Subversion Repositories HelenOS

Rev

Rev 2007 | Rev 2015 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
1757 jermar 85
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 */
756 jermar 89
as_operations_t *as_operations = NULL;
703 jermar 90
 
1890 jermar 91
/**
92
 * Slab for as_t objects.
93
 */
94
static slab_cache_t *as_slab;
95
 
1415 jermar 96
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
97
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 98
 
99
/**
100
 * This list contains address spaces that are not active on any
101
 * processor and that have valid ASID.
102
 */
103
LIST_INITIALIZE(inactive_as_with_asid_head);
104
 
757 jermar 105
/** Kernel address space. */
106
as_t *AS_KERNEL = NULL;
107
 
1235 jermar 108
static int area_flags_to_page_flags(int aflags);
1780 jermar 109
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
110
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 111
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 112
 
1891 jermar 113
static int as_constructor(void *obj, int flags)
114
{
115
    as_t *as = (as_t *) obj;
116
    int rc;
117
 
118
    link_initialize(&as->inactive_as_with_asid_link);
119
    mutex_initialize(&as->lock);   
120
 
121
    rc = as_constructor_arch(as, flags);
122
 
123
    return rc;
124
}
125
 
126
static int as_destructor(void *obj)
127
{
128
    as_t *as = (as_t *) obj;
129
 
130
    return as_destructor_arch(as);
131
}
132
 
756 jermar 133
/** Initialize address space subsystem. */
134
void as_init(void)
135
{
136
    as_arch_init();
1890 jermar 137
 
1891 jermar 138
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
139
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 140
 
789 palkovsky 141
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 142
    if (!AS_KERNEL)
143
        panic("can't create kernel address space\n");
144
 
756 jermar 145
}
146
 
757 jermar 147
/** Create address space.
148
 *
149
 * @param flags Flags that influence way in wich the address space is created.
150
 */
756 jermar 151
as_t *as_create(int flags)
703 jermar 152
{
153
    as_t *as;
154
 
1890 jermar 155
    as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 156
    (void) as_create_arch(as, 0);
157
 
1147 jermar 158
    btree_create(&as->as_area_btree);
822 palkovsky 159
 
160
    if (flags & FLAG_AS_KERNEL)
161
        as->asid = ASID_KERNEL;
162
    else
163
        as->asid = ASID_INVALID;
164
 
1468 jermar 165
    as->refcount = 0;
1415 jermar 166
    as->cpu_refcount = 0;
822 palkovsky 167
    as->page_table = page_table_create(flags);
703 jermar 168
 
2009 jermar 169
#ifdef CONFIG_VIRT_IDX_DCACHE
170
    as->dcache_flush_on_install = false;
171
    as->dcache_flush_on_deinstall = false;
172
#endif  /* CONFIG_VIRT_IDX_DCACHE */
173
 
703 jermar 174
    return as;
175
}
176
 
1468 jermar 177
/** Destroy adress space.
178
 *
179
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
180
 * the address space can be destroyed.
181
 */
182
void as_destroy(as_t *as)
973 palkovsky 183
{
1468 jermar 184
    ipl_t ipl;
1594 jermar 185
    bool cond;
973 palkovsky 186
 
1468 jermar 187
    ASSERT(as->refcount == 0);
188
 
189
    /*
190
     * Since there is no reference to this area,
191
     * it is safe not to lock its mutex.
192
     */
193
    ipl = interrupts_disable();
194
    spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 195
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 196
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 197
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 198
        asid_put(as->asid);
199
    }
200
    spinlock_unlock(&inactive_as_with_asid_lock);
201
 
202
    /*
203
     * Destroy address space areas of the address space.
1954 jermar 204
     * The B+tree must be walked carefully because it is
1594 jermar 205
     * also being destroyed.
1468 jermar 206
     */
1594 jermar 207
    for (cond = true; cond; ) {
1468 jermar 208
        btree_node_t *node;
1594 jermar 209
 
210
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
211
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
212
 
213
        if ((cond = node->keys)) {
214
            as_area_destroy(as, node->key[0]);
215
        }
1468 jermar 216
    }
1495 jermar 217
 
1483 jermar 218
    btree_destroy(&as->as_area_btree);
1468 jermar 219
    page_table_destroy(as->page_table);
220
 
221
    interrupts_restore(ipl);
222
 
1890 jermar 223
    slab_free(as_slab, as);
973 palkovsky 224
}
225
 
703 jermar 226
/** Create address space area of common attributes.
227
 *
228
 * The created address space area is added to the target address space.
229
 *
230
 * @param as Target address space.
1239 jermar 231
 * @param flags Flags of the area memory.
1048 jermar 232
 * @param size Size of area.
703 jermar 233
 * @param base Base address of area.
1239 jermar 234
 * @param attrs Attributes of the area.
1409 jermar 235
 * @param backend Address space area backend. NULL if no backend is used.
236
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 237
 *
238
 * @return Address space area on success or NULL on failure.
239
 */
1780 jermar 240
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 241
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 242
{
243
    ipl_t ipl;
244
    as_area_t *a;
245
 
246
    if (base % PAGE_SIZE)
1048 jermar 247
        return NULL;
248
 
1233 jermar 249
    if (!size)
250
        return NULL;
251
 
1048 jermar 252
    /* Writeable executable areas are not supported. */
253
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
254
        return NULL;
703 jermar 255
 
256
    ipl = interrupts_disable();
1380 jermar 257
    mutex_lock(&as->lock);
703 jermar 258
 
1048 jermar 259
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 260
        mutex_unlock(&as->lock);
1048 jermar 261
        interrupts_restore(ipl);
262
        return NULL;
263
    }
703 jermar 264
 
822 palkovsky 265
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 266
 
1380 jermar 267
    mutex_initialize(&a->lock);
822 palkovsky 268
 
1424 jermar 269
    a->as = as;
1026 jermar 270
    a->flags = flags;
1239 jermar 271
    a->attributes = attrs;
1048 jermar 272
    a->pages = SIZE2FRAMES(size);
822 palkovsky 273
    a->base = base;
1409 jermar 274
    a->sh_info = NULL;
275
    a->backend = backend;
1424 jermar 276
    if (backend_data)
277
        a->backend_data = *backend_data;
278
    else
1780 jermar 279
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 280
 
