Subversion Repositories HelenOS-historic

Rev

Rev 128 | Rev 131 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
34 jermar 1
/*
2
 * Copyright (C) 2005 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <smp/smp.h>
128 jermar 30
#include <arch/smp/smp.h>
31
#include <arch/smp/mps.h>
32
#include <arch/smp/ap.h>
34 jermar 33
#include <arch/acpi/acpi.h>
34
#include <arch/acpi/madt.h>
35
#include <config.h>
128 jermar 36
#include <synch/waitq.h>
37
#include <arch/pm.h>
38
#include <func.h>
39
#include <panic.h>
40
#include <debug.h>
41
#include <arch/asm.h>
42
#include <mm/frame.h>
43
#include <mm/page.h>
44
#include <mm/heap.h>
34 jermar 45
 
46
#ifdef __SMP__
47
 
128 jermar 48
static struct smp_config_operations *ops = NULL;
49
 
34 jermar 50
void smp_init(void)
51
{
52
	if (acpi_madt) {
53
		acpi_madt_parse();
129 jermar 54
		ops = &madt_config_operations;
34 jermar 55
	}
128 jermar 56
	if (config.cpu_count == 1) {
34 jermar 57
		mps_init();
128 jermar 58
		ops = &mps_config_operations;
59
	}
34 jermar 60
}
61
 
128 jermar 62
/*
63
 * Kernel thread for bringing up application processors. It becomes clear
64
 * that we need an arrangement like this (AP's being initialized by a kernel
65
 * thread), for a thread has its dedicated stack. (The stack used during the
66
 * BSP initialization (prior the very first call to scheduler()) will be used
67
 * as an initialization stack for each AP.)
68
 */
69
void kmp(void *arg)
70
{
71
	__address src, dst;
72
	int i;
34 jermar 73
 
128 jermar 74
	ASSERT(ops != NULL);
75
 
76
	waitq_initialize(&ap_completion_wq);
77
 
78
	/*
79
	 * We need to access data in frame 0.
80
	 * We boldly make use of kernel address space mapping.
81
	 */
82
 
83
	/*
84
	 * Set the warm-reset vector to the real-mode address of 4K-aligned ap_boot()
85
	 */
86
	*((__u16 *) (PA2KA(0x467+0))) =  ((__address) ap_boot) >> 4;	/* segment */
87
	*((__u16 *) (PA2KA(0x467+2))) =  0;				/* offset */
88
 
89
	/*
90
	 * Save 0xa to address 0xf of the CMOS RAM.
91
	 * BIOS will not do the POST after the INIT signal.
92
	 */
93
	outb(0x70,0xf);
94
	outb(0x71,0xa);
95
 
96
	cpu_priority_high();
97
 
98
	pic_disable_irqs(0xffff);
99
	apic_init();
100
 
101
	for (i = 0; i < ops->cpu_count(); i++) {
102
		struct descriptor *gdt_new;
103
 
104
		/*
105
		 * Skip processors marked unusable.
106
		 */
107
		if (!ops->cpu_enabled(i))
108
			continue;
109
 
110
		/*
111
		 * The bootstrap processor is already up.
112
		 */
113
		if (ops->cpu_bootstrap(i))
114
			continue;
115
 
116
		if (ops->cpu_apic_id(i) == l_apic_id()) {
117
			printf("kmp: bad processor entry #%d, will not send IPI to myself\n", i);
118
			continue;
119
		}
120
 
121
		/*
122
		 * Prepare new GDT for CPU in question.
123
		 */
124
		if (!(gdt_new = (struct descriptor *) malloc(GDT_ITEMS*sizeof(struct descriptor))))
125
			panic("couldn't allocate memory for GDT\n");
126
 
127
		memcopy(gdt, gdt_new, GDT_ITEMS*sizeof(struct descriptor));
128
		memsetb(&gdt_new[TSS_DES], sizeof(struct descriptor), 0);
129
		gdtr.base = KA2PA((__address) gdt_new);
130
 
131
		if (l_apic_send_init_ipi(ops->cpu_apic_id(i))) {
132
			/*
133
		         * There may be just one AP being initialized at
134
			 * the time. After it comes completely up, it is
135
			 * supposed to wake us up.
136
		         */
137
			waitq_sleep(&ap_completion_wq);
138
			cpu_priority_high();
139
		}
140
		else {
141
			printf("INIT IPI for l_apic%d failed\n", ops->cpu_apic_id(i));
142
		}
143
	}
144
 
145
	/*
146
	 * Wakeup the kinit thread so that
147
	 * system initialization can go on.
148
	 */
149
	waitq_wakeup(&kmp_completion_wq, WAKEUP_FIRST);
150
}
151
 
34 jermar 152
#endif /* __SMP__ */