Subversion Repositories HelenOS

Rev

Rev 1954 | Rev 2009 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
1757 jermar 81
/**
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
84
 */
756 jermar 85
as_operations_t *as_operations = NULL;
703 jermar 86
 
1890 jermar 87
/**
88
 * Slab for as_t objects.
89
 */
90
static slab_cache_t *as_slab;
91
 
1415 jermar 92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 94
 
95
/**
96
 * This list contains address spaces that are not active on any
97
 * processor and that have valid ASID.
98
 */
99
LIST_INITIALIZE(inactive_as_with_asid_head);
100
 
757 jermar 101
/** Kernel address space. */
102
as_t *AS_KERNEL = NULL;
103
 
1235 jermar 104
static int area_flags_to_page_flags(int aflags);
1780 jermar 105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 107
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 108
 
1891 jermar 109
static int as_constructor(void *obj, int flags)
110
{
111
    as_t *as = (as_t *) obj;
112
    int rc;
113
 
114
    link_initialize(&as->inactive_as_with_asid_link);
115
    mutex_initialize(&as->lock);   
116
 
117
    rc = as_constructor_arch(as, flags);
118
 
119
    return rc;
120
}
121
 
122
static int as_destructor(void *obj)
123
{
124
    as_t *as = (as_t *) obj;
125
 
126
    return as_destructor_arch(as);
127
}
128
 
756 jermar 129
/** Initialize address space subsystem. */
130
void as_init(void)
131
{
132
    as_arch_init();
1890 jermar 133
 
1891 jermar 134
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 136
 
789 palkovsky 137
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 138
    if (!AS_KERNEL)
139
        panic("can't create kernel address space\n");
140
 
756 jermar 141
}
142
 
757 jermar 143
/** Create address space.
144
 *
145
 * @param flags Flags that influence way in wich the address space is created.
146
 */
756 jermar 147
as_t *as_create(int flags)
703 jermar 148
{
149
    as_t *as;
150
 
1890 jermar 151
    as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 152
    (void) as_create_arch(as, 0);
153
 
1147 jermar 154
    btree_create(&as->as_area_btree);
822 palkovsky 155
 
156
    if (flags & FLAG_AS_KERNEL)
157
        as->asid = ASID_KERNEL;
158
    else
159
        as->asid = ASID_INVALID;
160
 
1468 jermar 161
    as->refcount = 0;
1415 jermar 162
    as->cpu_refcount = 0;
822 palkovsky 163
    as->page_table = page_table_create(flags);
703 jermar 164
 
165
    return as;
166
}
167
 
1468 jermar 168
/** Destroy adress space.
169
 *
170
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171
 * the address space can be destroyed.
172
 */
173
void as_destroy(as_t *as)
973 palkovsky 174
{
1468 jermar 175
    ipl_t ipl;
1594 jermar 176
    bool cond;
973 palkovsky 177
 
1468 jermar 178
    ASSERT(as->refcount == 0);
179
 
180
    /*
181
     * Since there is no reference to this area,
182
     * it is safe not to lock its mutex.
183
     */
184
    ipl = interrupts_disable();
185
    spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 186
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 187
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 188
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 189
        asid_put(as->asid);
190
    }
191
    spinlock_unlock(&inactive_as_with_asid_lock);
192
 
193
    /*
194
     * Destroy address space areas of the address space.
1954 jermar 195
     * The B+tree must be walked carefully because it is
1594 jermar 196
     * also being destroyed.
1468 jermar 197
     */
1594 jermar 198
    for (cond = true; cond; ) {
1468 jermar 199
        btree_node_t *node;
1594 jermar 200
 
201
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
203
 
204
        if ((cond = node->keys)) {
205
            as_area_destroy(as, node->key[0]);
206
        }
1468 jermar 207
    }
1495 jermar 208
 
1483 jermar 209
    btree_destroy(&as->as_area_btree);
1468 jermar 210
    page_table_destroy(as->page_table);
211
 
212
    interrupts_restore(ipl);
213
 
1890 jermar 214
    slab_free(as_slab, as);
973 palkovsky 215
}
216
 
703 jermar 217
/** Create address space area of common attributes.
218
 *
219
 * The created address space area is added to the target address space.
220
 *
221
 * @param as Target address space.
1239 jermar 222
 * @param flags Flags of the area memory.
1048 jermar 223
 * @param size Size of area.
703 jermar 224
 * @param base Base address of area.
1239 jermar 225
 * @param attrs Attributes of the area.
1409 jermar 226
 * @param backend Address space area backend. NULL if no backend is used.
227
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 228
 *
229
 * @return Address space area on success or NULL on failure.
230
 */
1780 jermar 231
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 232
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 233
{
234
    ipl_t ipl;
235
    as_area_t *a;
236
 
237
    if (base % PAGE_SIZE)
1048 jermar 238
        return NULL;
239
 
1233 jermar 240
    if (!size)
241
        return NULL;
242
 
1048 jermar 243
    /* Writeable executable areas are not supported. */
244
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245
        return NULL;
703 jermar 246
 