2009 jermar 281
#ifdef CONFIG_VIRT_IDX_DCACHE
282
    /*
283
     * When the area is being created with the AS_AREA_ATTR_PARTIAL flag, the
284
     * orig_color is probably wrong until the flag is reset. In other words, it is
285
     * initialized with the color of the area being created and not with the color
286
     * of the original address space area at the beginning of the share chain. Of
287
     * course, the correct color is set by as_area_share() before the flag is
288
     * reset.
289
     */
290
    a->orig_color = PAGE_COLOR(base);
291
#endif /* CONFIG_VIRT_IDX_DCACHE */
292
 
1387 jermar 293
    btree_create(&a->used_space);
822 palkovsky 294
 
1147 jermar 295
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 296
 
1380 jermar 297
    mutex_unlock(&as->lock);
703 jermar 298
    interrupts_restore(ipl);
704 jermar 299
 
703 jermar 300
    return a;
301
}
302
 
1235 jermar 303
/** Find address space area and change it.
304
 *
305
 * @param as Address space.
306
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
307
 * @param size New size of the virtual memory block starting at address.
308
 * @param flags Flags influencing the remap operation. Currently unused.
309
 *
1306 jermar 310
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 311
 */
1780 jermar 312
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 313
{
1306 jermar 314
    as_area_t *area;
1235 jermar 315
    ipl_t ipl;
316
    size_t pages;
317
 
318
    ipl = interrupts_disable();
1380 jermar 319
    mutex_lock(&as->lock);
1235 jermar 320
 
321
    /*
322
     * Locate the area.
323
     */
324
    area = find_area_and_lock(as, address);
325
    if (!area) {
1380 jermar 326
        mutex_unlock(&as->lock);
1235 jermar 327
        interrupts_restore(ipl);
1306 jermar 328
        return ENOENT;
1235 jermar 329
    }
330
 
1424 jermar 331
    if (area->backend == &phys_backend) {
1235 jermar 332
        /*
333
         * Remapping of address space areas associated
334
         * with memory mapped devices is not supported.
335
         */
1380 jermar 336
        mutex_unlock(&area->lock);
337
        mutex_unlock(&as->lock);
1235 jermar 338
        interrupts_restore(ipl);
1306 jermar 339
        return ENOTSUP;
1235 jermar 340
    }
1409 jermar 341
    if (area->sh_info) {
342
        /*
343
         * Remapping of shared address space areas
344
         * is not supported.
345
         */
346
        mutex_unlock(&area->lock);
347
        mutex_unlock(&as->lock);
348
        interrupts_restore(ipl);
349
        return ENOTSUP;
350
    }
1235 jermar 351
 
352
    pages = SIZE2FRAMES((address - area->base) + size);
353
    if (!pages) {
354
        /*
355
         * Zero size address space areas are not allowed.
356
         */
1380 jermar 357
        mutex_unlock(&area->lock);
358
        mutex_unlock(&as->lock);
1235 jermar 359
        interrupts_restore(ipl);
1306 jermar 360
        return EPERM;
1235 jermar 361
    }
362
 
363
    if (pages < area->pages) {
1403 jermar 364
        bool cond;
1780 jermar 365
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 366
 
367
        /*
368
         * Shrinking the area.
369
         * No need to check for overlaps.
370
         */
1403 jermar 371
 
372
        /*
1436 jermar 373
         * Start TLB shootdown sequence.
374
         */
375
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
376
 
377
        /*
1403 jermar 378
         * Remove frames belonging to used space starting from
379
         * the highest addresses downwards until an overlap with
380
         * the resized address space area is found. Note that this
381
         * is also the right way to remove part of the used_space
382
         * B+tree leaf list.
383
         */    
384
        for (cond = true; cond;) {
385
            btree_node_t *node;
386
 
387
            ASSERT(!list_empty(&area->used_space.leaf_head));
388
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
389
            if ((cond = (bool) node->keys)) {
1780 jermar 390
                uintptr_t b = node->key[node->keys - 1];
1403 jermar 391
                count_t c = (count_t) node->value[node->keys - 1];
392
                int i = 0;
1235 jermar 393
 
1403 jermar 394
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
395
 
396
                    if (b + c*PAGE_SIZE <= start_free) {
397
                        /*
398
                         * The whole interval fits completely
399
                         * in the resized address space area.
400
                         */
401
                        break;
402
                    }
403
 
404
                    /*
405
                     * Part of the interval corresponding to b and c
406
                     * overlaps with the resized address space area.
407
                     */
408
 
409
                    cond = false;   /* we are almost done */
410
                    i = (start_free - b) >> PAGE_WIDTH;
411
                    if (!used_space_remove(area, start_free, c - i))
1889 jermar 412
                        panic("Could not remove used space.\n");
1403 jermar 413
                } else {
414
                    /*
415
                     * The interval of used space can be completely removed.
416
                     */
417
                    if (!used_space_remove(area, b, c))
418
                        panic("Could not remove used space.\n");
419
                }
420
 
421
                for (; i < c; i++) {
422
                    pte_t *pte;
423
 
424
                    page_table_lock(as, false);
425
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
426
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 427
                    if (area->backend && area->backend->frame_free) {
428
                        area->backend->frame_free(area,
1409 jermar 429
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
430
                    }
1403 jermar 431
                    page_mapping_remove(as, b + i*PAGE_SIZE);
432
                    page_table_unlock(as, false);
433
                }
1235 jermar 434
            }
435
        }
1436 jermar 436
 
1235 jermar 437
        /*
1436 jermar 438
         * Finish TLB shootdown sequence.
1235 jermar 439
         */
1954 jermar 440
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 441
        tlb_shootdown_finalize();
1889 jermar 442
 
443
        /*
444
         * Invalidate software translation caches (e.g. TSB on sparc64).
445
         */
446
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 447
    } else {
448
        /*
449
         * Growing the area.
450
         * Check for overlaps with other address space areas.
451
         */
452
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 453
            mutex_unlock(&area->lock);
454
            mutex_unlock(&as->lock);       
1235 jermar 455
            interrupts_restore(ipl);
1306 jermar 456
            return EADDRNOTAVAIL;
1235 jermar 457
        }
458
    }
459
 
460
    area->pages = pages;
461
 
1380 jermar 462
    mutex_unlock(&area->lock);
463
    mutex_unlock(&as->lock);
1235 jermar 464
    interrupts_restore(ipl);
465
 
1306 jermar 466
    return 0;
1235 jermar 467
}
468
 
1306 jermar 469
/** Destroy address space area.
470
 *
471
 * @param as Address space.
472
 * @param address Address withing the area to be deleted.
473
 *
474
 * @return Zero on success or a value from @ref errno.h on failure.
475
 */
1780 jermar 476
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 477
{
478
    as_area_t *area;
1780 jermar 479
    uintptr_t base;
1495 jermar 480
    link_t *cur;
1306 jermar 481
    ipl_t ipl;
482
 
