Rev 27 | Rev 38 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
9 | bondari | 1 | <?xml version="1.0" encoding="UTF-8"?> |
2 | |||
11 | bondari | 3 | <chapter id="architecture"><?dbhtml filename="arch.html"?> |
4 | <title>Architecture overview</title> |
||
16 | bondari | 5 | <section> |
27 | bondari | 6 | <title>Scheme</title> |
7 | <para> |
||
8 | <mediaobject id="arch1"> |
||
9 | <imageobject role="html"> |
||
10 | <imagedata format="PNG" fileref="images/arch1.png"/> |
||
11 | </imageobject> |
||
12 | |||
13 | <imageobject role="fop"> |
||
14 | <imagedata format="SVG" fileref="images.vector/arch1.svg" /> |
||
15 | </imageobject> |
||
16 | </mediaobject> |
||
17 | </para> |
||
18 | </section> |
||
37 | bondari | 19 | |
27 | bondari | 20 | <section> |
37 | bondari | 21 | <title>Monolithic microkernel</title> |
22 | <para> |
||
23 | Though HelenOS was initially planned as a microkernel, we where trying to avoid several issues, connected |
||
24 | with microkernels, such as much higher overhead during memory management and hardware operations. For this reason |
||
25 | some of the subsytems, that are to be implmented as servers in classic microkernel design, where implemented |
||
26 | as a part of kernel, thus minimizing this overhead. |
||
27 | </para> |
||
28 | |||
29 | <formalpara> |
||
30 | <title>Memory management</title> |
||
31 | <para> |
||
32 | Unlike the classic microkernel, HelenOS has all its memory management functionality in the kernel, available to the memory |
||
33 | management server via the set of syscalls. |
||
34 | </para> |
||
35 | </formalpara> |
||
36 | |||
37 | <formalpara> |
||
38 | <title>Kernel device drivers</title> |
||
39 | <para> |
||
40 | HelenOS kernel has some of the very basic device drivers |
||
41 | <itemizedlist> |
||
42 | <listitem>ACPI</listitem> |
||
43 | <listitem>APIC</listitem> |
||
44 | <listitem>SMP configuration</listitem> |
||
45 | <listitem>System clock</listitem> |
||
46 | <listitem>Interrupt controllers</listitem> |
||
47 | <listitem>Console</listitem> |
||
48 | <listitem>VESA & frame buffer</listitem> |
||
49 | </itemizedlist> |
||
50 | |||
51 | </para> |
||
52 | </formalpara> |
||
53 | |||
54 | </section> |
||
55 | |||
56 | <section> |
||
57 | <title>Kernel primitives</title> |
||
58 | <para> |
||
59 | <termdef><glossterm>Thread</glossterm> is the basic execution primitive.</termdef> |
||
60 | </para> |
||
61 | |||
62 | <para> |
||
63 | <termdef><glossterm>Thread context</glossterm> represents state of the <emphasis>thread</emphasis>. Contains registers state, FPU state, stack(s).</termdef> |
||
64 | </para> |
||
65 | |||
66 | <para> |
||
67 | <termdef><glossterm>Task</glossterm> </termdef> |
||
68 | </para> |
||
69 | |||
70 | |||
71 | <para> |
||
72 | <termdef> |
||
73 | <glossterm>Address space area</glossterm> is a mutually disjunctive range of memory with the code, stack and data. |
||
74 | </termdef> |
||
75 | </para> |
||
76 | |||
77 | <para> |
||
78 | <termdef> |
||
79 | <glossterm>Address space</glossterm> is a aggregating entity for address space areas, connecting them to the task. |
||
80 | </termdef> |
||
81 | </para> 1 |
||
82 | </section> |
||
83 | |||
84 | |||
85 | |||
86 | <section> |
||
87 | <title>IPC</title> |
||
88 | |||
89 | <para> |
||
90 | Due to the high intertask communication traffic, IPC becomes critical subsystem for microkernels, putting high demands on the |
||
91 | speed, latency and reliability of IPC model and implementation. HelenOS IPC is designed in analogy with telephone communication. |
||
92 | Each task has an <emphasis>answerbox</emphasis> and a set of <emphasis>phones</emphasis> to call another tasks' answerboxes. Communication |
||
93 | is possible after the link establishment, and can be either <emphasis>asynchronious</emphasis> or <emphasis>synchronious</emphasis>. |
||
94 | </para> |
||
95 | |||
96 | </section> |
||
97 | |||
98 | |||
99 | <section> |
||
16 | bondari | 100 | <para>Task ID - unique 64 bit number. Used for syscalls.</para> |
101 | <para>Contains threads</para> |
||
102 | <para>Address space is created per task</para> |
||
103 | <para>Memory mapping is per task</para> |
||
104 | <para>Context per thread. (Note 2 stacks on IA64).</para> |
||
105 | <para>IPC answer box associated per task</para> |
||
37 | bondari | 106 | |
107 | |||
16 | bondari | 108 | <title>Memory management</title> |
109 | <para> |
||
110 | Zones - linked list (not many zones, so we can afford it. Can be replaced with B-tree in the future) |
||
111 | Number of zones depends on HW tables. Describe zone allocation/deallocation algoritm |
||
112 | </para> |
||
20 | jermar | 113 | <para>Page tables. 4 level hierarchical and hash directly supported. B+ Tree can be implemented.</para> |
16 | bondari | 114 | <para>For paging there is an abstract layer</para> |
115 | <para>TLB shootdown implementation (update TLB upon mapping update/remove). |
||
116 | TLB shootdown ASID/ASID:PAGE/ALL. |
||
117 | TLB shootdown requests can come in asynchroniously |
||
118 | so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed</para> |
||
119 | |||
120 | <para> |
||
121 | Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc). |
||
122 | Special address space area type - device - prohibits shrink/extend syscalls to call on it. |
||
123 | Address space has link to mapping tables (hierarchical - per Address space, hash - global tables). |
||
124 | </para> |
||
20 | jermar | 125 | </section> |
11 | bondari | 126 | </chapter> |
9 | bondari | 127 |