex_initialize(&as->lock);
1147 jermar 117
	btree_create(&as->as_area_btree);
822 palkovsky 118
 
119
	if (flags & FLAG_AS_KERNEL)
120
		as->asid = ASID_KERNEL;
121
	else
122
		as->asid = ASID_INVALID;
123
 
1415 jermar 124
	as->cpu_refcount = 0;
822 palkovsky 125
	as->page_table = page_table_create(flags);
703 jermar 126
 
127
	return as;
128
}
129
 
973 palkovsky 130
/** Free Adress space */
131
void as_free(as_t *as)
132
{
1415 jermar 133
	ASSERT(as->cpu_refcount == 0);
973 palkovsky 134
 
135
	/* TODO: free as_areas and other resources held by as */
136
	/* TODO: free page table */
137
	free(as);
138
}
139
 
703 jermar 140
/** Create address space area of common attributes.
141
 *
142
 * The created address space area is added to the target address space.
143
 *
144
 * @param as Target address space.
1239 jermar 145
 * @param flags Flags of the area memory.
1048 jermar 146
 * @param size Size of area.
703 jermar 147
 * @param base Base address of area.
1239 jermar 148
 * @param attrs Attributes of the area.
1409 jermar 149
 * @param backend Address space area backend. NULL if no backend is used.
150
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 151
 *
152
 * @return Address space area on success or NULL on failure.
153
 */
1409 jermar 154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 155
	       mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 156
{
157
	ipl_t ipl;
158
	as_area_t *a;
159
 
160
	if (base % PAGE_SIZE)
1048 jermar 161
		return NULL;
162
 
1233 jermar 163
	if (!size)
164
		return NULL;
165
 
1048 jermar 166
	/* Writeable executable areas are not supported. */
167
	if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
168
		return NULL;
703 jermar 169
 
170
	ipl = interrupts_disable();
1380 jermar 171
	mutex_lock(&as->lock);
703 jermar 172
 
1048 jermar 173
	if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 174
		mutex_unlock(&as->lock);
1048 jermar 175
		interrupts_restore(ipl);
176
		return NULL;
177
	}
703 jermar 178
 
822 palkovsky 179
	a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 180
 
1380 jermar 181
	mutex_initialize(&a->lock);
822 palkovsky 182
 
1424 jermar 183
	a->as = as;
1026 jermar 184
	a->flags = flags;
1239 jermar 185
	a->attributes = attrs;
1048 jermar 186
	a->pages = SIZE2FRAMES(size);
822 palkovsky 187
	a->base = base;
1409 jermar 188
	a->sh_info = NULL;
189
	a->backend = backend;
1424 jermar 190
	if (backend_data)
191
		a->backend_data = *backend_data;
192
	else
193
		memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
194
 
1387 jermar 195
	btree_create(&a->used_space);
822 palkovsky 196
 
1147 jermar 197
	btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 198
 
1380 jermar 199
	mutex_unlock(&as->lock);
703 jermar 200
	interrupts_restore(ipl);
704 jermar 201
 
703 jermar 202
	return a;
203
}
204
 
1235 jermar 205
/** Find address space area and change it.
206
 *
207
 * @param as Address space.
208
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
209
 * @param size New size of the virtual memory block starting at address. 
210
 * @param flags Flags influencing the remap operation. Currently unused.
211
 *
1306 jermar 212
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 213
 */ 
1306 jermar 214
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 215
{
1306 jermar 216
	as_area_t *area;
1235 jermar 217
	ipl_t ipl;
218
	size_t pages;
219
 
220
	ipl = interrupts_disable();
1380 jermar 221
	mutex_lock(&as->lock);
1235 jermar 222
 
223
	/*
224
	 * Locate the area.
225
	 */
226
	area = find_area_and_lock(as, address);
227
	if (!area) {
1380 jermar 228
		mutex_unlock(&as->lock);
1235 jermar 229
		interrupts_restore(ipl);
1306 jermar 230
		return ENOENT;
1235 jermar 231
	}
232
 
1424 jermar 233
	if (area->backend == &phys_backend) {
1235 jermar 234
		/*
235
		 * Remapping of address space areas associated
236
		 * with memory mapped devices is not supported.
237
		 */
1380 jermar 238
		mutex_unlock(&area->lock);
239
		mutex_unlock(&as->lock);
1235 jermar 240
		interrupts_restore(ipl);
1306 jermar 241
		return ENOTSUP;
1235 jermar 242
	}
1409 jermar 243
	if (area->sh_info) {
244
		/*
245
		 * Remapping of shared address space areas 
246
		 * is not supported.
247
		 */
248
		mutex_unlock(&area->lock);
249
		mutex_unlock(&as->lock);
250
		interrupts_restore(ipl);
251
		return ENOTSUP;
252
	}
1235 jermar 253
 
254
	pages = SIZE2FRAMES((address - area->base) + size);
255
	if (!pages) {
256
		/*
257
		 * Zero size address space areas are not allowed.
258
		 */
1380 jermar 259
		mutex_unlock(&area->lock);
260
		mutex_unlock(&as->lock);
1235 jermar 261
		interrupts_restore(ipl);
1306 jermar 262
		return EPERM;
1235 jermar 263
	}
264
 
265
	if (pages < area->pages) {
1403 jermar 266
		bool cond;
267
		__address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 268
 
269
		/*
270
		 * Shrinking the area.
271
		 * No need to check for overlaps.
272
		 */
1403 jermar 273
 
274
		/*
275
		 * Remove frames belonging to used space starting from
276
		 * the highest addresses downwards until an overlap with
277
		 * the resized address space area is found. Note that this
278
		 * is also the right way to remove part of the used_space
279
		 * B+tree leaf list.
280
		 */		
281
		for (cond = true; cond;) {
282
			btree_node_t *node;
283
 