483
    ipl = interrupts_disable();
1380 jermar 484
    mutex_lock(&as->lock);
1306 jermar 485
 
486
    area = find_area_and_lock(as, address);
487
    if (!area) {
1380 jermar 488
        mutex_unlock(&as->lock);
1306 jermar 489
        interrupts_restore(ipl);
490
        return ENOENT;
491
    }
492
 
1403 jermar 493
    base = area->base;
494
 
1411 jermar 495
    /*
1436 jermar 496
     * Start TLB shootdown sequence.
497
     */
1889 jermar 498
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 499
 
500
    /*
1411 jermar 501
     * Visit only the pages mapped by used_space B+tree.
502
     */
1495 jermar 503
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 504
        btree_node_t *node;
1495 jermar 505
        int i;
1403 jermar 506
 
1495 jermar 507
        node = list_get_instance(cur, btree_node_t, leaf_link);
508
        for (i = 0; i < node->keys; i++) {
1780 jermar 509
            uintptr_t b = node->key[i];
1495 jermar 510
            count_t j;
1411 jermar 511
            pte_t *pte;
1403 jermar 512
 
1495 jermar 513
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 514
                page_table_lock(as, false);
1495 jermar 515
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 516
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 517
                if (area->backend && area->backend->frame_free) {
518
                    area->backend->frame_free(area,
1495 jermar 519
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 520
                }
1889 jermar 521
                page_mapping_remove(as, b + j*PAGE_SIZE);              
1411 jermar 522
                page_table_unlock(as, false);
1306 jermar 523
            }
524
        }
525
    }
1403 jermar 526
 
1306 jermar 527
    /*
1436 jermar 528
     * Finish TLB shootdown sequence.
1306 jermar 529
     */
1889 jermar 530
    tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 531
    tlb_shootdown_finalize();
1436 jermar 532
 
1889 jermar 533
    /*
534
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
535
     */
536
    as_invalidate_translation_cache(as, area->base, area->pages);
537
 
1436 jermar 538
    btree_destroy(&area->used_space);
1306 jermar 539
 
1309 jermar 540
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 541
 
542
    if (area->sh_info)
543
        sh_info_remove_reference(area->sh_info);
544
 
1380 jermar 545
    mutex_unlock(&area->lock);
1306 jermar 546
 
547
    /*
548
     * Remove the empty area from address space.
549
     */
1889 jermar 550
    btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 551
 
1309 jermar 552
    free(area);
553
 
1889 jermar 554
    mutex_unlock(&as->lock);
1306 jermar 555
    interrupts_restore(ipl);
556
    return 0;
557
}
558
 
1413 jermar 559
/** Share address space area with another or the same address space.
1235 jermar 560
 *
1424 jermar 561
 * Address space area mapping is shared with a new address space area.
562
 * If the source address space area has not been shared so far,
563
 * a new sh_info is created. The new address space area simply gets the
564
 * sh_info of the source area. The process of duplicating the
565
 * mapping is done through the backend share function.
1413 jermar 566
 *
1417 jermar 567
 * @param src_as Pointer to source address space.
1239 jermar 568
 * @param src_base Base address of the source address space area.
1417 jermar 569
 * @param acc_size Expected size of the source area.
1428 palkovsky 570
 * @param dst_as Pointer to destination address space.
1417 jermar 571
 * @param dst_base Target base address.
572
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 573
 *
2007 jermar 574
 * @return Zero on success or ENOENT if there is no such task or if there is no
575
 * such address space area, EPERM if there was a problem in accepting the area
576
 * or ENOMEM if there was a problem in allocating destination address space
577
 * area. ENOTSUP is returned if the address space area backend does not support
2009 jermar 578
 * sharing.
1235 jermar 579
 */
1780 jermar 580
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
581
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 582
{
583
    ipl_t ipl;
1239 jermar 584
    int src_flags;
585
    size_t src_size;
2009 jermar 586
    int src_orig_color;
1239 jermar 587
    as_area_t *src_area, *dst_area;
1413 jermar 588
    share_info_t *sh_info;
1424 jermar 589
    mem_backend_t *src_backend;
590
    mem_backend_data_t src_backend_data;
1434 palkovsky 591
 
1235 jermar 592
    ipl = interrupts_disable();
1380 jermar 593
    mutex_lock(&src_as->lock);
1329 palkovsky 594
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 595
    if (!src_area) {
1238 jermar 596
        /*
597
         * Could not find the source address space area.
598
         */
1380 jermar 599
        mutex_unlock(&src_as->lock);
1238 jermar 600
        interrupts_restore(ipl);
601
        return ENOENT;
602
    }
1413 jermar 603
 
2007 jermar 604
 
1424 jermar 605
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 606
        /*
1851 jermar 607
         * There is no backend or the backend does not
1424 jermar 608
         * know how to share the area.
1413 jermar 609
         */
610
        mutex_unlock(&src_area->lock);
611
        mutex_unlock(&src_as->lock);
612
        interrupts_restore(ipl);
613
        return ENOTSUP;
614
    }
615
 
1239 jermar 616
    src_size = src_area->pages * PAGE_SIZE;
617
    src_flags = src_area->flags;
1424 jermar 618
    src_backend = src_area->backend;
619
    src_backend_data = src_area->backend_data;
2009 jermar 620
    src_orig_color = src_area->orig_color;
1544 palkovsky 621
 
622
    /* Share the cacheable flag from the original mapping */
623
    if (src_flags & AS_AREA_CACHEABLE)
624
        dst_flags_mask |= AS_AREA_CACHEABLE;
625
 
1461 palkovsky 626
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 627
        mutex_unlock(&src_area->lock);
628
        mutex_unlock(&src_as->lock);
1235 jermar 629
        interrupts_restore(ipl);
630
        return EPERM;
631
    }
1413 jermar 632
 
1235 jermar 633
    /*
1413 jermar 634
     * Now we are committed to sharing the area.
1954 jermar 635
     * First, prepare the area for sharing.
1413 jermar 636
     * Then it will be safe to unlock it.
637
     */
638
    sh_info = src_area->sh_info;
639
    if (!sh_info) {
640
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
641
        mutex_initialize(&sh_info->lock);
642
        sh_info->refcount = 2;
643
        btree_create(&sh_info->pagemap);
644
        src_area->sh_info = sh_info;
645
    } else {
646
        mutex_lock(&sh_info->lock);
647
        sh_info->refcount++;
648
        mutex_unlock(&sh_info->lock);
649
    }
650
 