247
    ipl = interrupts_disable();
1380 jermar 248
    mutex_lock(&as->lock);
703 jermar 249
 
1048 jermar 250
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 251
        mutex_unlock(&as->lock);
1048 jermar 252
        interrupts_restore(ipl);
253
        return NULL;
254
    }
703 jermar 255
 
822 palkovsky 256
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 257
 
1380 jermar 258
    mutex_initialize(&a->lock);
822 palkovsky 259
 
1424 jermar 260
    a->as = as;
1026 jermar 261
    a->flags = flags;
1239 jermar 262
    a->attributes = attrs;
1048 jermar 263
    a->pages = SIZE2FRAMES(size);
822 palkovsky 264
    a->base = base;
1409 jermar 265
    a->sh_info = NULL;
266
    a->backend = backend;
1424 jermar 267
    if (backend_data)
268
        a->backend_data = *backend_data;
269
    else
1780 jermar 270
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 271
 
1387 jermar 272
    btree_create(&a->used_space);
822 palkovsky 273
 
1147 jermar 274
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 275
 
1380 jermar 276
    mutex_unlock(&as->lock);
703 jermar 277
    interrupts_restore(ipl);
704 jermar 278
 
703 jermar 279
    return a;
280
}
281
 
1235 jermar 282
/** Find address space area and change it.
283
 *
284
 * @param as Address space.
285
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286
 * @param size New size of the virtual memory block starting at address.
287
 * @param flags Flags influencing the remap operation. Currently unused.
288
 *
1306 jermar 289
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 290
 */
1780 jermar 291
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 292
{
1306 jermar 293
    as_area_t *area;
1235 jermar 294
    ipl_t ipl;
295
    size_t pages;
296
 
297
    ipl = interrupts_disable();
1380 jermar 298
    mutex_lock(&as->lock);
1235 jermar 299
 
300
    /*
301
     * Locate the area.
302
     */
303
    area = find_area_and_lock(as, address);
304
    if (!area) {
1380 jermar 305
        mutex_unlock(&as->lock);
1235 jermar 306
        interrupts_restore(ipl);
1306 jermar 307
        return ENOENT;
1235 jermar 308
    }
309
 
1424 jermar 310
    if (area->backend == &phys_backend) {
1235 jermar 311
        /*
312
         * Remapping of address space areas associated
313
         * with memory mapped devices is not supported.
314
         */
1380 jermar 315
        mutex_unlock(&area->lock);
316
        mutex_unlock(&as->lock);
1235 jermar 317
        interrupts_restore(ipl);
1306 jermar 318
        return ENOTSUP;
1235 jermar 319
    }
1409 jermar 320
    if (area->sh_info) {
321
        /*
322
         * Remapping of shared address space areas
323
         * is not supported.
324
         */
325
        mutex_unlock(&area->lock);
326
        mutex_unlock(&as->lock);
327
        interrupts_restore(ipl);
328
        return ENOTSUP;
329
    }
1235 jermar 330
 
331
    pages = SIZE2FRAMES((address - area->base) + size);
332
    if (!pages) {
333
        /*
334
         * Zero size address space areas are not allowed.
335
         */
1380 jermar 336
        mutex_unlock(&area->lock);
337
        mutex_unlock(&as->lock);
1235 jermar 338
        interrupts_restore(ipl);
1306 jermar 339
        return EPERM;
1235 jermar 340
    }
341
 
342
    if (pages < area->pages) {
1403 jermar 343
        bool cond;
1780 jermar 344
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 345
 
346
        /*
347
         * Shrinking the area.
348
         * No need to check for overlaps.
349
         */
1403 jermar 350
 
351
        /*
1436 jermar 352
         * Start TLB shootdown sequence.
353
         */
354
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
355
 
356
        /*
1403 jermar 357
         * Remove frames belonging to used space starting from
358
         * the highest addresses downwards until an overlap with
359
         * the resized address space area is found. Note that this
360
         * is also the right way to remove part of the used_space
361
         * B+tree leaf list.
362
         */    
363
        for (cond = true; cond;) {
364
            btree_node_t *node;
365
 
366
            ASSERT(!list_empty(&area->used_space.leaf_head));
367
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368
            if ((cond = (bool) node->keys)) {
1780 jermar 369
                uintptr_t b = node->key[node->keys - 1];
1403 jermar 370
                count_t c = (count_t) node->value[node->keys - 1];
371
                int i = 0;
1235 jermar 372
 
1403 jermar 373
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
374
 
375
                    if (b + c*PAGE_SIZE <= start_free) {
376
                        /*
377
                         * The whole interval fits completely
378
                         * in the resized address space area.
379
                         */
380
                        break;
381
                    }
382
 
383
                    /*
384
                     * Part of the interval corresponding to b and c
385
                     * overlaps with the resized address space area.
386
                     */
387
 