284
			ASSERT(!list_empty(&area->used_space.leaf_head));
285
			node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
286
			if ((cond = (bool) node->keys)) {
287
				__address b = node->key[node->keys - 1];
288
				count_t c = (count_t) node->value[node->keys - 1];
289
				int i = 0;
1235 jermar 290
 
1403 jermar 291
				if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
292
 
293
					if (b + c*PAGE_SIZE <= start_free) {
294
						/*
295
						 * The whole interval fits completely
296
						 * in the resized address space area.
297
						 */
298
						break;
299
					}
300
 
301
					/*
302
					 * Part of the interval corresponding to b and c
303
					 * overlaps with the resized address space area.
304
					 */
305
 
306
					cond = false;	/* we are almost done */
307
					i = (start_free - b) >> PAGE_WIDTH;
308
					if (!used_space_remove(area, start_free, c - i))
309
						panic("Could not remove used space.");
310
				} else {
311
					/*
312
					 * The interval of used space can be completely removed.
313
					 */
314
					if (!used_space_remove(area, b, c))
315
						panic("Could not remove used space.\n");
316
				}
317
 
318
				for (; i < c; i++) {
319
					pte_t *pte;
320
 
321
					page_table_lock(as, false);
322
					pte = page_mapping_find(as, b + i*PAGE_SIZE);
323
					ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 324
					if (area->backend && area->backend->frame_free) {
325
						area->backend->frame_free(area,
1409 jermar 326
							b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
327
					}
1403 jermar 328
					page_mapping_remove(as, b + i*PAGE_SIZE);
329
					page_table_unlock(as, false);
330
				}
1235 jermar 331
			}
332
		}
333
		/*
334
		 * Invalidate TLB's.
335
		 */
336
		tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
337
		tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
338
		tlb_shootdown_finalize();
339
	} else {
340
		/*
341
		 * Growing the area.
342
		 * Check for overlaps with other address space areas.
343
		 */
344
		if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 345
			mutex_unlock(&area->lock);
346
			mutex_unlock(&as->lock);		
1235 jermar 347
			interrupts_restore(ipl);
1306 jermar 348
			return EADDRNOTAVAIL;
1235 jermar 349
		}
350
	} 
351
 
352
	area->pages = pages;
353
 
1380 jermar 354
	mutex_unlock(&area->lock);
355
	mutex_unlock(&as->lock);
1235 jermar 356
	interrupts_restore(ipl);
357
 
1306 jermar 358
	return 0;
1235 jermar 359
}
360
 
1306 jermar 361
/** Destroy address space area.
362
 *
363
 * @param as Address space.
364
 * @param address Address withing the area to be deleted.
365
 *
366
 * @return Zero on success or a value from @ref errno.h on failure. 
367
 */
368
int as_area_destroy(as_t *as, __address address)
369
{
370
	as_area_t *area;
371
	__address base;
372
	ipl_t ipl;
1411 jermar 373
	bool cond;
1306 jermar 374
 
375
	ipl = interrupts_disable();
1380 jermar 376
	mutex_lock(&as->lock);
1306 jermar 377
 
378
	area = find_area_and_lock(as, address);
379
	if (!area) {
1380 jermar 380
		mutex_unlock(&as->lock);
1306 jermar 381
		interrupts_restore(ipl);
382
		return ENOENT;
383
	}
384
 
1403 jermar 385
	base = area->base;
386
 
1411 jermar 387
	/*
388
	 * Visit only the pages mapped by used_space B+tree.
389
	 * Note that we must be very careful when walking the tree
390
	 * leaf list and removing used space as the leaf list changes
391
	 * unpredictibly after each remove. The solution is to actually
392
	 * not walk the tree at all, but to remove items from the head
393
	 * of the leaf list until there are some keys left.
394
	 */
395
	for (cond = true; cond;) {
396
		btree_node_t *node;
1403 jermar 397
 
1411 jermar 398
		ASSERT(!list_empty(&area->used_space.leaf_head));
399
		node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
400
		if ((cond = (bool) node->keys)) {
401
			__address b = node->key[0];
402
			count_t i;
403
			pte_t *pte;
1403 jermar 404
 
1411 jermar 405
			for (i = 0; i < (count_t) node->value[0]; i++) {
406
				page_table_lock(as, false);
407
				pte = page_mapping_find(as, b + i*PAGE_SIZE);
408
				ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 409
				if (area->backend && area->backend->frame_free) {
410
					area->backend->frame_free(area,
1411 jermar 411
						b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 412
				}
1411 jermar 413
				page_mapping_remove(as, b + i*PAGE_SIZE);
414
				page_table_unlock(as, false);
1306 jermar 415
			}
1411 jermar 416
			if (!used_space_remove(area, b, i))
417
				panic("Could not remove used space.\n");
1306 jermar 418
		}
419
	}
1403 jermar 420
	btree_destroy(&area->used_space);
421
 
1306 jermar 422
	/*
423
	 * Invalidate TLB's.
424
	 */
425
	tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
426
	tlb_invalidate_pages(AS->asid, area->base, area->pages);
427
	tlb_shootdown_finalize();
428
 
1309 jermar 429
	area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 430
 
431
	if (area->sh_info)
432
		sh_info_remove_reference(area->sh_info);
433
 
1380 jermar 434
	mutex_unlock(&area->lock);
1306 jermar 435
 
436
	/*
437
	 * Remove the empty area from address space.
438
	 */
439
	btree_remove(&AS->as_area_btree, base, NULL);
440
 
1309 jermar 441
	free(area);
442
 
1380 jermar 443
	mutex_unlock(&AS->lock);
1306 jermar 444
	interrupts_restore(ipl);
445
	return 0;
446
}
447
 
