Rev 1186 | Rev 1188 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | #include <arch/pm.h> |
||
30 | #include <config.h> |
||
31 | #include <arch/types.h> |
||
32 | #include <typedefs.h> |
||
33 | #include <arch/interrupt.h> |
||
34 | #include <arch/asm.h> |
||
35 | #include <arch/context.h> |
||
36 | #include <panic.h> |
||
167 | jermar | 37 | #include <arch/mm/page.h> |
814 | palkovsky | 38 | #include <mm/slab.h> |
195 | vana | 39 | #include <memstr.h> |
244 | decky | 40 | #include <arch/boot/boot.h> |
576 | palkovsky | 41 | #include <interrupt.h> |
1 | jermar | 42 | |
43 | /* |
||
11 | jermar | 44 | * Early ia32 configuration functions and data structures. |
1 | jermar | 45 | */ |
46 | |||
47 | /* |
||
48 | * We have no use for segmentation so we set up flat mode. In this |
||
49 | * mode, we use, for each privilege level, two segments spanning the |
||
50 | * whole memory. One is for code and one is for data. |
||
1112 | palkovsky | 51 | * |
52 | * One is for GS register which holds pointer to the TLS thread |
||
53 | * structure in it's base. |
||
1 | jermar | 54 | */ |
1187 | jermar | 55 | descriptor_t gdt[GDT_ITEMS] = { |
125 | jermar | 56 | /* NULL descriptor */ |
57 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
||
58 | /* KTEXT descriptor */ |
||
59 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 }, |
||
60 | /* KDATA descriptor */ |
||
61 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 }, |
||
62 | /* UTEXT descriptor */ |
||
63 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }, |
||
64 | /* UDATA descriptor */ |
||
65 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 }, |
||
66 | /* TSS descriptor - set up will be completed later */ |
||
1112 | palkovsky | 67 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
68 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 } |
||
1 | jermar | 69 | }; |
70 | |||
1187 | jermar | 71 | static idescriptor_t idt[IDT_ITEMS]; |
1 | jermar | 72 | |
1187 | jermar | 73 | static tss_t tss; |
1 | jermar | 74 | |
1187 | jermar | 75 | tss_t *tss_p = NULL; |
1 | jermar | 76 | |
22 | jermar | 77 | /* gdtr is changed by kmp before next CPU is initialized */ |
1187 | jermar | 78 | ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) }; |
79 | ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (__address) gdt }; |
||
1 | jermar | 80 | |
1187 | jermar | 81 | void gdt_setbase(descriptor_t *d, __address base) |
1 | jermar | 82 | { |
125 | jermar | 83 | d->base_0_15 = base & 0xffff; |
84 | d->base_16_23 = ((base) >> 16) & 0xff; |
||
85 | d->base_24_31 = ((base) >> 24) & 0xff; |
||
1 | jermar | 86 | } |
87 | |||
1187 | jermar | 88 | void gdt_setlimit(descriptor_t *d, __u32 limit) |
1 | jermar | 89 | { |
125 | jermar | 90 | d->limit_0_15 = limit & 0xffff; |
91 | d->limit_16_19 = (limit >> 16) & 0xf; |
||
1 | jermar | 92 | } |
93 | |||
1187 | jermar | 94 | void idt_setoffset(idescriptor_t *d, __address offset) |
1 | jermar | 95 | { |
112 | jermar | 96 | /* |
97 | * Offset is a linear address. |
||
98 | */ |
||
99 | d->offset_0_15 = offset & 0xffff; |
||
100 | d->offset_16_31 = offset >> 16; |
||
1 | jermar | 101 | } |
102 | |||
1187 | jermar | 103 | void tss_initialize(tss_t *t) |
1 | jermar | 104 | { |
105 | memsetb((__address) t, sizeof(struct tss), 0); |
||
106 | } |
||
107 | |||
108 | /* |
||
109 | * This function takes care of proper setup of IDT and IDTR. |
||
110 | */ |
||
111 | void idt_init(void) |
||
112 | { |
||
1187 | jermar | 113 | idescriptor_t *d; |
1 | jermar | 114 | int i; |
125 | jermar | 115 | |
1 | jermar | 116 | for (i = 0; i < IDT_ITEMS; i++) { |
117 | d = &idt[i]; |
||
118 | |||
119 | d->unused = 0; |
||
120 | d->selector = selector(KTEXT_DES); |
||
121 | |||
122 | d->access = AR_PRESENT | AR_INTERRUPT; /* masking interrupt */ |