1424 jermar 651
    src_area->backend->share(src_area);
1413 jermar 652
 
653
    mutex_unlock(&src_area->lock);
654
    mutex_unlock(&src_as->lock);
655
 
656
    /*
1239 jermar 657
     * Create copy of the source address space area.
658
     * The destination area is created with AS_AREA_ATTR_PARTIAL
659
     * attribute set which prevents race condition with
660
     * preliminary as_page_fault() calls.
1417 jermar 661
     * The flags of the source area are masked against dst_flags_mask
662
     * to support sharing in less privileged mode.
1235 jermar 663
     */
1461 palkovsky 664
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 665
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 666
    if (!dst_area) {
1235 jermar 667
        /*
668
         * Destination address space area could not be created.
669
         */
1413 jermar 670
        sh_info_remove_reference(sh_info);
671
 
1235 jermar 672
        interrupts_restore(ipl);
673
        return ENOMEM;
674
    }
2009 jermar 675
 
1235 jermar 676
    /*
1239 jermar 677
     * Now the destination address space area has been
678
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 679
     * attribute and set the sh_info.
1239 jermar 680
     */
2009 jermar 681
    mutex_lock(&dst_as->lock); 
1380 jermar 682
    mutex_lock(&dst_area->lock);
1239 jermar 683
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 684
    dst_area->sh_info = sh_info;
2009 jermar 685
    dst_area->orig_color = src_orig_color;
686
#ifdef CONFIG_VIRT_IDX_DCACHE
687
    if (src_orig_color != PAGE_COLOR(dst_base)) {
688
        /*
689
         * We have just detected an attempt to create an invalid address
690
         * alias. We allow this and set a special flag that tells the
691
         * architecture specific code to flush the D-cache when the
692
         * offending address space is installed and deinstalled
693
         * (cleanup).
694
         *
695
         * In order for the flags to take effect immediately, we also
696
         * perform a global D-cache shootdown.
697
         */
698
        dcache_shootdown_start();
699
        dst_as->dcache_flush_on_install = true;
700
        dst_as->dcache_flush_on_deinstall = true;
701
        dcache_flush();
702
        dcache_shootdown_finalize();
703
    }
704
#endif /* CONFIG_VIRT_IDX_DCACHE */
1380 jermar 705
    mutex_unlock(&dst_area->lock);
2009 jermar 706
    mutex_unlock(&dst_as->lock);   
707
 
1235 jermar 708
    interrupts_restore(ipl);
709
 
710
    return 0;
711
}
712
 
1423 jermar 713
/** Check access mode for address space area.
714
 *
715
 * The address space area must be locked prior to this call.
716
 *
717
 * @param area Address space area.
718
 * @param access Access mode.
719
 *
720
 * @return False if access violates area's permissions, true otherwise.
721
 */
722
bool as_area_check_access(as_area_t *area, pf_access_t access)
723
{
724
    int flagmap[] = {
725
        [PF_ACCESS_READ] = AS_AREA_READ,
726
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
727
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
728
    };
729
 
730
    if (!(area->flags & flagmap[access]))
731
        return false;
732
 
733
    return true;
734
}
735
 
703 jermar 736
/** Handle page fault within the current address space.
737
 *
1409 jermar 738
 * This is the high-level page fault handler. It decides
739
 * whether the page fault can be resolved by any backend
740
 * and if so, it invokes the backend to resolve the page
741
 * fault.
742
 *
703 jermar 743
 * Interrupts are assumed disabled.
744
 *
745
 * @param page Faulting page.
1411 jermar 746
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 747
 * @param istate Pointer to interrupted state.
703 jermar 748
 *
1409 jermar 749
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
750
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 751
 */
1780 jermar 752
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 753
{
1044 jermar 754
    pte_t *pte;
977 jermar 755
    as_area_t *area;
703 jermar 756
 
1380 jermar 757
    if (!THREAD)
1409 jermar 758
        return AS_PF_FAULT;
1380 jermar 759
 
703 jermar 760
    ASSERT(AS);
1044 jermar 761
 
1380 jermar 762
    mutex_lock(&AS->lock);
977 jermar 763
    area = find_area_and_lock(AS, page);   
703 jermar 764
    if (!area) {
765
        /*
766
         * No area contained mapping for 'page'.
767
         * Signal page fault to low-level handler.
768
         */
1380 jermar 769
        mutex_unlock(&AS->lock);
1288 jermar 770
        goto page_fault;
703 jermar 771
    }
772
 
1239 jermar 773
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
774
        /*
775
         * The address space area is not fully initialized.
776
         * Avoid possible race by returning error.
777
         */
1380 jermar 778
        mutex_unlock(&area->lock);
779
        mutex_unlock(&AS->lock);
1288 jermar 780
        goto page_fault;       
1239 jermar 781
    }
782
 
1424 jermar 783
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 784
        /*
785
         * The address space area is not backed by any backend
786
         * or the backend cannot handle page faults.
787
         */
788
        mutex_unlock(&area->lock);
789
        mutex_unlock(&AS->lock);
790
        goto page_fault;       
791
    }
1179 jermar 792
 
1044 jermar 793
    page_table_lock(AS, false);
794
 
703 jermar 795
    /*
1044 jermar 796
     * To avoid race condition between two page faults
797
     * on the same address, we need to make sure
798
     * the mapping has not been already inserted.
799
     */
800
    if ((pte = page_mapping_find(AS, page))) {
801
        if (PTE_PRESENT(pte)) {
1423 jermar 802
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
803
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
804
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
805
                page_table_unlock(AS, false);
806
                mutex_unlock(&area->lock);
807
                mutex_unlock(&AS->lock);
808
                return AS_PF_OK;
809
            }
1044 jermar 810
        }
811
    }
1409 jermar 812
 
1044 jermar 813
    /*
1409 jermar 814
     * Resort to the backend page fault handler.
703 jermar 815
     */
1424 jermar 816
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 817
        page_table_unlock(AS, false);
818
        mutex_unlock(&area->lock);
819
        mutex_unlock(&AS->lock);
820
        goto page_fault;
821
    }
703 jermar 822
 
1044 jermar 823
    page_table_unlock(AS, false);
1380 jermar 824
    mutex_unlock(&area->lock);
825
    mutex_unlock(&AS->lock);
1288 jermar 826
    return AS_PF_OK;
827
 