1413 jermar 448
/** Share address space area with another or the same address space.
1235 jermar 449
 *
1424 jermar 450
 * Address space area mapping is shared with a new address space area.
451
 * If the source address space area has not been shared so far,
452
 * a new sh_info is created. The new address space area simply gets the
453
 * sh_info of the source area. The process of duplicating the
454
 * mapping is done through the backend share function.
1413 jermar 455
 * 
1417 jermar 456
 * @param src_as Pointer to source address space.
1239 jermar 457
 * @param src_base Base address of the source address space area.
1417 jermar 458
 * @param acc_size Expected size of the source area.
1428 palkovsky 459
 * @param dst_as Pointer to destination address space.
1417 jermar 460
 * @param dst_base Target base address.
461
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 462
 *
1306 jermar 463
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 464
 *	   if there is no such address space area,
465
 *	   EPERM if there was a problem in accepting the area or
466
 *	   ENOMEM if there was a problem in allocating destination
1413 jermar 467
 *	   address space area. ENOTSUP is returned if an attempt
468
 *	   to share non-anonymous address space area is detected.
1235 jermar 469
 */
1413 jermar 470
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 471
		  as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 472
{
473
	ipl_t ipl;
1239 jermar 474
	int src_flags;
475
	size_t src_size;
476
	as_area_t *src_area, *dst_area;
1413 jermar 477
	share_info_t *sh_info;
1424 jermar 478
	mem_backend_t *src_backend;
479
	mem_backend_data_t src_backend_data;
1434 palkovsky 480
 
1235 jermar 481
	ipl = interrupts_disable();
1380 jermar 482
	mutex_lock(&src_as->lock);
1329 palkovsky 483
	src_area = find_area_and_lock(src_as, src_base);
1239 jermar 484
	if (!src_area) {
1238 jermar 485
		/*
486
		 * Could not find the source address space area.
487
		 */
1380 jermar 488
		mutex_unlock(&src_as->lock);
1238 jermar 489
		interrupts_restore(ipl);
490
		return ENOENT;
491
	}
1413 jermar 492
 
1424 jermar 493
	if (!src_area->backend || !src_area->backend->share) {
1413 jermar 494
		/*
1424 jermar 495
		 * There is now backend or the backend does not
496
		 * know how to share the area.
1413 jermar 497
		 */
498
		mutex_unlock(&src_area->lock);
499
		mutex_unlock(&src_as->lock);
500
		interrupts_restore(ipl);
501
		return ENOTSUP;
502
	}
503
 
1239 jermar 504
	src_size = src_area->pages * PAGE_SIZE;
505
	src_flags = src_area->flags;
1424 jermar 506
	src_backend = src_area->backend;
507
	src_backend_data = src_area->backend_data;
1413 jermar 508
 
1329 palkovsky 509
	if (src_size != acc_size) {
1413 jermar 510
		mutex_unlock(&src_area->lock);
511
		mutex_unlock(&src_as->lock);
1235 jermar 512
		interrupts_restore(ipl);
513
		return EPERM;
514
	}
1413 jermar 515
 
1235 jermar 516
	/*
1413 jermar 517
	 * Now we are committed to sharing the area.
518
	 * First prepare the area for sharing.
519
	 * Then it will be safe to unlock it.
520
	 */
521
	sh_info = src_area->sh_info;
522
	if (!sh_info) {
523
		sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
524
		mutex_initialize(&sh_info->lock);
525
		sh_info->refcount = 2;
526
		btree_create(&sh_info->pagemap);
527
		src_area->sh_info = sh_info;
528
	} else {
529
		mutex_lock(&sh_info->lock);
530
		sh_info->refcount++;
531
		mutex_unlock(&sh_info->lock);
532
	}
533
 
1424 jermar 534
	src_area->backend->share(src_area);
1413 jermar 535
 
536
	mutex_unlock(&src_area->lock);
537
	mutex_unlock(&src_as->lock);
538
 
539
	/*
1239 jermar 540
	 * Create copy of the source address space area.
541
	 * The destination area is created with AS_AREA_ATTR_PARTIAL
542
	 * attribute set which prevents race condition with
543
	 * preliminary as_page_fault() calls.
1417 jermar 544
	 * The flags of the source area are masked against dst_flags_mask
545
	 * to support sharing in less privileged mode.
1235 jermar 546
	 */
1428 palkovsky 547
	dst_area = as_area_create(dst_as, src_flags & dst_flags_mask, src_size, dst_base,
1424 jermar 548
				  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 549
	if (!dst_area) {
1235 jermar 550
		/*
551
		 * Destination address space area could not be created.
552
		 */
1413 jermar 553
		sh_info_remove_reference(sh_info);
554
 
1235 jermar 555
		interrupts_restore(ipl);
556
		return ENOMEM;
557
	}
558
 
559
	/*
1239 jermar 560
	 * Now the destination address space area has been
561
	 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 562
	 * attribute and set the sh_info.
1239 jermar 563
	 */	
1380 jermar 564
	mutex_lock(&dst_area->lock);
1239 jermar 565
	dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 566
	dst_area->sh_info = sh_info;
1380 jermar 567
	mutex_unlock(&dst_area->lock);
1235 jermar 568
 
569
	interrupts_restore(ipl);
570
 
571
	return 0;
572
}
573
 
1423 jermar 574
/** Check access mode for address space area.
575
 *
576
 * The address space area must be locked prior to this call.
577
 *
578
 * @param area Address space area.
579
 * @param access Access mode.
580
 *
581
 * @return False if access violates area's permissions, true otherwise.
582
 */
583
bool as_area_check_access(as_area_t *area, pf_access_t access)
584
{
585
	int flagmap[] = {
586
		[PF_ACCESS_READ] = AS_AREA_READ,
587
		[PF_ACCESS_WRITE] = AS_AREA_WRITE,
588
		[PF_ACCESS_EXEC] = AS_AREA_EXEC
589
	};
590
 
