Rev 2416 | Rev 2450 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2336 | mencl | 2 | * Copyright (C) 2001-2004 Jakub Jermar |
1 | jermar | 3 | * All rights reserved. |
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1731 | jermar | 29 | /** @addtogroup time |
1702 | cejka | 30 | * @{ |
31 | */ |
||
32 | |||
1264 | jermar | 33 | /** |
1702 | cejka | 34 | * @file |
1264 | jermar | 35 | * @brief High-level clock interrupt handler. |
36 | * |
||
37 | * This file contains the clock() function which is the source |
||
38 | * of preemption. It is also responsible for executing expired |
||
39 | * timeouts. |
||
40 | */ |
||
41 | |||
1 | jermar | 42 | #include <time/clock.h> |
43 | #include <time/timeout.h> |
||
44 | #include <config.h> |
||
45 | #include <synch/spinlock.h> |
||
46 | #include <synch/waitq.h> |
||
47 | #include <func.h> |
||
48 | #include <proc/scheduler.h> |
||
49 | #include <cpu.h> |
||
50 | #include <arch.h> |
||
788 | jermar | 51 | #include <adt/list.h> |
1104 | jermar | 52 | #include <atomic.h> |
391 | jermar | 53 | #include <proc/thread.h> |
1434 | palkovsky | 54 | #include <sysinfo/sysinfo.h> |
55 | #include <arch/barrier.h> |
||
2015 | jermar | 56 | #include <mm/frame.h> |
57 | #include <ddi/ddi.h> |
||
1 | jermar | 58 | |
2307 | hudecek | 59 | /* Pointer to variable with uptime */ |
60 | uptime_t *uptime; |
||
61 | |||
62 | /** Physical memory area of the real time clock */ |
||
2015 | jermar | 63 | static parea_t clock_parea; |
64 | |||
1434 | palkovsky | 65 | /* Variable holding fragment of second, so that we would update |
66 | * seconds correctly |
||
67 | */ |
||
1780 | jermar | 68 | static unative_t secfrag = 0; |
1434 | palkovsky | 69 | |
70 | /** Initialize realtime clock counter |
||
71 | * |
||
72 | * The applications (and sometimes kernel) need to access accurate |
||
73 | * information about realtime data. We allocate 1 page with these |
||
74 | * data and update it periodically. |
||
75 | */ |
||
76 | void clock_counter_init(void) |
||
77 | { |
||
78 | void *faddr; |
||
79 | |||
2015 | jermar | 80 | faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC); |
1434 | palkovsky | 81 | if (!faddr) |
82 | panic("Cannot allocate page for clock"); |
||
83 | |||
2307 | hudecek | 84 | uptime = (uptime_t *) PA2KA(faddr); |
85 | |||
86 | uptime->seconds1 = 0; |
||
87 | uptime->seconds2 = 0; |
||
88 | uptime->useconds = 0; |
||
1434 | palkovsky | 89 | |
2015 | jermar | 90 | clock_parea.pbase = (uintptr_t) faddr; |
2307 | hudecek | 91 | clock_parea.vbase = (uintptr_t) uptime; |
2015 | jermar | 92 | clock_parea.frames = 1; |
93 | clock_parea.cacheable = true; |
||
94 | ddi_parea_register(&clock_parea); |
||
95 | |||
96 | /* |
||
97 | * Prepare information for the userspace so that it can successfully |
||
98 | * physmem_map() the clock_parea. |
||
99 | */ |
||
100 | sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true); |
||
101 | sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr); |
||
1434 | palkovsky | 102 | } |
103 | |||
104 | |||
105 | /** Update public counters |
||
106 | * |
||
107 | * Update it only on first processor |
||
108 | * TODO: Do we really need so many write barriers? |
||
109 | */ |
||
110 | static void clock_update_counters(void) |
||
111 | { |
||
112 | if (CPU->id == 0) { |
||
2307 | hudecek | 113 | secfrag += 1000000 / HZ; |
1434 | palkovsky | 114 | if (secfrag >= 1000000) { |
1438 | palkovsky | 115 | secfrag -= 1000000; |
2307 | hudecek | 116 | uptime->seconds1++; |
1434 | palkovsky | 117 | write_barrier(); |
2307 | hudecek | 118 | uptime->useconds = secfrag; |
1438 | palkovsky | 119 | write_barrier(); |
2307 | hudecek | 120 | uptime->seconds2 = uptime->seconds1; |
1434 | palkovsky | 121 | } else |
2307 | hudecek | 122 | uptime->useconds += 1000000 / HZ; |