388
                    cond = false;   /* we are almost done */
389
                    i = (start_free - b) >> PAGE_WIDTH;
390
                    if (!used_space_remove(area, start_free, c - i))
1889 jermar 391
                        panic("Could not remove used space.\n");
1403 jermar 392
                } else {
393
                    /*
394
                     * The interval of used space can be completely removed.
395
                     */
396
                    if (!used_space_remove(area, b, c))
397
                        panic("Could not remove used space.\n");
398
                }
399
 
400
                for (; i < c; i++) {
401
                    pte_t *pte;
402
 
403
                    page_table_lock(as, false);
404
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
405
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 406
                    if (area->backend && area->backend->frame_free) {
407
                        area->backend->frame_free(area,
1409 jermar 408
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
409
                    }
1403 jermar 410
                    page_mapping_remove(as, b + i*PAGE_SIZE);
411
                    page_table_unlock(as, false);
412
                }
1235 jermar 413
            }
414
        }
1436 jermar 415
 
1235 jermar 416
        /*
1436 jermar 417
         * Finish TLB shootdown sequence.
1235 jermar 418
         */
1954 jermar 419
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 420
        tlb_shootdown_finalize();
1889 jermar 421
 
422
        /*
423
         * Invalidate software translation caches (e.g. TSB on sparc64).
424
         */
425
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 426
    } else {
427
        /*
428
         * Growing the area.
429
         * Check for overlaps with other address space areas.
430
         */
431
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 432
            mutex_unlock(&area->lock);
433
            mutex_unlock(&as->lock);       
1235 jermar 434
            interrupts_restore(ipl);
1306 jermar 435
            return EADDRNOTAVAIL;
1235 jermar 436
        }
437
    }
438
 
439
    area->pages = pages;
440
 
1380 jermar 441
    mutex_unlock(&area->lock);
442
    mutex_unlock(&as->lock);
1235 jermar 443
    interrupts_restore(ipl);
444
 
1306 jermar 445
    return 0;
1235 jermar 446
}
447
 
1306 jermar 448
/** Destroy address space area.
449
 *
450
 * @param as Address space.
451
 * @param address Address withing the area to be deleted.
452
 *
453
 * @return Zero on success or a value from @ref errno.h on failure.
454
 */
1780 jermar 455
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 456
{
457
    as_area_t *area;
1780 jermar 458
    uintptr_t base;
1495 jermar 459
    link_t *cur;
1306 jermar 460
    ipl_t ipl;
461
 
462
    ipl = interrupts_disable();
1380 jermar 463
    mutex_lock(&as->lock);
1306 jermar 464
 
465
    area = find_area_and_lock(as, address);
466
    if (!area) {
1380 jermar 467
        mutex_unlock(&as->lock);
1306 jermar 468
        interrupts_restore(ipl);
469
        return ENOENT;
470
    }
471
 
1403 jermar 472
    base = area->base;
473
 
1411 jermar 474
    /*
1436 jermar 475
     * Start TLB shootdown sequence.
476
     */
1889 jermar 477
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 478
 
479
    /*
1411 jermar 480
     * Visit only the pages mapped by used_space B+tree.
481
     */
1495 jermar 482
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 483
        btree_node_t *node;
1495 jermar 484
        int i;
1403 jermar 485
 
1495 jermar 486
        node = list_get_instance(cur, btree_node_t, leaf_link);
487
        for (i = 0; i < node->keys; i++) {
1780 jermar 488
            uintptr_t b = node->key[i];
1495 jermar 489
            count_t j;
1411 jermar 490
            pte_t *pte;
1403 jermar 491
 
1495 jermar 492
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 493
                page_table_lock(as, false);
1495 jermar 494
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 495
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 496
                if (area->backend && area->backend->frame_free) {
497
                    area->backend->frame_free(area,
1495 jermar 498
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 499
                }
1889 jermar 500
                page_mapping_remove(as, b + j*PAGE_SIZE);              
1411 jermar 501
                page_table_unlock(as, false);
1306 jermar 502
            }
503
        }
504
    }
1403 jermar 505
 
1306 jermar 506
    /*
1436 jermar 507
     * Finish TLB shootdown sequence.
1306 jermar 508
     */
1889 jermar 509
    tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 510
    tlb_shootdown_finalize();
1436 jermar 511
 
1889 jermar 512
    /*
513
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
514
     */
515
    as_invalidate_translation_cache(as, area->base, area->pages);
516
 
1436 jermar 517
    btree_destroy(&area->used_space);
1306 jermar 518
 
1309 jermar 519
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 520
 
521
    if (area->sh_info)
522
        sh_info_remove_reference(area->sh_info);
523
 
1380 jermar 524
    mutex_unlock(&area->lock);
1306 jermar 525
 
526
    /*
527
     * Remove the empty area from address space.
528
     */
1889 jermar 529
    btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 530
 