591
	if (!(area->flags & flagmap[access]))
592
		return false;
593
 
594
	return true;
595
}
596
 
703 jermar 597
/** Handle page fault within the current address space.
598
 *
1409 jermar 599
 * This is the high-level page fault handler. It decides
600
 * whether the page fault can be resolved by any backend
601
 * and if so, it invokes the backend to resolve the page
602
 * fault.
603
 *
703 jermar 604
 * Interrupts are assumed disabled.
605
 *
606
 * @param page Faulting page.
1411 jermar 607
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 608
 * @param istate Pointer to interrupted state.
703 jermar 609
 *
1409 jermar 610
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
611
 * 	   fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 612
 */
1411 jermar 613
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 614
{
1044 jermar 615
	pte_t *pte;
977 jermar 616
	as_area_t *area;
703 jermar 617
 
1380 jermar 618
	if (!THREAD)
1409 jermar 619
		return AS_PF_FAULT;
1380 jermar 620
 
703 jermar 621
	ASSERT(AS);
1044 jermar 622
 
1380 jermar 623
	mutex_lock(&AS->lock);
977 jermar 624
	area = find_area_and_lock(AS, page);	
703 jermar 625
	if (!area) {
626
		/*
627
		 * No area contained mapping for 'page'.
628
		 * Signal page fault to low-level handler.
629
		 */
1380 jermar 630
		mutex_unlock(&AS->lock);
1288 jermar 631
		goto page_fault;
703 jermar 632
	}
633
 
1239 jermar 634
	if (area->attributes & AS_AREA_ATTR_PARTIAL) {
635
		/*
636
		 * The address space area is not fully initialized.
637
		 * Avoid possible race by returning error.
638
		 */
1380 jermar 639
		mutex_unlock(&area->lock);
640
		mutex_unlock(&AS->lock);
1288 jermar 641
		goto page_fault;		
1239 jermar 642
	}
643
 
1424 jermar 644
	if (!area->backend || !area->backend->page_fault) {
1409 jermar 645
		/*
646
		 * The address space area is not backed by any backend
647
		 * or the backend cannot handle page faults.
648
		 */
649
		mutex_unlock(&area->lock);
650
		mutex_unlock(&AS->lock);
651
		goto page_fault;		
652
	}
1179 jermar 653
 
1044 jermar 654
	page_table_lock(AS, false);
655
 
703 jermar 656
	/*
1044 jermar 657
	 * To avoid race condition between two page faults
658
	 * on the same address, we need to make sure
659
	 * the mapping has not been already inserted.
660
	 */
661
	if ((pte = page_mapping_find(AS, page))) {
662
		if (PTE_PRESENT(pte)) {
1423 jermar 663
			if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
664
				(access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
665
				(access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
666
				page_table_unlock(AS, false);
667
				mutex_unlock(&area->lock);
668
				mutex_unlock(&AS->lock);
669
				return AS_PF_OK;
670
			}
1044 jermar 671
		}
672
	}
1409 jermar 673
 
1044 jermar 674
	/*
1409 jermar 675
	 * Resort to the backend page fault handler.
703 jermar 676
	 */
1424 jermar 677
	if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 678
		page_table_unlock(AS, false);
679
		mutex_unlock(&area->lock);
680
		mutex_unlock(&AS->lock);
681
		goto page_fault;
682
	}
703 jermar 683
 
1044 jermar 684
	page_table_unlock(AS, false);
1380 jermar 685
	mutex_unlock(&area->lock);
686
	mutex_unlock(&AS->lock);
1288 jermar 687
	return AS_PF_OK;
688
 
689
page_fault:
690
	if (THREAD->in_copy_from_uspace) {
691
		THREAD->in_copy_from_uspace = false;
692
		istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
693
	} else if (THREAD->in_copy_to_uspace) {
694
		THREAD->in_copy_to_uspace = false;
695
		istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
696
	} else {
697
		return AS_PF_FAULT;
698
	}
699
 
700
	return AS_PF_DEFER;
703 jermar 701
}
702
 
823 jermar 703
/** Switch address spaces.
703 jermar 704
 *
1380 jermar 705
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 706
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 707
 *
823 jermar 708
 * @param old Old address space or NULL.
709
 * @param new New address space.
703 jermar 710
 */
823 jermar 711
void as_switch(as_t *old, as_t *new)
703 jermar 712
{
713
	ipl_t ipl;
823 jermar 714
	bool needs_asid = false;
703 jermar 715
 
716
	ipl = interrupts_disable();
1415 jermar 717
	spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 718
 
719
	/*
823 jermar 720
	 * First, take care of the old address space.
721
	 */	
722
	if (old) {
1380 jermar 723
		mutex_lock_active(&old->lock);
1415 jermar 724
		ASSERT(old->cpu_refcount);
725
		if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 726
			/*
727
			 * The old address space is no longer active on
728
			 * any processor. It can be appended to the
729
			 * list of inactive address spaces with assigned
730
			 * ASID.
731
			 */
732
			 ASSERT(old->asid != ASID_INVALID);
733
			 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
734
		}
1380 jermar 735
		mutex_unlock(&old->lock);
823 jermar 736
	}
737
 
738
	/*
739
	 * Second, prepare the new address space.
740
	 */
1380 jermar 741
	mutex_lock_active(&new->lock);
1415 jermar 742
	if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 743
		if (new->asid != ASID_INVALID)
744
			list_remove(&new->inactive_as_with_asid_link);
745
		else
746
			needs_asid = true;	/* defer call to asid_get() until new->lock is released */
747
	}
748
	SET_PTL0_ADDRESS(new->page_table);
1380 jermar 749
	mutex_unlock(&new->lock);
823 jermar 750
 
751
	if (needs_asid) {
752
		/*
753
		 * Allocation of new ASID was deferred
754
		 * until now in order to avoid deadlock.
755
		 */
756
		asid_t asid;
757
 
758
		asid = asid_get();
1380 jermar 759
		mutex_lock_active(&new->lock);
823 jermar 760
		new->asid = asid;
1380 jermar 761
		mutex_unlock(&new->lock);
823 jermar 762
	}
1415 jermar 763
	spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 764
	interrupts_restore(ipl);
765
 