1434 | palkovsky | 123 | } |
124 | } |
||
125 | |||
2421 | mencl | 126 | #if defined CONFIG_TIMEOUT_AVL_TREE |
2336 | mencl | 127 | |
107 | decky | 128 | /** Clock routine |
129 | * |
||
130 | * Clock routine executed from clock interrupt handler |
||
413 | jermar | 131 | * (assuming interrupts_disable()'d). Runs expired timeouts |
107 | decky | 132 | * and preemptive scheduling. |
133 | * |
||
1 | jermar | 134 | */ |
135 | void clock(void) |
||
136 | { |
||
2336 | mencl | 137 | timeout_t *h; |
138 | timeout_handler_t f; |
||
139 | void *arg; |
||
140 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
2416 | mencl | 141 | uint64_t *i = &(CPU->timeout_active_tree.base); |
142 | uint64_t absolute_clock_ticks = *i + missed_clock_ticks; |
||
143 | avltree_node_t *expnode; |
||
2421 | mencl | 144 | |
145 | /* |
||
146 | * To avoid lock ordering problems, |
||
147 | * run all expired timeouts as you visit them. |
||
148 | */ |
||
149 | |||
150 | for (; *i <= absolute_clock_ticks; (*i)++) { |
||
151 | /* |
||
152 | * Basetime is encreased by missed clock ticks + 1 !! |
||
153 | */ |
||
154 | |||
155 | clock_update_counters(); |
||
156 | spinlock_lock(&CPU->timeoutlock); |
||
157 | |||
158 | |||
159 | /* |
||
160 | * Check whether first timeout (with the smallest key in the tree) time out. If so perform |
||
161 | * callback function and try next timeout (more timeouts can have same timeout). |
||
162 | */ |
||
163 | while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) { |
||
164 | h = avltree_get_instance(expnode,timeout_t,node); |
||
165 | spinlock_lock(&h->lock); |
||
166 | if (expnode->key != *i) { |
||
167 | spinlock_unlock(&h->lock); |
||
168 | break; |
||
169 | } |
||
170 | |||
171 | /* |
||
172 | * Delete minimal key from the tree and repair tree structure in |
||
173 | * logarithmic time. |
||
174 | */ |
||
175 | avltree_delete_min(&CPU->timeout_active_tree); |
||
176 | |||
177 | f = h->handler; |
||
178 | arg = h->arg; |
||
179 | timeout_reinitialize(h); |
||
180 | spinlock_unlock(&h->lock); |
||
181 | spinlock_unlock(&CPU->timeoutlock); |
||
182 | |||
183 | f(arg); |
||
184 | |||
185 | spinlock_lock(&CPU->timeoutlock); |
||
186 | } |
||
187 | spinlock_unlock(&CPU->timeoutlock); |
||
188 | } |
||
189 | |||
190 | CPU->missed_clock_ticks = 0; |
||
191 | |||
192 | /* |
||
193 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
194 | */ |
||
195 | if (THREAD) { |
||
196 | uint64_t ticks; |
||
197 | |||
198 | spinlock_lock(&CPU->lock); |
||
199 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
200 | spinlock_unlock(&CPU->lock); |
||
201 | |||
202 | spinlock_lock(&THREAD->lock); |
||
203 | if ((ticks = THREAD->ticks)) { |
||
204 | if (ticks >= 1 + missed_clock_ticks) |
||
205 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
206 | else |
||
207 | THREAD->ticks = 0; |
||
208 | } |
||
209 | spinlock_unlock(&THREAD->lock); |
||
210 | |||
211 | if (!ticks && !PREEMPTION_DISABLED) { |
||
212 | scheduler(); |
||
213 | } |
||
214 | } |
||
215 | } |
||
216 | |||
2416 | mencl | 217 | #elif defined CONFIG_TIMEOUT_EXTAVL_TREE |
2421 | mencl | 218 | |
219 | /** Clock routine |
||
220 | * |
||
221 | * Clock routine executed from clock interrupt handler |
||
222 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
223 | * and preemptive scheduling. |
||
224 | * |
||
225 | */ |
||
226 | void clock(void) |
||
227 | { |
||
228 | timeout_t *h; |
||
229 | timeout_handler_t f; |
||
230 | void *arg; |
||
231 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
232 | uint64_t *i = &(CPU->timeout_active_tree.base); |
||
233 | uint64_t absolute_clock_ticks = *i + missed_clock_ticks; |
||
2416 | mencl | 234 | extavltree_node_t *expnode; |
235 | |||
2336 | mencl | 236 | /* |
237 | * To avoid lock ordering problems, |
||