828
page_fault:
829
    if (THREAD->in_copy_from_uspace) {
830
        THREAD->in_copy_from_uspace = false;
1780 jermar 831
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 832
    } else if (THREAD->in_copy_to_uspace) {
833
        THREAD->in_copy_to_uspace = false;
1780 jermar 834
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 835
    } else {
836
        return AS_PF_FAULT;
837
    }
838
 
839
    return AS_PF_DEFER;
703 jermar 840
}
841
 
823 jermar 842
/** Switch address spaces.
703 jermar 843
 *
1380 jermar 844
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 845
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 846
 *
823 jermar 847
 * @param old Old address space or NULL.
848
 * @param new New address space.
703 jermar 849
 */
823 jermar 850
void as_switch(as_t *old, as_t *new)
703 jermar 851
{
852
    ipl_t ipl;
823 jermar 853
    bool needs_asid = false;
703 jermar 854
 
855
    ipl = interrupts_disable();
1415 jermar 856
    spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 857
 
858
    /*
823 jermar 859
     * First, take care of the old address space.
860
     */
861
    if (old) {
1380 jermar 862
        mutex_lock_active(&old->lock);
1415 jermar 863
        ASSERT(old->cpu_refcount);
864
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 865
            /*
866
             * The old address space is no longer active on
867
             * any processor. It can be appended to the
868
             * list of inactive address spaces with assigned
869
             * ASID.
870
             */
871
             ASSERT(old->asid != ASID_INVALID);
872
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
873
        }
1380 jermar 874
        mutex_unlock(&old->lock);
1890 jermar 875
 
876
        /*
877
         * Perform architecture-specific tasks when the address space
878
         * is being removed from the CPU.
879
         */
880
        as_deinstall_arch(old);
823 jermar 881
    }
882
 
883
    /*
884
     * Second, prepare the new address space.
885
     */
1380 jermar 886
    mutex_lock_active(&new->lock);
1415 jermar 887
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 888
        if (new->asid != ASID_INVALID)
889
            list_remove(&new->inactive_as_with_asid_link);
890
        else
891
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
892
    }
893
    SET_PTL0_ADDRESS(new->page_table);
1380 jermar 894
    mutex_unlock(&new->lock);
823 jermar 895
 
896
    if (needs_asid) {
897
        /*
898
         * Allocation of new ASID was deferred
899
         * until now in order to avoid deadlock.
900
         */
901
        asid_t asid;
902
 
903
        asid = asid_get();
1380 jermar 904
        mutex_lock_active(&new->lock);
823 jermar 905
        new->asid = asid;
1380 jermar 906
        mutex_unlock(&new->lock);
823 jermar 907
    }
1415 jermar 908
    spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 909
    interrupts_restore(ipl);
910
 
911
    /*
703 jermar 912
     * Perform architecture-specific steps.
727 jermar 913
     * (e.g. write ASID to hardware register etc.)
703 jermar 914
     */
823 jermar 915
    as_install_arch(new);
703 jermar 916
 
823 jermar 917
    AS = new;
703 jermar 918
}
754 jermar 919
 
1235 jermar 920
/** Convert address space area flags to page flags.
754 jermar 921
 *
1235 jermar 922
 * @param aflags Flags of some address space area.
754 jermar 923
 *
1235 jermar 924
 * @return Flags to be passed to page_mapping_insert().
754 jermar 925
 */
1235 jermar 926
int area_flags_to_page_flags(int aflags)
754 jermar 927
{
928
    int flags;
929
 
1178 jermar 930
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 931
 
1235 jermar 932
    if (aflags & AS_AREA_READ)
1026 jermar 933
        flags |= PAGE_READ;
934
 
1235 jermar 935
    if (aflags & AS_AREA_WRITE)
1026 jermar 936
        flags |= PAGE_WRITE;
937
 
1235 jermar 938
    if (aflags & AS_AREA_EXEC)
1026 jermar 939
        flags |= PAGE_EXEC;
940
 
1424 jermar 941
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 942
        flags |= PAGE_CACHEABLE;
943
 
754 jermar 944
    return flags;
945
}
756 jermar 946
 
1235 jermar 947
/** Compute flags for virtual address translation subsytem.
948
 *
949
 * The address space area must be locked.
950
 * Interrupts must be disabled.
951
 *
952
 * @param a Address space area.
953
 *
954
 * @return Flags to be used in page_mapping_insert().
955
 */
1409 jermar 956
int as_area_get_flags(as_area_t *a)
1235 jermar 957
{
958
    return area_flags_to_page_flags(a->flags);
959
}
960
 
756 jermar 961
/** Create page table.
962
 *
963
 * Depending on architecture, create either address space
964
 * private or global page table.
965
 *
966
 * @param flags Flags saying whether the page table is for kernel address space.
967
 *
968
 * @return First entry of the page table.
969
 */
970
pte_t *page_table_create(int flags)
971
{
972
        ASSERT(as_operations);
973
        ASSERT(as_operations->page_table_create);
974
 
975
        return as_operations->page_table_create(flags);
976
}
977 jermar 977
 
1468 jermar 978
/** Destroy page table.
979
 *
980
 * Destroy page table in architecture specific way.
981
 *
982
 * @param page_table Physical address of PTL0.
983
 */
984
void page_table_destroy(pte_t *page_table)
985
{
986
        ASSERT(as_operations);
987
        ASSERT(as_operations->page_table_destroy);
988
 
989
        as_operations->page_table_destroy(page_table);
990
}
991
 
1044 jermar 992
/** Lock page table.
993
 *
994
 * This function should be called before any page_mapping_insert(),
995
 * page_mapping_remove() and page_mapping_find().
996
 *
997
 * Locking order is such that address space areas must be locked
998
 * prior to this call. Address space can be locked prior to this
999
 * call in which case the lock argument is false.
1000
 *
1001
 * @param as Address space.
1248 jermar 1002
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 1003
 */
1004
void page_table_lock(as_t *as, bool lock)
1005
{
1006
    ASSERT(as_operations);
1007
    ASSERT(as_operations->page_table_lock);
1008
 
1009
    as_operations->page_table_lock(as, lock);
1010
}
1011
 
1012
/** Unlock page table.
1013
 *
1014
 * @param as Address space.
1248 jermar 1015
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 1016
 */
1017
void page_table_unlock(as_t *as, bool unlock)
1018
{
1019
    ASSERT(as_operations);
1020
    ASSERT(as_operations->page_table_unlock);
1021
 