766
	/*
703 jermar 767
	 * Perform architecture-specific steps.
727 jermar 768
	 * (e.g. write ASID to hardware register etc.)
703 jermar 769
	 */
823 jermar 770
	as_install_arch(new);
703 jermar 771
 
823 jermar 772
	AS = new;
703 jermar 773
}
754 jermar 774
 
1235 jermar 775
/** Convert address space area flags to page flags.
754 jermar 776
 *
1235 jermar 777
 * @param aflags Flags of some address space area.
754 jermar 778
 *
1235 jermar 779
 * @return Flags to be passed to page_mapping_insert().
754 jermar 780
 */
1235 jermar 781
int area_flags_to_page_flags(int aflags)
754 jermar 782
{
783
	int flags;
784
 
1178 jermar 785
	flags = PAGE_USER | PAGE_PRESENT;
754 jermar 786
 
1235 jermar 787
	if (aflags & AS_AREA_READ)
1026 jermar 788
		flags |= PAGE_READ;
789
 
1235 jermar 790
	if (aflags & AS_AREA_WRITE)
1026 jermar 791
		flags |= PAGE_WRITE;
792
 
1235 jermar 793
	if (aflags & AS_AREA_EXEC)
1026 jermar 794
		flags |= PAGE_EXEC;
795
 
1424 jermar 796
	if (aflags & AS_AREA_CACHEABLE)
1178 jermar 797
		flags |= PAGE_CACHEABLE;
798
 
754 jermar 799
	return flags;
800
}
756 jermar 801
 
1235 jermar 802
/** Compute flags for virtual address translation subsytem.
803
 *
804
 * The address space area must be locked.
805
 * Interrupts must be disabled.
806
 *
807
 * @param a Address space area.
808
 *
809
 * @return Flags to be used in page_mapping_insert().
810
 */
1409 jermar 811
int as_area_get_flags(as_area_t *a)
1235 jermar 812
{
813
	return area_flags_to_page_flags(a->flags);
814
}
815
 
756 jermar 816
/** Create page table.
817
 *
818
 * Depending on architecture, create either address space
819
 * private or global page table.
820
 *
821
 * @param flags Flags saying whether the page table is for kernel address space.
822
 *
823
 * @return First entry of the page table.
824
 */
825
pte_t *page_table_create(int flags)
826
{
827
        ASSERT(as_operations);
828
        ASSERT(as_operations->page_table_create);
829
 
830
        return as_operations->page_table_create(flags);
831
}
977 jermar 832
 
1044 jermar 833
/** Lock page table.
834
 *
835
 * This function should be called before any page_mapping_insert(),
836
 * page_mapping_remove() and page_mapping_find().
837
 * 
838
 * Locking order is such that address space areas must be locked
839
 * prior to this call. Address space can be locked prior to this
840
 * call in which case the lock argument is false.
841
 *
842
 * @param as Address space.
1248 jermar 843
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 844
 */
845
void page_table_lock(as_t *as, bool lock)
846
{
847
	ASSERT(as_operations);
848
	ASSERT(as_operations->page_table_lock);
849
 
850
	as_operations->page_table_lock(as, lock);
851
}
852
 
853
/** Unlock page table.
854
 *
855
 * @param as Address space.
1248 jermar 856
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 857
 */
858
void page_table_unlock(as_t *as, bool unlock)
859
{
860
	ASSERT(as_operations);
861
	ASSERT(as_operations->page_table_unlock);
862
 
863
	as_operations->page_table_unlock(as, unlock);
864
}
865
 
977 jermar 866
 
867
/** Find address space area and lock it.
868
 *
869
 * The address space must be locked and interrupts must be disabled.
870
 *
871
 * @param as Address space.
872
 * @param va Virtual address.
873
 *
874
 * @return Locked address space area containing va on success or NULL on failure.
875
 */
876
as_area_t *find_area_and_lock(as_t *as, __address va)
877
{
878
	as_area_t *a;
1147 jermar 879
	btree_node_t *leaf, *lnode;
880
	int i;
977 jermar 881
 
1147 jermar 882
	a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
883
	if (a) {
884
		/* va is the base address of an address space area */
1380 jermar 885
		mutex_lock(&a->lock);
1147 jermar 886
		return a;
887
	}
888
 
889
	/*
1150 jermar 890
	 * Search the leaf node and the righmost record of its left neighbour
1147 jermar 891
	 * to find out whether this is a miss or va belongs to an address
892
	 * space area found there.
893
	 */
894
 
895
	/* First, search the leaf node itself. */
896
	for (i = 0; i < leaf->keys; i++) {
897
		a = (as_area_t *) leaf->value[i];
1380 jermar 898
		mutex_lock(&a->lock);
1147 jermar 899
		if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
900
			return a;
901
		}
1380 jermar 902
		mutex_unlock(&a->lock);
1147 jermar 903
	}
977 jermar 904
 
1147 jermar 905
	/*
1150 jermar 906
	 * Second, locate the left neighbour and test its last record.
1148 jermar 907
	 * Because of its position in the B+tree, it must have base < va.
1147 jermar 908
	 */
1150 jermar 909
	if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 910
		a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 911
		mutex_lock(&a->lock);
1147 jermar 912
		if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 913
			return a;
1147 jermar 914
		}
1380 jermar 915
		mutex_unlock(&a->lock);
977 jermar 916
	}
917
 
918
	return NULL;
919
}
1048 jermar 920
 
921
/** Check area conflicts with other areas.
922
 *
923
 * The address space must be locked and interrupts must be disabled.
924
 *
925
 * @param as Address space.
926
 * @param va Starting virtual address of the area being tested.
927
 * @param size Size of the area being tested.
928
 * @param avoid_area Do not touch this area. 
929
 *
930
 * @return True if there is no conflict, false otherwise.
931
 */
932
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
933
{
934
	as_area_t *a;
1147 jermar 935
	btree_node_t *leaf, *node;
936
	int i;
1048 jermar 937
 