1309 jermar 531
    free(area);
532
 
1889 jermar 533
    mutex_unlock(&as->lock);
1306 jermar 534
    interrupts_restore(ipl);
535
    return 0;
536
}
537
 
1413 jermar 538
/** Share address space area with another or the same address space.
1235 jermar 539
 *
1424 jermar 540
 * Address space area mapping is shared with a new address space area.
541
 * If the source address space area has not been shared so far,
542
 * a new sh_info is created. The new address space area simply gets the
543
 * sh_info of the source area. The process of duplicating the
544
 * mapping is done through the backend share function.
1413 jermar 545
 *
1417 jermar 546
 * @param src_as Pointer to source address space.
1239 jermar 547
 * @param src_base Base address of the source address space area.
1417 jermar 548
 * @param acc_size Expected size of the source area.
1428 palkovsky 549
 * @param dst_as Pointer to destination address space.
1417 jermar 550
 * @param dst_base Target base address.
551
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 552
 *
2007 jermar 553
 * @return Zero on success or ENOENT if there is no such task or if there is no
554
 * such address space area, EPERM if there was a problem in accepting the area
555
 * or ENOMEM if there was a problem in allocating destination address space
556
 * area. ENOTSUP is returned if the address space area backend does not support
557
 * sharing. It can be also returned if the architecture uses virtually indexed
558
 * caches and the source and destination areas start at pages with different
559
 * page colors.
1235 jermar 560
 */
1780 jermar 561
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
562
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 563
{
564
    ipl_t ipl;
1239 jermar 565
    int src_flags;
566
    size_t src_size;
567
    as_area_t *src_area, *dst_area;
1413 jermar 568
    share_info_t *sh_info;
1424 jermar 569
    mem_backend_t *src_backend;
570
    mem_backend_data_t src_backend_data;
1434 palkovsky 571
 
1235 jermar 572
    ipl = interrupts_disable();
1380 jermar 573
    mutex_lock(&src_as->lock);
1329 palkovsky 574
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 575
    if (!src_area) {
1238 jermar 576
        /*
577
         * Could not find the source address space area.
578
         */
1380 jermar 579
        mutex_unlock(&src_as->lock);
1238 jermar 580
        interrupts_restore(ipl);
581
        return ENOENT;
582
    }
1413 jermar 583
 
2007 jermar 584
#if 0   /* disable the check for now */
585
#ifdef CONFIG_VIRT_IDX_CACHE
586
    if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
587
        /*
588
         * Refuse to create illegal address alias.
589
         */
590
        mutex_unlock(&src_area->lock);
591
        mutex_unlock(&src_as->lock);
592
        interrupts_restore(ipl);
593
        return ENOTSUP;
594
    }
595
#endif /* CONFIG_VIRT_IDX_CACHE */
596
#endif
597
 
1424 jermar 598
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 599
        /*
1851 jermar 600
         * There is no backend or the backend does not
1424 jermar 601
         * know how to share the area.
1413 jermar 602
         */
603
        mutex_unlock(&src_area->lock);
604
        mutex_unlock(&src_as->lock);
605
        interrupts_restore(ipl);
606
        return ENOTSUP;
607
    }
608
 
1239 jermar 609
    src_size = src_area->pages * PAGE_SIZE;
610
    src_flags = src_area->flags;
1424 jermar 611
    src_backend = src_area->backend;
612
    src_backend_data = src_area->backend_data;
1544 palkovsky 613
 
614
    /* Share the cacheable flag from the original mapping */
615
    if (src_flags & AS_AREA_CACHEABLE)
616
        dst_flags_mask |= AS_AREA_CACHEABLE;
617
 
1461 palkovsky 618
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 619
        mutex_unlock(&src_area->lock);
620
        mutex_unlock(&src_as->lock);
1235 jermar 621
        interrupts_restore(ipl);
622
        return EPERM;
623
    }
1413 jermar 624
 
1235 jermar 625
    /*
1413 jermar 626
     * Now we are committed to sharing the area.
1954 jermar 627
     * First, prepare the area for sharing.
1413 jermar 628
     * Then it will be safe to unlock it.
629
     */
630
    sh_info = src_area->sh_info;
631
    if (!sh_info) {
632
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
633
        mutex_initialize(&sh_info->lock);
634
        sh_info->refcount = 2;
635
        btree_create(&sh_info->pagemap);
636
        src_area->sh_info = sh_info;
637
    } else {
638
        mutex_lock(&sh_info->lock);
639
        sh_info->refcount++;
640
        mutex_unlock(&sh_info->lock);
641
    }
642
 