1022
    as_operations->page_table_unlock(as, unlock);
1023
}
1024
 
977 jermar 1025
 
1026
/** Find address space area and lock it.
1027
 *
1028
 * The address space must be locked and interrupts must be disabled.
1029
 *
1030
 * @param as Address space.
1031
 * @param va Virtual address.
1032
 *
1033
 * @return Locked address space area containing va on success or NULL on failure.
1034
 */
1780 jermar 1035
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1036
{
1037
    as_area_t *a;
1147 jermar 1038
    btree_node_t *leaf, *lnode;
1039
    int i;
977 jermar 1040
 
1147 jermar 1041
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1042
    if (a) {
1043
        /* va is the base address of an address space area */
1380 jermar 1044
        mutex_lock(&a->lock);
1147 jermar 1045
        return a;
1046
    }
1047
 
1048
    /*
1150 jermar 1049
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1050
     * to find out whether this is a miss or va belongs to an address
1051
     * space area found there.
1052
     */
1053
 
1054
    /* First, search the leaf node itself. */
1055
    for (i = 0; i < leaf->keys; i++) {
1056
        a = (as_area_t *) leaf->value[i];
1380 jermar 1057
        mutex_lock(&a->lock);
1147 jermar 1058
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1059
            return a;
1060
        }
1380 jermar 1061
        mutex_unlock(&a->lock);
1147 jermar 1062
    }
977 jermar 1063
 
1147 jermar 1064
    /*
1150 jermar 1065
     * Second, locate the left neighbour and test its last record.
1148 jermar 1066
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 1067
     */
1150 jermar 1068
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1069
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1070
        mutex_lock(&a->lock);
1147 jermar 1071
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1072
            return a;
1147 jermar 1073
        }
1380 jermar 1074
        mutex_unlock(&a->lock);
977 jermar 1075
    }
1076
 
1077
    return NULL;
1078
}
1048 jermar 1079
 
1080
/** Check area conflicts with other areas.
1081
 *
1082
 * The address space must be locked and interrupts must be disabled.
1083
 *
1084
 * @param as Address space.
1085
 * @param va Starting virtual address of the area being tested.
1086
 * @param size Size of the area being tested.
1087
 * @param avoid_area Do not touch this area.
1088
 *
1089
 * @return True if there is no conflict, false otherwise.
1090
 */
1780 jermar 1091
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1092
{
1093
    as_area_t *a;
1147 jermar 1094
    btree_node_t *leaf, *node;
1095
    int i;
1048 jermar 1096
 
1070 jermar 1097
    /*
1098
     * We don't want any area to have conflicts with NULL page.
1099
     */
1100
    if (overlaps(va, size, NULL, PAGE_SIZE))
1101
        return false;
1102
 
1147 jermar 1103
    /*
1104
     * The leaf node is found in O(log n), where n is proportional to
1105
     * the number of address space areas belonging to as.
1106
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1107
     * record in the left neighbour, the leftmost record in the right
1108
     * neighbour and all records in the leaf node itself.
1147 jermar 1109
     */
1048 jermar 1110
 
1147 jermar 1111
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1112
        if (a != avoid_area)
1113
            return false;
1114
    }
1115
 
1116
    /* First, check the two border cases. */
1150 jermar 1117
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1118
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1119
        mutex_lock(&a->lock);
1147 jermar 1120
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1121
            mutex_unlock(&a->lock);
1147 jermar 1122
            return false;
1123
        }
1380 jermar 1124
        mutex_unlock(&a->lock);
1147 jermar 1125
    }
1150 jermar 1126
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1127
        a = (as_area_t *) node->value[0];
1380 jermar 1128
        mutex_lock(&a->lock);
1147 jermar 1129
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1130
            mutex_unlock(&a->lock);
1147 jermar 1131
            return false;
1132
        }
1380 jermar 1133
        mutex_unlock(&a->lock);
1147 jermar 1134
    }
1135
 
1136
    /* Second, check the leaf node. */
1137
    for (i = 0; i < leaf->keys; i++) {
1138
        a = (as_area_t *) leaf->value[i];
1139
 
1048 jermar 1140
        if (a == avoid_area)
1141
            continue;
1147 jermar 1142
 
1380 jermar 1143
        mutex_lock(&a->lock);
1147 jermar 1144
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1145
            mutex_unlock(&a->lock);
1147 jermar 1146
            return false;
1147
        }
1380 jermar 1148
        mutex_unlock(&a->lock);
1048 jermar 1149
    }
1150
 
1070 jermar 1151
    /*
1152
     * So far, the area does not conflict with other areas.
1153
     * Check if it doesn't conflict with kernel address space.
1154
     */  
1155
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1156
        return !overlaps(va, size,
1157
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1158
    }
1159
 
1048 jermar 1160
    return true;
1161
}
1235 jermar 1162
 
1380 jermar 1163
/** Return size of the address space area with given base.  */
1780 jermar 1164
size_t as_get_size(uintptr_t base)
1329 palkovsky 1165
{
1166
    ipl_t ipl;
1167
    as_area_t *src_area;
1168
    size_t size;
1169
 
1170
    ipl = interrupts_disable();
1171
    src_area = find_area_and_lock(AS, base);
1172
    if (src_area){
1173
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1174
        mutex_unlock(&src_area->lock);
1329 palkovsky 1175
    } else {
1176
        size = 0;
1177
    }
1178
    interrupts_restore(ipl);
1179
    return size;
1180
}
1181
 
1387 jermar 1182
/** Mark portion of address space area as used.
1183
 *
1184
 * The address space area must be already locked.
1185
 *
1186
 * @param a Address space area.
1187
 * @param page First page to be marked.
1188
 * @param count Number of page to be marked.
1189
 *
1190
 * @return 0 on failure and 1 on success.
1191
 */
1780 jermar 1192
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1193
{
1194
    btree_node_t *leaf, *node;
1195
    count_t pages;
1196
    int i;
1197
 
1198
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1199
    ASSERT(count);
1200
 
1201
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1202
    if (pages) {
1203
        /*
1204
         * We hit the beginning of some used space.
1205
         */
1206
        return 0;
1207
    }
1208
 
1437 jermar 1209
    if (!leaf->keys) {
1210
        btree_insert(&a->used_space, page, (void *) count, leaf);
1211
        return 1;
1212
    }
1213
 
1387 jermar 1214
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1215
    if (node) {
1780 jermar 1216
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1217
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1218
 
1219
        /*
1220
         * Examine the possibility that the interval fits
1221
         * somewhere between the rightmost interval of
1222
         * the left neigbour and the first interval of the leaf.
1223
         */
1224
 