238 | * run all expired timeouts as you visit them. |
||
239 | */ |
||
240 | |||
241 | for (; *i <= absolute_clock_ticks; (*i)++) { |
||
2416 | mencl | 242 | /* |
243 | * Basetime is encreased by missed clock ticks + 1 !! |
||
244 | */ |
||
245 | |||
2336 | mencl | 246 | clock_update_counters(); |
247 | spinlock_lock(&CPU->timeoutlock); |
||
2416 | mencl | 248 | |
249 | /* |
||
250 | * Check whether first timeout in list time out. If so perform callback function and try |
||
251 | * next timeout (more timeouts can have same timeout). |
||
252 | */ |
||
253 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
||
2336 | mencl | 254 | h = extavltree_get_instance(expnode,timeout_t,node); |
255 | spinlock_lock(&h->lock); |
||
256 | if (expnode->key != *i) { |
||
257 | spinlock_unlock(&h->lock); |
||
258 | break; |
||
259 | } |
||
260 | |||
2416 | mencl | 261 | /* |
262 | * Delete first node in the list and repair tree structure in |
||
263 | * constant time. |
||
264 | */ |
||
2336 | mencl | 265 | extavltree_delete_min(&CPU->timeout_active_tree); |
266 | |||
267 | f = h->handler; |
||
268 | arg = h->arg; |
||
269 | timeout_reinitialize(h); |
||
270 | spinlock_unlock(&h->lock); |
||
271 | spinlock_unlock(&CPU->timeoutlock); |
||
272 | |||
273 | f(arg); |
||
274 | |||
275 | spinlock_lock(&CPU->timeoutlock); |
||
276 | } |
||
277 | spinlock_unlock(&CPU->timeoutlock); |
||
278 | } |
||
279 | |||
280 | CPU->missed_clock_ticks = 0; |
||
281 | |||
282 | /* |
||
283 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
284 | */ |
||
285 | if (THREAD) { |
||
286 | uint64_t ticks; |
||
287 | |||
288 | spinlock_lock(&CPU->lock); |
||
289 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
290 | spinlock_unlock(&CPU->lock); |
||
291 | |||
292 | spinlock_lock(&THREAD->lock); |
||
293 | if ((ticks = THREAD->ticks)) { |
||
294 | if (ticks >= 1 + missed_clock_ticks) |
||
295 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
296 | else |
||
297 | THREAD->ticks = 0; |
||
298 | } |
||
299 | spinlock_unlock(&THREAD->lock); |
||
300 | |||
301 | if (!ticks && !PREEMPTION_DISABLED) { |
||
302 | scheduler(); |
||
303 | } |
||
304 | } |
||
305 | } |
||
306 | |||
2416 | mencl | 307 | #elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE |
2336 | mencl | 308 | |
2416 | mencl | 309 | /** Clock routine |
310 | * |
||
311 | * Clock routine executed from clock interrupt handler |
||
312 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
313 | * and preemptive scheduling. |
||
314 | * |
||
315 | */ |
||
316 | void clock(void) |
||
317 | { |
||
2421 | mencl | 318 | extavlreltree_node_t *expnode; |
2416 | mencl | 319 | timeout_t *h; |
320 | timeout_handler_t f; |
||
321 | void *arg; |
||
322 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
323 | int i; |
||
324 | |||
325 | /* |
||
326 | * To avoid lock ordering problems, |
||
327 | * run all expired timeouts as you visit them. |
||
328 | */ |
||
329 | for (i = 0; i <= missed_clock_ticks; i++) { |
||
330 | clock_update_counters(); |
||
331 | spinlock_lock(&CPU->timeoutlock); |
||
332 | |||
333 | /* |
||
334 | * Check whether first timeout in list time out. If so perform callback function and try |
||
335 | * next timeout (more timeouts can have same timeout). |
||
336 | */ |
||
337 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
||
2421 | mencl | 338 | h = extavlreltree_get_instance(expnode,timeout_t,node); |
2416 | mencl | 339 | spinlock_lock(&h->lock); |
340 | if (expnode->key != 0) { |
||
341 | expnode->key--; |
||
342 | spinlock_unlock(&h->lock); |
||
343 | break; |
||
344 | } |
||
345 | |||
346 | /* |
||
347 | * Delete first node in the list and repair tree structure in |
||
348 | * constant time. Be careful of expnode's key, it must be 0! |
||
349 | */ |
||
2421 | mencl | 350 | extavlreltree_delete_min(&CPU->timeout_active_tree); |
