Subversion Repositories HelenOS-historic

Rev

Rev 1121 | Rev 1136 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1101 jermar 1
/*
2
 * Copyright (C) 2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
/*
30
 * This B-tree has the following properties:
1121 jermar 31
 * - it is a ballanced 2-3-4 tree (i.e. BTREE_M = 4)
1101 jermar 32
 * - values (i.e. pointers to values) are stored only in leaves
33
 * - leaves are linked in a list
34
 * - technically, it is a B+-tree (because of the previous properties)
35
 *
36
 * Some of the functions below take pointer to the right-hand
37
 * side subtree pointer as parameter. Note that this is sufficient
38
 * because:
39
 * 	- New root node is passed the left-hand side subtree pointer
40
 * 	  directly.
41
 * 	- node_split() always creates the right sibling and preserves
42
 * 	  the original node (which becomes the left sibling).
43
 * 	  There is always pointer to the left-hand side subtree
44
 * 	  (i.e. left sibling) in the parent node.
1134 jermar 45
 *
46
 * Be carefull when using these trees. They need to allocate
47
 * and deallocate memory for their index nodes and as such
48
 * can sleep.
1101 jermar 49
 */
50
 
51
#include <adt/btree.h>
52
#include <adt/list.h>
53
#include <mm/slab.h>
54
#include <debug.h>
55
#include <panic.h>
56
#include <typedefs.h>
57
#include <print.h>
58
 
59
static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
60
static void node_initialize(btree_node_t *node);
61
static void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
1134 jermar 62
void node_remove_key(btree_node_t *node, __native key);
1101 jermar 63
static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
64
 
65
#define ROOT_NODE(n)		(!(n)->parent)
66
#define INDEX_NODE(n)		((n)->subtree[0] != NULL)
67
#define LEAF_NODE(n)		((n)->subtree[0] == NULL)
68
 
69
#define MEDIAN_LOW_INDEX(n)	(((n)->keys-1)/2)
70
#define MEDIAN_HIGH_INDEX(n)	((n)->keys/2)
71
#define MEDIAN_LOW(n)		((n)->key[MEDIAN_LOW_INDEX((n))]);
72
#define MEDIAN_HIGH(n)		((n)->key[MEDIAN_HIGH_INDEX((n))]);
73
 
74
/** Create empty B-tree.
75
 *
76
 * @param t B-tree.
77
 */
78
void btree_create(btree_t *t)
79
{
80
	list_initialize(&t->leaf_head);
81
	t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
82
	node_initialize(t->root);
83
	list_append(&t->root->leaf_link, &t->leaf_head);
84
}
85
 
86
/** Destroy empty B-tree. */
87
void btree_destroy(btree_t *t)
88
{
89
	ASSERT(!t->root->keys);
90
	free(t->root);
91
}
92
 
93
/** Insert key-value pair into B-tree.
94
 *
95
 * @param t B-tree.
96
 * @param key Key to be inserted.
97
 * @param value Value to be inserted.
98
 * @param leaf_node Leaf node where the insertion should begin.
99
 */ 
100
void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
101
{
102
	btree_node_t *lnode;
103
 
104
	ASSERT(value);
105
 
106
	lnode = leaf_node;
107
	if (!lnode) {
108
		if (btree_search(t, key, &lnode)) {
109
			panic("B-tree %P already contains key %d\n", t, key);
110
		}
111
	}
112
 
113
	_btree_insert(t, key, value, NULL, lnode);
114
}
115
 
116
/** Recursively insert into B-tree.
117
 *
118
 * @param t B-tree.
119
 * @param key Key to be inserted.
120
 * @param value Value to be inserted.
121
 * @param rsubtree Right subtree of the inserted key.
122
 * @param node Start inserting into this node.
123
 */
124
void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
125
{
126
	if (node->keys < BTREE_MAX_KEYS) {
127
		/*
128
		 * Node conatins enough space, the key can be stored immediately.
129
		 */
130
		node_insert_key(node, key, value, rsubtree);
131
	} else {
132
		btree_node_t *rnode;
133
		__native median;
134
 
135
		/*
136
		 * Node is full.
137
		 * Split it and insert the smallest key from the node containing
138
		 * bigger keys (i.e. the original node) into its parent.
139
		 */
140
 
141
		rnode = node_split(node, key, value, rsubtree, &median);
142
 
143
		if (LEAF_NODE(node)) {
144
			list_append(&rnode->leaf_link, &node->leaf_link);
145
		}
146
 
147
		if (ROOT_NODE(node)) {
148
			/*
149
			 * We split the root node. Create new root.
150
			 */
151
 
152
			t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
153
			node->parent = t->root;
154
			rnode->parent = t->root;
155
			node_initialize(t->root);
156
 
157
			/*
158
			 * Left-hand side subtree will be the old root (i.e. node).
159
			 * Right-hand side subtree will be rnode.
160
			 */			
161
			t->root->subtree[0] = node;
162
 