1424 jermar 643
    src_area->backend->share(src_area);
1413 jermar 644
 
645
    mutex_unlock(&src_area->lock);
646
    mutex_unlock(&src_as->lock);
647
 
648
    /*
1239 jermar 649
     * Create copy of the source address space area.
650
     * The destination area is created with AS_AREA_ATTR_PARTIAL
651
     * attribute set which prevents race condition with
652
     * preliminary as_page_fault() calls.
1417 jermar 653
     * The flags of the source area are masked against dst_flags_mask
654
     * to support sharing in less privileged mode.
1235 jermar 655
     */
1461 palkovsky 656
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 657
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 658
    if (!dst_area) {
1235 jermar 659
        /*
660
         * Destination address space area could not be created.
661
         */
1413 jermar 662
        sh_info_remove_reference(sh_info);
663
 
1235 jermar 664
        interrupts_restore(ipl);
665
        return ENOMEM;
666
    }
667
 
668
    /*
1239 jermar 669
     * Now the destination address space area has been
670
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 671
     * attribute and set the sh_info.
1239 jermar 672
     */
1380 jermar 673
    mutex_lock(&dst_area->lock);
1239 jermar 674
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 675
    dst_area->sh_info = sh_info;
1380 jermar 676
    mutex_unlock(&dst_area->lock);
1235 jermar 677
 
678
    interrupts_restore(ipl);
679
 
680
    return 0;
681
}
682
 
1423 jermar 683
/** Check access mode for address space area.
684
 *
685
 * The address space area must be locked prior to this call.
686
 *
687
 * @param area Address space area.
688
 * @param access Access mode.
689
 *
690
 * @return False if access violates area's permissions, true otherwise.
691
 */
692
bool as_area_check_access(as_area_t *area, pf_access_t access)
693
{
694
    int flagmap[] = {
695
        [PF_ACCESS_READ] = AS_AREA_READ,
696
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
697
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
698
    };
699
 
700
    if (!(area->flags & flagmap[access]))
701
        return false;
702
 
703
    return true;
704
}
705
 
703 jermar 706
/** Handle page fault within the current address space.
707
 *
1409 jermar 708
 * This is the high-level page fault handler. It decides
709
 * whether the page fault can be resolved by any backend
710
 * and if so, it invokes the backend to resolve the page
711
 * fault.
712
 *
703 jermar 713
 * Interrupts are assumed disabled.
714
 *
715
 * @param page Faulting page.
1411 jermar 716
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 717
 * @param istate Pointer to interrupted state.
703 jermar 718
 *
1409 jermar 719
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
720
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 721
 */
1780 jermar 722
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 723
{
1044 jermar 724
    pte_t *pte;
977 jermar 725
    as_area_t *area;
703 jermar 726
 
1380 jermar 727
    if (!THREAD)
1409 jermar 728
        return AS_PF_FAULT;
1380 jermar 729
 
703 jermar 730
    ASSERT(AS);
1044 jermar 731
 
1380 jermar 732
    mutex_lock(&AS->lock);
977 jermar 733
    area = find_area_and_lock(AS, page);   
703 jermar 734
    if (!area) {
735
        /*
736
         * No area contained mapping for 'page'.
737
         * Signal page fault to low-level handler.
738
         */
1380 jermar 739
        mutex_unlock(&AS->lock);
1288 jermar 740
        goto page_fault;
703 jermar 741
    }
742
 
1239 jermar 743
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
744
        /*
745
         * The address space area is not fully initialized.
746
         * Avoid possible race by returning error.
747
         */
1380 jermar 748
        mutex_unlock(&area->lock);
749
        mutex_unlock(&AS->lock);
1288 jermar 750
        goto page_fault;       
1239 jermar 751
    }
752
 
1424 jermar 753
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 754
        /*
755
         * The address space area is not backed by any backend
756
         * or the backend cannot handle page faults.
757
         */
758
        mutex_unlock(&area->lock);
759
        mutex_unlock(&AS->lock);
760
        goto page_fault;       
761
    }
1179 jermar 762
 
1044 jermar 763
    page_table_lock(AS, false);
764
 
703 jermar 765
    /*
1044 jermar 766
     * To avoid race condition between two page faults
767
     * on the same address, we need to make sure
768
     * the mapping has not been already inserted.
769
     */
770
    if ((pte = page_mapping_find(AS, page))) {
771
        if (PTE_PRESENT(pte)) {
1423 jermar 772
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
773
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
774
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
775
                page_table_unlock(AS, false);
776
                mutex_unlock(&area->lock);
777
                mutex_unlock(&AS->lock);
778
                return AS_PF_OK;
779
            }
1044 jermar 780
        }
781
    }
1409 jermar 782
 
1044 jermar 783
    /*
1409 jermar 784
     * Resort to the backend page fault handler.
703 jermar 785
     */
1424 jermar 786
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 787
        page_table_unlock(AS, false);
788
        mutex_unlock(&area->lock);
789
        mutex_unlock(&AS->lock);
790
        goto page_fault;
791
    }
703 jermar 792
 
1044 jermar 793
    page_table_unlock(AS, false);
1380 jermar 794
    mutex_unlock(&area->lock);
795
    mutex_unlock(&AS->lock);
1288 jermar 796
    return AS_PF_OK;
797
 