2416 | mencl | 351 | |
352 | f = h->handler; |
||
353 | arg = h->arg; |
||
354 | timeout_reinitialize(h); |
||
355 | spinlock_unlock(&h->lock); |
||
356 | spinlock_unlock(&CPU->timeoutlock); |
||
357 | |||
358 | f(arg); |
||
359 | |||
360 | spinlock_lock(&CPU->timeoutlock); |
||
361 | } |
||
362 | spinlock_unlock(&CPU->timeoutlock); |
||
363 | } |
||
364 | CPU->missed_clock_ticks = 0; |
||
365 | |||
366 | /* |
||
367 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
368 | */ |
||
369 | |||
370 | if (THREAD) { |
||
371 | uint64_t ticks; |
||
372 | |||
373 | spinlock_lock(&CPU->lock); |
||
374 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
375 | spinlock_unlock(&CPU->lock); |
||
376 | |||
377 | spinlock_lock(&THREAD->lock); |
||
378 | if ((ticks = THREAD->ticks)) { |
||
379 | if (ticks >= 1 + missed_clock_ticks) |
||
380 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
381 | else |
||
382 | THREAD->ticks = 0; |
||
383 | } |
||
384 | spinlock_unlock(&THREAD->lock); |
||
385 | |||
386 | if (!ticks && !PREEMPTION_DISABLED) { |
||
387 | scheduler(); |
||
388 | } |
||
389 | } |
||
390 | } |
||
391 | |||
392 | |||
393 | |||
2336 | mencl | 394 | #else |
395 | |||
396 | |||
397 | /** Clock routine |
||
398 | * |
||
399 | * Clock routine executed from clock interrupt handler |
||
400 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
401 | * and preemptive scheduling. |
||
402 | * |
||
403 | */ |
||
404 | void clock(void) |
||
405 | { |
||
1 | jermar | 406 | link_t *l; |
407 | timeout_t *h; |
||
411 | jermar | 408 | timeout_handler_t f; |
1 | jermar | 409 | void *arg; |
1457 | jermar | 410 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
1431 | jermar | 411 | int i; |
1 | jermar | 412 | |
413 | /* |
||
414 | * To avoid lock ordering problems, |
||
415 | * run all expired timeouts as you visit them. |
||
416 | */ |
||
1457 | jermar | 417 | for (i = 0; i <= missed_clock_ticks; i++) { |
1434 | palkovsky | 418 | clock_update_counters(); |
1431 | jermar | 419 | spinlock_lock(&CPU->timeoutlock); |
420 | while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) { |
||
421 | h = list_get_instance(l, timeout_t, link); |
||
422 | spinlock_lock(&h->lock); |
||
423 | if (h->ticks-- != 0) { |
||
424 | spinlock_unlock(&h->lock); |
||
425 | break; |
||
426 | } |
||
427 | list_remove(l); |
||
428 | f = h->handler; |
||
429 | arg = h->arg; |
||
430 | timeout_reinitialize(h); |
||
431 | spinlock_unlock(&h->lock); |
||
432 | spinlock_unlock(&CPU->timeoutlock); |
||
433 | |||
434 | f(arg); |
||
435 | |||
436 | spinlock_lock(&CPU->timeoutlock); |
||
1 | jermar | 437 | } |
15 | jermar | 438 | spinlock_unlock(&CPU->timeoutlock); |
1 | jermar | 439 | } |
1431 | jermar | 440 | CPU->missed_clock_ticks = 0; |
1 | jermar | 441 | |
442 | /* |
||
15 | jermar | 443 | * Do CPU usage accounting and find out whether to preempt THREAD. |
1 | jermar | 444 | */ |
445 | |||
15 | jermar | 446 | if (THREAD) { |
1780 | jermar | 447 | uint64_t ticks; |
221 | jermar | 448 | |
15 | jermar | 449 | spinlock_lock(&CPU->lock); |
1457 | jermar | 450 | CPU->needs_relink += 1 + missed_clock_ticks; |
15 | jermar | 451 | spinlock_unlock(&CPU->lock); |
1 | jermar | 452 | |
15 | jermar | 453 | spinlock_lock(&THREAD->lock); |
1457 | jermar | 454 | if ((ticks = THREAD->ticks)) { |
455 | if (ticks >= 1 + missed_clock_ticks) |
||
456 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
457 | else |
||
458 | THREAD->ticks = 0; |
||
459 | } |
||
221 | jermar | 460 | spinlock_unlock(&THREAD->lock); |
461 | |||
462 | if (!ticks && !PREEMPTION_DISABLED) { |
||
1 | jermar | 463 | scheduler(); |
464 | } |
||
465 | } |
||
466 | } |
||
1702 | cejka | 467 | |
2336 | mencl | 468 | #endif |
1731 | jermar | 469 | /** @} |
1702 | cejka | 470 | */ |