163
			t->root->depth = node->depth + 1;
164
		}
165
		_btree_insert(t, median, NULL, rnode, node->parent);
166
	}	
167
 
168
}
169
 
170
/* TODO */
171
void btree_remove(btree_t *t, __native key)
172
{
173
}
174
 
175
/** Search key in a B-tree.
176
 *
177
 * @param t B-tree.
178
 * @param key Key to be searched.
179
 * @param leaf_node Address where to put pointer to visited leaf node.
180
 *
181
 * @return Pointer to value or NULL if there is no such key.
182
 */
183
void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
184
{
185
	btree_node_t *cur, *next;
186
 
187
	/*
1134 jermar 188
	 * Iteratively descend to the leaf that can contain the searched key.
1101 jermar 189
	 */
190
	for (cur = t->root; cur; cur = next) {
1134 jermar 191
 
1101 jermar 192
		/* Last iteration will set this with proper leaf node address. */
193
		*leaf_node = cur;
1134 jermar 194
 
195
		/*
196
		 * The key can be in the leftmost subtree.
197
		 * Test it separately.
198
		 */
199
		if (key < cur->key[0]) {
200
			next = cur->subtree[0];
201
			continue;
202
		} else {
203
			void *val;
204
			int i;
205
 
206
			/*
207
			 * Now if the key is smaller than cur->key[i]
208
			 * it can only mean that the value is in cur->subtree[i]
209
			 * or it is not in the tree at all.
210
			 */
211
			for (i = 1; i < cur->keys; i++) {
212
				if (key < cur->key[i]) {
213
					next = cur->subtree[i];
214
					val = cur->value[i - 1];
215
 
216
					if (LEAF_NODE(cur))
217
						return key == cur->key[i - 1] ? val : NULL;
218
 
219
					goto descend;
220
				} 
1101 jermar 221
			}
1134 jermar 222
 
223
			/*
224
			 * Last possibility is that the key is in the rightmost subtree.
225
			 */
226
			next = cur->subtree[i];
227
			val = cur->value[i - 1];
228
			if (LEAF_NODE(cur))
229
				return key == cur->key[i - 1] ? val : NULL;
1101 jermar 230
		}
1134 jermar 231
		descend:
232
			;
1101 jermar 233
	}
234
 
235
	/*
1134 jermar 236
	 * The key was not found in the *leaf_node and is smaller than any of its keys.
1101 jermar 237
	 */
238
	return NULL;
239
}
240
 
241
/** Get pointer to value with the smallest key within the node.
242
 *
243
 * Can be only used on leaf-level nodes.
244
 *
245
 * @param node B-tree node.
246
 *
247
 * @return Pointer to value assiciated with the smallest key.
248
 */
249
void *btree_node_min(btree_node_t *node)
250
{
251
	ASSERT(LEAF_NODE(node));
252
	ASSERT(node->keys);
253
	return node->value[0];
254
}
255
 
256
/** Get pointer to value with the biggest key within the node.
257
 *
258
 * Can be only used on leaf-level nodes.
259
 *
260
 * @param node B-tree node.
261
 *
262
 * @return Pointer to value assiciated with the biggest key.
263
 */
264
void *btree_node_max(btree_node_t *node)
265
{
266
	ASSERT(LEAF_NODE(node));
267
	ASSERT(node->keys);
268
	return node->value[node->keys - 1];
269
}
270
 
271
/** Initialize B-tree node.
272
 *
273
 * @param node B-tree node.
274
 */
275
void node_initialize(btree_node_t *node)
276
{
277
	int i;
278
 
279
	node->keys = 0;
280
 
281
	/* Clean also space for the extra key. */
282
	for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
283
		node->key[i] = 0;
284
		node->value[i] = NULL;
285
		node->subtree[i] = NULL;
286
	}
287
	node->subtree[i] = NULL;
288
 
289
	node->parent = NULL;
290
 
291
	link_initialize(&node->leaf_link);
292
 
293
	link_initialize(&node->bfs_link);
294
	node->depth = 0;
295
}
296
 
1134 jermar 297
/** Insert key-value-right-subtree triplet into B-tree non-full node.
1101 jermar 298
 *
299
 * It is actually possible to have more keys than BTREE_MAX_KEYS.
300
 * This feature is used during splitting the node when the
301
 * number of keys is BTREE_MAX_KEYS + 1.
302
 *
303
 * @param node B-tree node into wich the new key is to be inserted.
304
 * @param key The key to be inserted.
305
 * @param value Pointer to value to be inserted.
306
 * @param rsubtree Pointer to the right subtree.
307
 */ 
308
void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
309
{
310
	int i;
311
 
312
	for (i = 0; i < node->keys; i++) {
313
		if (key < node->key[i]) {
314
			int j;
315
 