798
page_fault:
799
    if (THREAD->in_copy_from_uspace) {
800
        THREAD->in_copy_from_uspace = false;
1780 jermar 801
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 802
    } else if (THREAD->in_copy_to_uspace) {
803
        THREAD->in_copy_to_uspace = false;
1780 jermar 804
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 805
    } else {
806
        return AS_PF_FAULT;
807
    }
808
 
809
    return AS_PF_DEFER;
703 jermar 810
}
811
 
823 jermar 812
/** Switch address spaces.
703 jermar 813
 *
1380 jermar 814
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 815
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 816
 *
823 jermar 817
 * @param old Old address space or NULL.
818
 * @param new New address space.
703 jermar 819
 */
823 jermar 820
void as_switch(as_t *old, as_t *new)
703 jermar 821
{
822
    ipl_t ipl;
823 jermar 823
    bool needs_asid = false;
703 jermar 824
 
825
    ipl = interrupts_disable();
1415 jermar 826
    spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 827
 
828
    /*
823 jermar 829
     * First, take care of the old address space.
830
     */
831
    if (old) {
1380 jermar 832
        mutex_lock_active(&old->lock);
1415 jermar 833
        ASSERT(old->cpu_refcount);
834
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 835
            /*
836
             * The old address space is no longer active on
837
             * any processor. It can be appended to the
838
             * list of inactive address spaces with assigned
839
             * ASID.
840
             */
841
             ASSERT(old->asid != ASID_INVALID);
842
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
843
        }
1380 jermar 844
        mutex_unlock(&old->lock);
1890 jermar 845
 
846
        /*
847
         * Perform architecture-specific tasks when the address space
848
         * is being removed from the CPU.
849
         */
850
        as_deinstall_arch(old);
823 jermar 851
    }
852
 
853
    /*
854
     * Second, prepare the new address space.
855
     */
1380 jermar 856
    mutex_lock_active(&new->lock);
1415 jermar 857
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 858
        if (new->asid != ASID_INVALID)
859
            list_remove(&new->inactive_as_with_asid_link);
860
        else
861
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
862
    }
863
    SET_PTL0_ADDRESS(new->page_table);
1380 jermar 864
    mutex_unlock(&new->lock);
823 jermar 865
 
866
    if (needs_asid) {
867
        /*
868
         * Allocation of new ASID was deferred
869
         * until now in order to avoid deadlock.
870
         */
871
        asid_t asid;
872
 
873
        asid = asid_get();
1380 jermar 874
        mutex_lock_active(&new->lock);
823 jermar 875
        new->asid = asid;
1380 jermar 876
        mutex_unlock(&new->lock);
823 jermar 877
    }
1415 jermar 878
    spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 879
    interrupts_restore(ipl);
880
 
881
    /*
703 jermar 882
     * Perform architecture-specific steps.
727 jermar 883
     * (e.g. write ASID to hardware register etc.)
703 jermar 884
     */
823 jermar 885
    as_install_arch(new);
703 jermar 886
 
823 jermar 887
    AS = new;
703 jermar 888
}
754 jermar 889
 
1235 jermar 890
/** Convert address space area flags to page flags.
754 jermar 891
 *
1235 jermar 892
 * @param aflags Flags of some address space area.
754 jermar 893
 *
1235 jermar 894
 * @return Flags to be passed to page_mapping_insert().
754 jermar 895
 */
1235 jermar 896
int area_flags_to_page_flags(int aflags)
754 jermar 897
{
898
    int flags;
899
 
1178 jermar 900
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 901
 
1235 jermar 902
    if (aflags & AS_AREA_READ)
1026 jermar 903
        flags |= PAGE_READ;
904
 
1235 jermar 905
    if (aflags & AS_AREA_WRITE)
1026 jermar 906
        flags |= PAGE_WRITE;
907
 
1235 jermar 908
    if (aflags & AS_AREA_EXEC)
1026 jermar 909
        flags |= PAGE_EXEC;
910
 
1424 jermar 911
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 912
        flags |= PAGE_CACHEABLE;
913
 
754 jermar 914
    return flags;
915
}
756 jermar 916
 
1235 jermar 917
/** Compute flags for virtual address translation subsytem.
918
 *
919
 * The address space area must be locked.
920
 * Interrupts must be disabled.
921
 *
922
 * @param a Address space area.
923
 *
924
 * @return Flags to be used in page_mapping_insert().
925
 */
1409 jermar 926
int as_area_get_flags(as_area_t *a)
1235 jermar 927
{
928
    return area_flags_to_page_flags(a->flags);
929
}
930
 
756 jermar 931
/** Create page table.
932
 *
933
 * Depending on architecture, create either address space
934
 * private or global page table.
935
 *
936
 * @param flags Flags saying whether the page table is for kernel address space.
937
 *
938
 * @return First entry of the page table.
939
 */
940
pte_t *page_table_create(int flags)
941
{
942
        ASSERT(as_operations);
943
        ASSERT(as_operations->page_table_create);
944
 