1225
        if (page >= right_pg) {
1226
            /* Do nothing. */
1227
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1228
            /* The interval intersects with the left interval. */
1229
            return 0;
1230
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1231
            /* The interval intersects with the right interval. */
1232
            return 0;          
1233
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1234
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1235
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1236
            btree_remove(&a->used_space, right_pg, leaf);
1237
            return 1;
1238
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1239
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1240
            node->value[node->keys - 1] += count;
1387 jermar 1241
            return 1;
1242
        } else if (page + count*PAGE_SIZE == right_pg) {
1243
            /*
1244
             * The interval can be addded by simply moving base of the right
1245
             * interval down and increasing its size accordingly.
1246
             */
1403 jermar 1247
            leaf->value[0] += count;
1387 jermar 1248
            leaf->key[0] = page;
1249
            return 1;
1250
        } else {
1251
            /*
1252
             * The interval is between both neigbouring intervals,
1253
             * but cannot be merged with any of them.
1254
             */
1255
            btree_insert(&a->used_space, page, (void *) count, leaf);
1256
            return 1;
1257
        }
1258
    } else if (page < leaf->key[0]) {
1780 jermar 1259
        uintptr_t right_pg = leaf->key[0];
1387 jermar 1260
        count_t right_cnt = (count_t) leaf->value[0];
1261
 
1262
        /*
1263
         * Investigate the border case in which the left neighbour does not
1264
         * exist but the interval fits from the left.
1265
         */
1266
 
1267
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1268
            /* The interval intersects with the right interval. */
1269
            return 0;
1270
        } else if (page + count*PAGE_SIZE == right_pg) {
1271
            /*
1272
             * The interval can be added by moving the base of the right interval down
1273
             * and increasing its size accordingly.
1274
             */
1275
            leaf->key[0] = page;
1403 jermar 1276
            leaf->value[0] += count;
1387 jermar 1277
            return 1;
1278
        } else {
1279
            /*
1280
             * The interval doesn't adjoin with the right interval.
1281
             * It must be added individually.
1282
             */
1283
            btree_insert(&a->used_space, page, (void *) count, leaf);
1284
            return 1;
1285
        }
1286
    }
1287
 
1288
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1289
    if (node) {
1780 jermar 1290
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1291
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1292
 
1293
        /*
1294
         * Examine the possibility that the interval fits
1295
         * somewhere between the leftmost interval of
1296
         * the right neigbour and the last interval of the leaf.
1297
         */
1298
 
1299
        if (page < left_pg) {
1300
            /* Do nothing. */
1301
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1302
            /* The interval intersects with the left interval. */
1303
            return 0;
1304
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1305
            /* The interval intersects with the right interval. */
1306
            return 0;          
1307
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1308
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1309
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1310
            btree_remove(&a->used_space, right_pg, node);
1311
            return 1;
1312
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1313
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1314
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1315
            return 1;
1316
        } else if (page + count*PAGE_SIZE == right_pg) {
1317
            /*
1318
             * The interval can be addded by simply moving base of the right
1319
             * interval down and increasing its size accordingly.
1320
             */
1403 jermar 1321
            node->value[0] += count;
1387 jermar 1322
            node->key[0] = page;
1323
            return 1;
1324
        } else {
1325
            /*
1326
             * The interval is between both neigbouring intervals,
1327
             * but cannot be merged with any of them.
1328
             */
1329
            btree_insert(&a->used_space, page, (void *) count, leaf);
1330
            return 1;
1331
        }
1332
    } else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1333
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1334
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1335
 
1336
        /*
1337
         * Investigate the border case in which the right neighbour does not
1338
         * exist but the interval fits from the right.
1339
         */
1340
 
1341
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1342
            /* The interval intersects with the left interval. */
1387 jermar 1343
            return 0;
1344
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1345
            /* The interval can be added by growing the left interval. */
1403 jermar 1346
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1347
            return 1;
1348
        } else {
1349
            /*
1350
             * The interval doesn't adjoin with the left interval.
1351
             * It must be added individually.
1352
             */
1353
            btree_insert(&a->used_space, page, (void *) count, leaf);
1354
            return 1;
1355
        }
1356
    }
1357
 
1358
    /*
1359
     * Note that if the algorithm made it thus far, the interval can fit only
1360
     * between two other intervals of the leaf. The two border cases were already
1361
     * resolved.
1362
     */
1363
    for (i = 1; i < leaf->keys; i++) {
1364
        if (page < leaf->key[i]) {
1780 jermar 1365
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1366
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1367
 
1368
            /*
1369
             * The interval fits between left_pg and right_pg.
1370
             */
1371
 
1372
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1373
                /* The interval intersects with the left interval. */
1374
                return 0;
1375
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1376
                /* The interval intersects with the right interval. */
1377
                return 0;          
1378
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1379
                /* The interval can be added by merging the two already present intervals. */
1403 jermar 1380
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1381
                btree_remove(&a->used_space, right_pg, leaf);
1382
                return 1;
1383
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1384
                /* The interval can be added by simply growing the left interval. */
1403 jermar 1385
                leaf->value[i - 1] += count;
1387 jermar 1386
                return 1;
1387
            } else if (page + count*PAGE_SIZE == right_pg) {
1388
                /*
1389
                     * The interval can be addded by simply moving base of the right
1390
                 * interval down and increasing its size accordingly.
1391
                 */
1403 jermar 1392
                leaf->value[i] += count;
1387 jermar 1393
                leaf->key[i] = page;
1394
                return 1;
1395
            } else {
1396
                /*
1397
                 * The interval is between both neigbouring intervals,
1398
                 * but cannot be merged with any of them.
1399
                 */
1400
                btree_insert(&a->used_space, page, (void *) count, leaf);
1401
                return 1;
1402
            }
1403
        }
1404
    }
1405
 
1735 decky 1406
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1407
}
1408
 
1409
/** Mark portion of address space area as unused.
1410
 *
1411
 * The address space area must be already locked.
1412
 *
1413
 * @param a Address space area.
1414
 * @param page First page to be marked.
1415
 * @param count Number of page to be marked.
1416
 *
1417
 * @return 0 on failure and 1 on success.
1418
 */
1780 jermar 1419
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1420
{
1421
    btree_node_t *leaf, *node;
1422
    count_t pages;
1423
    int i;
1424
 
1425
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1426
    ASSERT(count);
1427
 
1428
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1429
    if (pages) {
1430
        /*
1431
         * We are lucky, page is the beginning of some interval.
1432
         */
1433
        if (count > pages) {
1434
            return 0;
1435
        } else if (count == pages) {
1436
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1437
            return 1;
1387 jermar 1438
        } else {
1439
            /*
1440
             * Find the respective interval.
1441
             * Decrease its size and relocate its start address.
1442
             */
1443
            for (i = 0; i < leaf->keys; i++) {
1444
                if (leaf->key[i] == page) {
1445
                    leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1446
                    leaf->value[i] -= count;
1387 jermar 1447
                    return 1;
1448
                }
1449
            }
1450
            goto error;
1451
        }
1452
    }
1453
 