316
			for (j = node->keys; j > i; j--) {
317
				node->key[j] = node->key[j - 1];
318
				node->value[j] = node->value[j - 1];
319
				node->subtree[j + 1] = node->subtree[j];
320
			}
321
			break;	
322
		}
323
	}
324
 
325
	node->key[i] = key;
326
	node->value[i] = value;
327
	node->subtree[i + 1] = rsubtree;
328
 
329
	node->keys++;
330
}
331
 
1134 jermar 332
/** Split full B-tree node and insert new key-value-right-subtree triplet.
1101 jermar 333
 *
334
 * This function will split a node and return pointer to a newly created
1134 jermar 335
 * node containing keys greater than or equal to the greater of medians
336
 * (or median) of the old keys and the newly added key. It will also write
337
 * the median key to a memory address supplied by the caller.
1101 jermar 338
 *
1134 jermar 339
 * If the node being split is an index node, the median will not be
340
 * included in the new node. If the node is a leaf node,
341
 * the median will be copied there.
1101 jermar 342
 *
343
 * @param node B-tree node wich is going to be split.
344
 * @param key The key to be inserted.
345
 * @param value Pointer to the value to be inserted.
346
 * @param rsubtree Pointer to the right subtree of the key being added.
347
 * @param median Address in memory, where the median key will be stored.
348
 *
349
 * @return Newly created right sibling of node.
350
 */ 
351
btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
352
{
353
	btree_node_t *rnode;
354
	int i, j;
355
 
356
	ASSERT(median);
357
	ASSERT(node->keys == BTREE_MAX_KEYS);
358
 
359
	/*
360
	 * Use the extra space to store the extra node.
361
	 */
362
	node_insert_key(node, key, value, rsubtree);
363
 
364
	/*
365
	 * Compute median of keys.
366
	 */
1134 jermar 367
	*median = MEDIAN_HIGH(node);
1101 jermar 368
 
1134 jermar 369
	/*
370
	 * Allocate and initialize new right sibling.
371
	 */
1101 jermar 372
	rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
373
	node_initialize(rnode);
374
	rnode->parent = node->parent;
375
	rnode->depth = node->depth;
376
 
377
	/*
378
	 * Copy big keys, values and subtree pointers to the new right sibling.
1134 jermar 379
	 * If this is an index node, do not copy the median.
1101 jermar 380
	 */
1134 jermar 381
	i = (int) INDEX_NODE(node);
382
	for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
1101 jermar 383
		rnode->key[j] = node->key[i];
384
		rnode->value[j] = node->value[i];
385
		rnode->subtree[j] = node->subtree[i];
386
 
387
		/*
388
		 * Fix parent links in subtrees.
389
		 */
390
		if (rnode->subtree[j])
391
			rnode->subtree[j]->parent = rnode;
392
 
393
	}
394
	rnode->subtree[j] = node->subtree[i];
395
	if (rnode->subtree[j])
396
		rnode->subtree[j]->parent = rnode;
1134 jermar 397
 
398
	rnode->keys = j;	/* Set number of keys of the new node. */
399
	node->keys /= 2;	/* Shrink the old node. */
1101 jermar 400
 
401
	return rnode;
402
}
403
 
1134 jermar 404
/** Remove key from B-tree node.
405
 *
406
 * @param node B-tree node.
407
 * @param key Key to be removed.
408
 */
409
void node_remove_key(btree_node_t *node, __native key)
410
{
411
}
412
 
1101 jermar 413
/** Print B-tree.
414
 *
415
 * @param t Print out B-tree.
416
 */
417
void btree_print(btree_t *t)
418
{
419
	int i, depth = t->root->depth;
420
	link_t head;
421
 
422
	list_initialize(&head);
423
	list_append(&t->root->bfs_link, &head);
424
 
425
	/*
426
	 * Use BFS search to print out the tree.
427
	 * Levels are distinguished from one another by node->depth.
428
	 */	
429
	while (!list_empty(&head)) {
430
		link_t *hlp;
431
		btree_node_t *node;
432
 
433
		hlp = head.next;
434
		ASSERT(hlp != &head);
435
		node = list_get_instance(hlp, btree_node_t, bfs_link);
436
		list_remove(hlp);
437
 
438
		ASSERT(node);
439
 
440
		if (node->depth != depth) {
441
			printf("\n");
442
			depth = node->depth;
443
		}
444
 
445
		printf("(");
446
		for (i = 0; i < node->keys; i++) {
447
			printf("%d,", node->key[i]);
448
			if (node->depth && node->subtree[i]) {
449
				list_append(&node->subtree[i]->bfs_link, &head);
450
			}
451
		}
452
		if (node->depth && node->subtree[i]) {
453
			list_append(&node->subtree[i]->bfs_link, &head);
454
		}
455
		printf(")");
456
	}
457
	printf("\n");
458
}