945
        return as_operations->page_table_create(flags);
946
}
977 jermar 947
 
1468 jermar 948
/** Destroy page table.
949
 *
950
 * Destroy page table in architecture specific way.
951
 *
952
 * @param page_table Physical address of PTL0.
953
 */
954
void page_table_destroy(pte_t *page_table)
955
{
956
        ASSERT(as_operations);
957
        ASSERT(as_operations->page_table_destroy);
958
 
959
        as_operations->page_table_destroy(page_table);
960
}
961
 
1044 jermar 962
/** Lock page table.
963
 *
964
 * This function should be called before any page_mapping_insert(),
965
 * page_mapping_remove() and page_mapping_find().
966
 *
967
 * Locking order is such that address space areas must be locked
968
 * prior to this call. Address space can be locked prior to this
969
 * call in which case the lock argument is false.
970
 *
971
 * @param as Address space.
1248 jermar 972
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 973
 */
974
void page_table_lock(as_t *as, bool lock)
975
{
976
    ASSERT(as_operations);
977
    ASSERT(as_operations->page_table_lock);
978
 
979
    as_operations->page_table_lock(as, lock);
980
}
981
 
982
/** Unlock page table.
983
 *
984
 * @param as Address space.
1248 jermar 985
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 986
 */
987
void page_table_unlock(as_t *as, bool unlock)
988
{
989
    ASSERT(as_operations);
990
    ASSERT(as_operations->page_table_unlock);
991
 
992
    as_operations->page_table_unlock(as, unlock);
993
}
994
 
977 jermar 995
 
996
/** Find address space area and lock it.
997
 *
998
 * The address space must be locked and interrupts must be disabled.
999
 *
1000
 * @param as Address space.
1001
 * @param va Virtual address.
1002
 *
1003
 * @return Locked address space area containing va on success or NULL on failure.
1004
 */
1780 jermar 1005
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1006
{
1007
    as_area_t *a;
1147 jermar 1008
    btree_node_t *leaf, *lnode;
1009
    int i;
977 jermar 1010
 
1147 jermar 1011
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1012
    if (a) {
1013
        /* va is the base address of an address space area */
1380 jermar 1014
        mutex_lock(&a->lock);
1147 jermar 1015
        return a;
1016
    }
1017
 
1018
    /*
1150 jermar 1019
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1020
     * to find out whether this is a miss or va belongs to an address
1021
     * space area found there.
1022
     */
1023
 
1024
    /* First, search the leaf node itself. */
1025
    for (i = 0; i < leaf->keys; i++) {
1026
        a = (as_area_t *) leaf->value[i];
1380 jermar 1027
        mutex_lock(&a->lock);
1147 jermar 1028
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1029
            return a;
1030
        }
1380 jermar 1031
        mutex_unlock(&a->lock);
1147 jermar 1032
    }
977 jermar 1033
 
1147 jermar 1034
    /*
1150 jermar 1035
     * Second, locate the left neighbour and test its last record.
1148 jermar 1036
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 1037
     */
1150 jermar 1038
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1039
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1040
        mutex_lock(&a->lock);
1147 jermar 1041
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1042
            return a;
1147 jermar 1043
        }
1380 jermar 1044
        mutex_unlock(&a->lock);
977 jermar 1045
    }
1046
 
1047
    return NULL;
1048
}
1048 jermar 1049
 
1050
/** Check area conflicts with other areas.
1051
 *
1052
 * The address space must be locked and interrupts must be disabled.
1053
 *
1054
 * @param as Address space.
1055
 * @param va Starting virtual address of the area being tested.
1056
 * @param size Size of the area being tested.
1057
 * @param avoid_area Do not touch this area.
1058
 *
1059
 * @return True if there is no conflict, false otherwise.
1060
 */
1780 jermar 1061
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1062
{
1063
    as_area_t *a;
1147 jermar 1064
    btree_node_t *leaf, *node;
1065
    int i;
1048 jermar 1066
 
1070 jermar 1067
    /*
1068
     * We don't want any area to have conflicts with NULL page.
1069
     */
1070
    if (overlaps(va, size, NULL, PAGE_SIZE))
1071
        return false;
1072
 
1147 jermar 1073
    /*
1074
     * The leaf node is found in O(log n), where n is proportional to
1075
     * the number of address space areas belonging to as.
1076
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1077
     * record in the left neighbour, the leftmost record in the right
1078
     * neighbour and all records in the leaf node itself.
1147 jermar 1079
     */
1048 jermar 1080
 
1147 jermar 1081
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1082
        if (a != avoid_area)
1083
            return false;
1084
    }
1085
 