1454
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1455
    if (node && page < leaf->key[0]) {
1780 jermar 1456
        uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1457
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1458
 
1459
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1460
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1461
                /*
1462
                 * The interval is contained in the rightmost interval
1463
                 * of the left neighbour and can be removed by
1464
                 * updating the size of the bigger interval.
1465
                 */
1403 jermar 1466
                node->value[node->keys - 1] -= count;
1387 jermar 1467
                return 1;
1468
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1469
                count_t new_cnt;
1387 jermar 1470
 
1471
                /*
1472
                 * The interval is contained in the rightmost interval
1473
                 * of the left neighbour but its removal requires
1474
                 * both updating the size of the original interval and
1475
                 * also inserting a new interval.
1476
                 */
1403 jermar 1477
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1478
                node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1479
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1480
                return 1;
1481
            }
1482
        }
1483
        return 0;
1484
    } else if (page < leaf->key[0]) {
1485
        return 0;
1486
    }
1487
 
1488
    if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1489
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1490
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1491
 
1492
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1493
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1494
                /*
1495
                 * The interval is contained in the rightmost interval
1496
                 * of the leaf and can be removed by updating the size
1497
                 * of the bigger interval.
1498
                 */
1403 jermar 1499
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1500
                return 1;
1501
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1502
                count_t new_cnt;
1387 jermar 1503
 
1504
                /*
1505
                 * The interval is contained in the rightmost interval
1506
                 * of the leaf but its removal requires both updating
1507
                 * the size of the original interval and
1508
                 * also inserting a new interval.
1509
                 */
1403 jermar 1510
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1511
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1512
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1513
                return 1;
1514
            }
1515
        }
1516
        return 0;
1517
    }  
1518
 
1519
    /*
1520
     * The border cases have been already resolved.
1521
     * Now the interval can be only between intervals of the leaf.
1522
     */
1523
    for (i = 1; i < leaf->keys - 1; i++) {
1524
        if (page < leaf->key[i]) {
1780 jermar 1525
            uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1526
            count_t left_cnt = (count_t) leaf->value[i - 1];
1527
 
1528
            /*
1529
             * Now the interval is between intervals corresponding to (i - 1) and i.
1530
             */
1531
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1532
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1533
                    /*
1534
                    * The interval is contained in the interval (i - 1)
1535
                     * of the leaf and can be removed by updating the size
1536
                     * of the bigger interval.
1537
                     */
1403 jermar 1538
                    leaf->value[i - 1] -= count;
1387 jermar 1539
                    return 1;
1540
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1541
                    count_t new_cnt;
1387 jermar 1542
 
1543
                    /*
1544
                     * The interval is contained in the interval (i - 1)
1545
                     * of the leaf but its removal requires both updating
1546
                     * the size of the original interval and
1547
                     * also inserting a new interval.
1548
                     */
1403 jermar 1549
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1550
                    leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1551
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1552
                    return 1;
1553
                }
1554
            }
1555
            return 0;
1556
        }
1557
    }
1558
 
1559
error:
1735 decky 1560
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1561
}
1562
 
1409 jermar 1563
/** Remove reference to address space area share info.
1564
 *
1565
 * If the reference count drops to 0, the sh_info is deallocated.
1566
 *
1567
 * @param sh_info Pointer to address space area share info.
1568
 */
1569
void sh_info_remove_reference(share_info_t *sh_info)
1570
{
1571
    bool dealloc = false;
1572
 
1573
    mutex_lock(&sh_info->lock);
1574
    ASSERT(sh_info->refcount);
1575
    if (--sh_info->refcount == 0) {
1576
        dealloc = true;
1495 jermar 1577
        link_t *cur;
1409 jermar 1578
 
1579
        /*
1580
         * Now walk carefully the pagemap B+tree and free/remove
1581
         * reference from all frames found there.
1582
         */
1495 jermar 1583
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1584
            btree_node_t *node;
1495 jermar 1585
            int i;
1409 jermar 1586
 
1495 jermar 1587
            node = list_get_instance(cur, btree_node_t, leaf_link);
1588
            for (i = 0; i < node->keys; i++)
1780 jermar 1589
                frame_free((uintptr_t) node->value[i]);
1409 jermar 1590
        }
1591
 
1592
    }
1593
    mutex_unlock(&sh_info->lock);
1594
 
1595
    if (dealloc) {
1596
        btree_destroy(&sh_info->pagemap);
1597
        free(sh_info);
1598
    }
1599
}
1600
 
1235 jermar 1601
/*
1602
 * Address space related syscalls.
1603
 */
1604
 
1605
/** Wrapper for as_area_create(). */
1780 jermar 1606
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1607
{
1424 jermar 1608
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1609
        return (unative_t) address;
1235 jermar 1610
    else
1780 jermar 1611
        return (unative_t) -1;
1235 jermar 1612
}
1613
 
1793 jermar 1614
/** Wrapper for as_area_resize(). */
1780 jermar 1615
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1616
{
1780 jermar 1617
    return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1618
}
1619
 
1793 jermar 1620
/** Wrapper for as_area_destroy(). */
1780 jermar 1621
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1622
{
1780 jermar 1623
    return (unative_t) as_area_destroy(AS, address);
1306 jermar 1624
}
1702 cejka 1625
 
1914 jermar 1626
/** Print out information about address space.
1627
 *
1628
 * @param as Address space.
1629
 */
1630
void as_print(as_t *as)
1631
{
1632
    ipl_t ipl;
1633
 
1634
    ipl = interrupts_disable();
1635
    mutex_lock(&as->lock);
1636
 
1637
    /* print out info about address space areas */
1638
    link_t *cur;
1639
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1915 jermar 1640
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1914 jermar 1641
 
1642
        int i;
1643
        for (i = 0; i < node->keys; i++) {
1915 jermar 1644
            as_area_t *area = node->value[i];
1914 jermar 1645
 
1646
            mutex_lock(&area->lock);
1647
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1648
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1649
            mutex_unlock(&area->lock);
1650
        }
1651
    }
1652
 
1653
    mutex_unlock(&as->lock);
1654
    interrupts_restore(ipl);
1655
}
1656
 
1757 jermar 1657
/** @}
1702 cejka 1658
 */