1070 jermar 938
	/*
939
	 * We don't want any area to have conflicts with NULL page.
940
	 */
941
	if (overlaps(va, size, NULL, PAGE_SIZE))
942
		return false;
943
 
1147 jermar 944
	/*
945
	 * The leaf node is found in O(log n), where n is proportional to
946
	 * the number of address space areas belonging to as.
947
	 * The check for conflicts is then attempted on the rightmost
1150 jermar 948
	 * record in the left neighbour, the leftmost record in the right
949
	 * neighbour and all records in the leaf node itself.
1147 jermar 950
	 */
1048 jermar 951
 
1147 jermar 952
	if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
953
		if (a != avoid_area)
954
			return false;
955
	}
956
 
957
	/* First, check the two border cases. */
1150 jermar 958
	if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 959
		a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 960
		mutex_lock(&a->lock);
1147 jermar 961
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 962
			mutex_unlock(&a->lock);
1147 jermar 963
			return false;
964
		}
1380 jermar 965
		mutex_unlock(&a->lock);
1147 jermar 966
	}
1150 jermar 967
	if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 968
		a = (as_area_t *) node->value[0];
1380 jermar 969
		mutex_lock(&a->lock);
1147 jermar 970
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 971
			mutex_unlock(&a->lock);
1147 jermar 972
			return false;
973
		}
1380 jermar 974
		mutex_unlock(&a->lock);
1147 jermar 975
	}
976
 
977
	/* Second, check the leaf node. */
978
	for (i = 0; i < leaf->keys; i++) {
979
		a = (as_area_t *) leaf->value[i];
980
 
1048 jermar 981
		if (a == avoid_area)
982
			continue;
1147 jermar 983
 
1380 jermar 984
		mutex_lock(&a->lock);
1147 jermar 985
		if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 986
			mutex_unlock(&a->lock);
1147 jermar 987
			return false;
988
		}
1380 jermar 989
		mutex_unlock(&a->lock);
1048 jermar 990
	}
991
 
1070 jermar 992
	/*
993
	 * So far, the area does not conflict with other areas.
994
	 * Check if it doesn't conflict with kernel address space.
995
	 */	 
996
	if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
997
		return !overlaps(va, size, 
998
			KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
999
	}
1000
 
1048 jermar 1001
	return true;
1002
}
1235 jermar 1003
 
1380 jermar 1004
/** Return size of the address space area with given base.  */
1329 palkovsky 1005
size_t as_get_size(__address base)
1006
{
1007
	ipl_t ipl;
1008
	as_area_t *src_area;
1009
	size_t size;
1010
 
1011
	ipl = interrupts_disable();
1012
	src_area = find_area_and_lock(AS, base);
1013
	if (src_area){
1014
		size = src_area->pages * PAGE_SIZE;
1380 jermar 1015
		mutex_unlock(&src_area->lock);
1329 palkovsky 1016
	} else {
1017
		size = 0;
1018
	}
1019
	interrupts_restore(ipl);
1020
	return size;
1021
}
1022
 
1387 jermar 1023
/** Mark portion of address space area as used.
1024
 *
1025
 * The address space area must be already locked.
1026
 *
1027
 * @param a Address space area.
1028
 * @param page First page to be marked.
1029
 * @param count Number of page to be marked.
1030
 *
1031
 * @return 0 on failure and 1 on success.
1032
 */
1033
int used_space_insert(as_area_t *a, __address page, count_t count)
1034
{
1035
	btree_node_t *leaf, *node;
1036
	count_t pages;
1037
	int i;
1038
 
1039
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1040
	ASSERT(count);
1041
 
1042
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1043
	if (pages) {
1044
		/*
1045
		 * We hit the beginning of some used space.
1046
		 */
1047
		return 0;
1048
	}
1049
 
1050
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1051
	if (node) {
1052
		__address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1053
		count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1054
 
1055
		/*
1056
		 * Examine the possibility that the interval fits
1057
		 * somewhere between the rightmost interval of
1058
		 * the left neigbour and the first interval of the leaf.
1059
		 */
1060
 
1061
		if (page >= right_pg) {
1062
			/* Do nothing. */
1063
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1064
			/* The interval intersects with the left interval. */
1065
			return 0;
1066
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1067
			/* The interval intersects with the right interval. */
1068
			return 0;			
1069
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1070
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1071
			node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1072
			btree_remove(&a->used_space, right_pg, leaf);
1073
			return 1; 
1074
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1075
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1076
			node->value[node->keys - 1] += count;
1387 jermar 1077
			return 1;
1078
		} else if (page + count*PAGE_SIZE == right_pg) {
1079
			/*
1080
			 * The interval can be addded by simply moving base of the right
1081
			 * interval down and increasing its size accordingly.
1082
			 */
1403 jermar 1083
			leaf->value[0] += count;
1387 jermar 1084
			leaf->key[0] = page;
1085
			return 1;
1086
		} else {
1087
			/*
1088
			 * The interval is between both neigbouring intervals,
1089
			 * but cannot be merged with any of them.
1090
			 */
1091
			btree_insert(&a->used_space, page, (void *) count, leaf);
1092
			return 1;
1093
		}
1094
	} else if (page < leaf->key[0]) {
1095
		__address right_pg = leaf->key[0];
1096
		count_t right_cnt = (count_t) leaf->value[0];
1097
 
1098
		/*
1099
		 * Investigate the border case in which the left neighbour does not
1100
		 * exist but the interval fits from the left.
1101
		 */
1102
 