||
123 | |||
124 | if (i == VECTOR_SYSCALL) { |
||
125 | /* |
||
126 | * The syscall interrupt gate must be calleable from userland. |
||
127 | */ |
||
128 | d->access |= DPL_USER; |
||
129 | } |
||
130 | |||
131 | idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size); |
||
958 | jermar | 132 | exc_register(i, "undef", (iroutine) null_interrupt); |
1 | jermar | 133 | } |
958 | jermar | 134 | exc_register(13, "gp_fault", (iroutine) gp_fault); |
135 | exc_register( 7, "nm_fault", (iroutine) nm_fault); |
||
136 | exc_register(12, "ss_fault", (iroutine) ss_fault); |
||
1019 | vana | 137 | exc_register(19, "simd_fp", (iroutine) simd_fp_exception); |
1 | jermar | 138 | } |
139 | |||
140 | |||
144 | vana | 141 | /* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */ |
141 | vana | 142 | static void clean_IOPL_NT_flags(void) |
143 | { |
||
1187 | jermar | 144 | __asm__ volatile ( |
145 | "pushfl\n" |
||
146 | "pop %%eax\n" |
||
147 | "and $0xffff8fff, %%eax\n" |
||
148 | "push %%eax\n" |
||
149 | "popfl\n" |
||
150 | : : : "eax" |
||
141 | vana | 151 | ); |
152 | } |
||
153 | |||
144 | vana | 154 | /* Clean AM(18) flag in CR0 register */ |
143 | vana | 155 | static void clean_AM_flag(void) |
156 | { |
||
1187 | jermar | 157 | __asm__ volatile ( |
158 | "mov %%cr0, %%eax\n" |
||
159 | "and $0xfffbffff, %%eax\n" |
||
160 | "mov %%eax, %%cr0\n" |
||
161 | : : : "eax" |
||
143 | vana | 162 | ); |
163 | } |
||
141 | vana | 164 | |
1 | jermar | 165 | void pm_init(void) |
166 | { |
||
1187 | jermar | 167 | descriptor_t *gdt_p = (descriptor_t *) gdtr.base; |
168 | ptr_16_32_t idtr; |
||
1 | jermar | 169 | |
170 | /* |
||
232 | jermar | 171 | * Update addresses in GDT and IDT to their virtual counterparts. |
172 | */ |
||
271 | decky | 173 | idtr.limit = sizeof(idt); |
232 | jermar | 174 | idtr.base = (__address) idt; |
1186 | jermar | 175 | gdtr_load(&gdtr); |
176 | idtr_load(&idtr); |
||
232 | jermar | 177 | |
178 | /* |
||
1 | jermar | 179 | * Each CPU has its private GDT and TSS. |
180 | * All CPUs share one IDT. |
||
181 | */ |
||
182 | |||
183 | if (config.cpu_active == 1) { |
||
184 | idt_init(); |
||
185 | /* |
||
186 | * NOTE: bootstrap CPU has statically allocated TSS, because |
||
187 | * the heap hasn't been initialized so far. |
||
188 | */ |
||
189 | tss_p = &tss; |
||
190 | } |
||
191 | else { |
||
1187 | jermar | 192 | tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC); |
1 | jermar | 193 | if (!tss_p) |
68 | decky | 194 | panic("could not allocate TSS\n"); |
1 | jermar | 195 | } |
196 | |||
197 | tss_initialize(tss_p); |
||
198 | |||
199 | gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL; |
||
200 | gdt_p[TSS_DES].special = 1; |
||
201 | gdt_p[TSS_DES].granularity = 1; |
||
202 | |||
203 | gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p); |
||
1187 | jermar | 204 | gdt_setlimit(&gdt_p[TSS_DES], sizeof(tss_t) - 1); |
1 | jermar | 205 | |
206 | /* |
||
207 | * As of this moment, the current CPU has its own GDT pointing |
||
208 | * to its own TSS. We just need to load the TR register. |
||
209 | */ |
||
1186 | jermar | 210 | tr_load(selector(TSS_DES)); |
141 | vana | 211 | |
144 | vana | 212 | clean_IOPL_NT_flags(); /* Disable I/O on nonprivileged levels */ |
213 | clean_AM_flag(); /* Disable alignment check */ |
||
1 | jermar | 214 | } |
1112 | palkovsky | 215 | |
216 | void set_tls_desc(__address tls) |
||
217 | { |
||
1187 | jermar | 218 | ptr_16_32_t cpugdtr; |
219 | descriptor_t *gdt_p = (descriptor_t *) cpugdtr.base; |
||
1112 | palkovsky | 220 | |
1186 | jermar | 221 | gdtr_store(&cpugdtr); |
1112 | palkovsky | 222 | gdt_setbase(&gdt_p[TLS_DES], tls); |
223 | /* Reload gdt register to update GS in CPU */ |
||
1186 | jermar | 224 | gdtr_load(&cpugdtr); |
1112 | palkovsky | 225 | } |