1103
		if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1104
			/* The interval intersects with the right interval. */
1105
			return 0;
1106
		} else if (page + count*PAGE_SIZE == right_pg) {
1107
			/*
1108
			 * The interval can be added by moving the base of the right interval down
1109
			 * and increasing its size accordingly.
1110
			 */
1111
			leaf->key[0] = page;
1403 jermar 1112
			leaf->value[0] += count;
1387 jermar 1113
			return 1;
1114
		} else {
1115
			/*
1116
			 * The interval doesn't adjoin with the right interval.
1117
			 * It must be added individually.
1118
			 */
1119
			btree_insert(&a->used_space, page, (void *) count, leaf);
1120
			return 1;
1121
		}
1122
	}
1123
 
1124
	node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1125
	if (node) {
1126
		__address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1127
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1128
 
1129
		/*
1130
		 * Examine the possibility that the interval fits
1131
		 * somewhere between the leftmost interval of
1132
		 * the right neigbour and the last interval of the leaf.
1133
		 */
1134
 
1135
		if (page < left_pg) {
1136
			/* Do nothing. */
1137
		} else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1138
			/* The interval intersects with the left interval. */
1139
			return 0;
1140
		} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1141
			/* The interval intersects with the right interval. */
1142
			return 0;			
1143
		} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1144
			/* The interval can be added by merging the two already present intervals. */
1403 jermar 1145
			leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1146
			btree_remove(&a->used_space, right_pg, node);
1147
			return 1; 
1148
		} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1149
			/* The interval can be added by simply growing the left interval. */
1403 jermar 1150
			leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1151
			return 1;
1152
		} else if (page + count*PAGE_SIZE == right_pg) {
1153
			/*
1154
			 * The interval can be addded by simply moving base of the right
1155
			 * interval down and increasing its size accordingly.
1156
			 */
1403 jermar 1157
			node->value[0] += count;
1387 jermar 1158
			node->key[0] = page;
1159
			return 1;
1160
		} else {
1161
			/*
1162
			 * The interval is between both neigbouring intervals,
1163
			 * but cannot be merged with any of them.
1164
			 */
1165
			btree_insert(&a->used_space, page, (void *) count, leaf);
1166
			return 1;
1167
		}
1168
	} else if (page >= leaf->key[leaf->keys - 1]) {
1169
		__address left_pg = leaf->key[leaf->keys - 1];
1170
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1171
 
1172
		/*
1173
		 * Investigate the border case in which the right neighbour does not
1174
		 * exist but the interval fits from the right.
1175
		 */
1176
 
1177
		if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1178
			/* The interval intersects with the left interval. */
1387 jermar 1179
			return 0;
1180
		} else if (left_pg + left_cnt*PAGE_SIZE == page) {
1181
			/* The interval can be added by growing the left interval. */
1403 jermar 1182
			leaf->value[leaf->keys - 1] += count;
1387 jermar 1183
			return 1;
1184
		} else {
1185
			/*
1186
			 * The interval doesn't adjoin with the left interval.
1187
			 * It must be added individually.
1188
			 */
1189
			btree_insert(&a->used_space, page, (void *) count, leaf);
1190
			return 1;
1191
		}
1192
	}
1193
 
1194
	/*
1195
	 * Note that if the algorithm made it thus far, the interval can fit only
1196
	 * between two other intervals of the leaf. The two border cases were already
1197
	 * resolved.
1198
	 */
1199
	for (i = 1; i < leaf->keys; i++) {
1200
		if (page < leaf->key[i]) {
1201
			__address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1202
			count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1203
 
1204
			/*
1205
			 * The interval fits between left_pg and right_pg.
1206
			 */
1207
 
1208
			if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1209
				/* The interval intersects with the left interval. */
1210
				return 0;
1211
			} else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1212
				/* The interval intersects with the right interval. */
1213
				return 0;			
1214
			} else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1215
				/* The interval can be added by merging the two already present intervals. */
1403 jermar 1216
				leaf->value[i - 1] += count + right_cnt;
1387 jermar 1217
				btree_remove(&a->used_space, right_pg, leaf);
1218
				return 1; 
1219
			} else if (page == left_pg + left_cnt*PAGE_SIZE) {
1220
				/* The interval can be added by simply growing the left interval. */
1403 jermar 1221
				leaf->value[i - 1] += count;
1387 jermar 1222
				return 1;
1223
			} else if (page + count*PAGE_SIZE == right_pg) {
1224
				/*
1225
			         * The interval can be addded by simply moving base of the right
1226
			 	 * interval down and increasing its size accordingly.
1227
			 	 */
1403 jermar 1228
				leaf->value[i] += count;
1387 jermar 1229
				leaf->key[i] = page;
1230
				return 1;
1231
			} else {
1232
				/*
1233
				 * The interval is between both neigbouring intervals,
1234
				 * but cannot be merged with any of them.
1235
				 */
1236
				btree_insert(&a->used_space, page, (void *) count, leaf);
1237
				return 1;
1238
			}
1239
		}
1240
	}
1241
 
1242
	panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1243
}
1244
 
1245
/** Mark portion of address space area as unused.
1246
 *
1247
 * The address space area must be already locked.
1248
 *
1249
 * @param a Address space area.
1250
 * @param page First page to be marked.
1251
 * @param count Number of page to be marked.
1252
 *
1253
 * @return 0 on failure and 1 on success.
1254
 */
1255
int used_space_remove(as_area_t *a, __address page, count_t count)
1256
{
1257
	btree_node_t *leaf, *node;
1258
	count_t pages;
1259
	int i;
1260
 
1261
	ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1262
	ASSERT(count);
1263
 
1264
	pages = (count_t) btree_search(&a->used_space, page, &leaf);
1265
	if (pages) {
1266
		/*
1267
		 * We are lucky, page is the beginning of some interval.
1268
		 */
1269
		if (count > pages) {
1270
			return 0;
1271
		} else if (count == pages) {
1272
			btree_remove(&a->used_space, page, leaf);
1403 jermar 1273
			return 1;
1387 jermar 1274
		} else {
1275
			/*
1276
			 * Find the respective interval.
1277
			 * Decrease its size and relocate its start address.
1278
			 */
1279
			for (i = 0; i < leaf->keys; i++) {
1280
				if (leaf->key[i] == page) {
1281
					leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1282
					leaf->value[i] -= count;
1387 jermar 1283
					return 1;
1284
				}
1285
			}
1286
			goto error;
1287
		}
1288
	}
1289
 
1290
	node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1291
	if (node && page < leaf->key[0]) {
1292
		__address left_pg = node->key[node->keys - 1];
1293
		count_t left_cnt = (count_t) node->value[node->keys - 1];
1294
 
1295
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1296
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1297
				/*
1298
				 * The interval is contained in the rightmost interval
1299
				 * of the left neighbour and can be removed by
1300
				 * updating the size of the bigger interval.
1301
				 */
1403 jermar 1302
				node->value[node->keys - 1] -= count;
1387 jermar 1303
				return 1;
1304
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1305
				count_t new_cnt;
1387 jermar 1306
 
1307
				/*
1308
				 * The interval is contained in the rightmost interval
1309
				 * of the left neighbour but its removal requires
1310
				 * both updating the size of the original interval and
1311
				 * also inserting a new interval.
1312
				 */
1403 jermar 1313
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1314
				node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1315
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1316
				return 1;
1317
			}
1318
		}
1319
		return 0;
1320
	} else if (page < leaf->key[0]) {
1321
		return 0;
1322
	}
1323
 
1324
	if (page > leaf->key[leaf->keys - 1]) {
1325
		__address left_pg = leaf->key[leaf->keys - 1];
1326
		count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1327
 
1328
		if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1329
			if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1330
				/*
1331
				 * The interval is contained in the rightmost interval
1332
				 * of the leaf and can be removed by updating the size
1333
				 * of the bigger interval.
1334
				 */
1403 jermar 1335
				leaf->value[leaf->keys - 1] -= count;
1387 jermar 1336
				return 1;
1337
			} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1338
				count_t new_cnt;
1387 jermar 1339
 
1340
				/*
1341
				 * The interval is contained in the rightmost interval
1342
				 * of the leaf but its removal requires both updating
1343
				 * the size of the original interval and
1344
				 * also inserting a new interval.
1345
				 */
1403 jermar 1346
				new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1347
				leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1348
				btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1349
				return 1;
1350
			}
1351
		}
1352
		return 0;
1353
	}	
1354
 
1355
	/*
1356
	 * The border cases have been already resolved.
1357
	 * Now the interval can be only between intervals of the leaf. 
1358
	 */
1359
	for (i = 1; i < leaf->keys - 1; i++) {
1360
		if (page < leaf->key[i]) {
1361
			__address left_pg = leaf->key[i - 1];
1362
			count_t left_cnt = (count_t) leaf->value[i - 1];
1363
 
1364
			/*
1365
			 * Now the interval is between intervals corresponding to (i - 1) and i.
1366
			 */
1367
			if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1368
				if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1369
					/*
1370
				 	* The interval is contained in the interval (i - 1)
1371
					 * of the leaf and can be removed by updating the size
1372
					 * of the bigger interval.
1373
					 */
1403 jermar 1374
					leaf->value[i - 1] -= count;
1387 jermar 1375
					return 1;
1376
				} else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1377
					count_t new_cnt;
1387 jermar 1378
 
1379
					/*
1380
					 * The interval is contained in the interval (i - 1)
1381
					 * of the leaf but its removal requires both updating
1382
					 * the size of the original interval and
1383
					 * also inserting a new interval.
1384
					 */
1403 jermar 1385
					new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1386
					leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1387
					btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1388
					return 1;
1389
				}
1390
			}
1391
			return 0;
1392
		}
1393
	}
1394
 
1395
error:
1396
	panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1397
}
1398
 
1409 jermar 1399
/** Remove reference to address space area share info.
1400
 *
1401
 * If the reference count drops to 0, the sh_info is deallocated.
1402
 *
1403
 * @param sh_info Pointer to address space area share info.
1404
 */
1405
void sh_info_remove_reference(share_info_t *sh_info)
1406
{
1407
	bool dealloc = false;
1408
 
1409
	mutex_lock(&sh_info->lock);
1410
	ASSERT(sh_info->refcount);
1411
	if (--sh_info->refcount == 0) {
1412
		dealloc = true;
1413
		bool cond;
1414
 
1415
		/*
1416
		 * Now walk carefully the pagemap B+tree and free/remove
1417
		 * reference from all frames found there.
1418
		 */
1419
		for (cond = true; cond;) {
1420
			btree_node_t *node;
1421
 
1422
			ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1423
			node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1424
			if ((cond = node->keys)) {
1425
				frame_free(ADDR2PFN((__address) node->value[0]));
1426
				btree_remove(&sh_info->pagemap, node->key[0], node);
1427
			}
1428
		}
1429
 
1430
	}
1431
	mutex_unlock(&sh_info->lock);
1432
 
1433
	if (dealloc) {
1434
		btree_destroy(&sh_info->pagemap);
1435
		free(sh_info);
1436
	}
1437
}
1438
 
1235 jermar 1439
/*
1440
 * Address space related syscalls.
1441
 */
1442
 
1443
/** Wrapper for as_area_create(). */
1444
__native sys_as_area_create(__address address, size_t size, int flags)
1445
{
1424 jermar 1446
	if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1447
		return (__native) address;
1448
	else
1449
		return (__native) -1;
1450
}
1451
 
1452
/** Wrapper for as_area_resize. */
1453
__native sys_as_area_resize(__address address, size_t size, int flags)
1454
{
1306 jermar 1455
	return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1456
}
1457
 
1306 jermar 1458
/** Wrapper for as_area_destroy. */
1459
__native sys_as_area_destroy(__address address)
1460
{
1461
	return (__native) as_area_destroy(AS, address);
1462
}