1086
    /* First, check the two border cases. */
1150 jermar 1087
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1088
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1089
        mutex_lock(&a->lock);
1147 jermar 1090
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1091
            mutex_unlock(&a->lock);
1147 jermar 1092
            return false;
1093
        }
1380 jermar 1094
        mutex_unlock(&a->lock);
1147 jermar 1095
    }
1150 jermar 1096
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1097
        a = (as_area_t *) node->value[0];
1380 jermar 1098
        mutex_lock(&a->lock);
1147 jermar 1099
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1100
            mutex_unlock(&a->lock);
1147 jermar 1101
            return false;
1102
        }
1380 jermar 1103
        mutex_unlock(&a->lock);
1147 jermar 1104
    }
1105
 
1106
    /* Second, check the leaf node. */
1107
    for (i = 0; i < leaf->keys; i++) {
1108
        a = (as_area_t *) leaf->value[i];
1109
 
1048 jermar 1110
        if (a == avoid_area)
1111
            continue;
1147 jermar 1112
 
1380 jermar 1113
        mutex_lock(&a->lock);
1147 jermar 1114
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1115
            mutex_unlock(&a->lock);
1147 jermar 1116
            return false;
1117
        }
1380 jermar 1118
        mutex_unlock(&a->lock);
1048 jermar 1119
    }
1120
 
1070 jermar 1121
    /*
1122
     * So far, the area does not conflict with other areas.
1123
     * Check if it doesn't conflict with kernel address space.
1124
     */  
1125
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1126
        return !overlaps(va, size,
1127
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1128
    }
1129
 
1048 jermar 1130
    return true;
1131
}
1235 jermar 1132
 
1380 jermar 1133
/** Return size of the address space area with given base.  */
1780 jermar 1134
size_t as_get_size(uintptr_t base)
1329 palkovsky 1135
{
1136
    ipl_t ipl;
1137
    as_area_t *src_area;
1138
    size_t size;
1139
 
1140
    ipl = interrupts_disable();
1141
    src_area = find_area_and_lock(AS, base);
1142
    if (src_area){
1143
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1144
        mutex_unlock(&src_area->lock);
1329 palkovsky 1145
    } else {
1146
        size = 0;
1147
    }
1148
    interrupts_restore(ipl);
1149
    return size;
1150
}
1151
 
1387 jermar 1152
/** Mark portion of address space area as used.
1153
 *
1154
 * The address space area must be already locked.
1155
 *
1156
 * @param a Address space area.
1157
 * @param page First page to be marked.
1158
 * @param count Number of page to be marked.
1159
 *
1160
 * @return 0 on failure and 1 on success.
1161
 */
1780 jermar 1162
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1163
{
1164
    btree_node_t *leaf, *node;
1165
    count_t pages;
1166
    int i;
1167
 
1168
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1169
    ASSERT(count);
1170
 
1171
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1172
    if (pages) {
1173
        /*
1174
         * We hit the beginning of some used space.
1175
         */
1176
        return 0;
1177
    }
1178
 
1437 jermar 1179
    if (!leaf->keys) {
1180
        btree_insert(&a->used_space, page, (void *) count, leaf);
1181
        return 1;
1182
    }
1183
 
1387 jermar 1184
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1185
    if (node) {
1780 jermar 1186
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1187
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1188
 
1189
        /*
1190
         * Examine the possibility that the interval fits
1191
         * somewhere between the rightmost interval of
1192
         * the left neigbour and the first interval of the leaf.
1193
         */
1194
 
1195
        if (page >= right_pg) {
1196
            /* Do nothing. */
1197
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1198
            /* The interval intersects with the left interval. */
1199
            return 0;
1200
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1201
            /* The interval intersects with the right interval. */
1202
            return 0;          
1203
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1204
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1205
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1206
            btree_remove(&a->used_space, right_pg, leaf);
1207
            return 1;
1208
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1209
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1210
            node->value[node->keys - 1] += count;
1387 jermar 1211
            return 1;
1212
        } else if (page + count*PAGE_SIZE == right_pg) {
1213
            /*
1214
             * The interval can be addded by simply moving base of the right
1215
             * interval down and increasing its size accordingly.
1216
             */
1403 jermar 1217
            leaf->value[0] += count;
1387 jermar 1218
            leaf->key[0] = page;
1219
            return 1;
1220
        } else {
1221
            /*
1222
             * The interval is between both neigbouring intervals,
1223
             * but cannot be merged with any of them.
1224
             */
1225
            btree_insert(&a->used_space, page, (void *) count, leaf);
1226
            return 1;
1227
        }
1228
    } else if (page < leaf->key[0]) {
1780 jermar 1229
        uintptr_t right_pg = leaf->key[0];
1387 jermar 1230
        count_t right_cnt = (count_t) leaf->value[0];
1231
 
1232
        /*
1233
         * Investigate the border case in which the left neighbour does not
1234
         * exist but the interval fits from the left.
1235
         */
1236
 
1237
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1238
            /* The interval intersects with the right interval. */
1239
            return 0;
1240
        } else if (page + count*PAGE_SIZE == right_pg) {
1241
            /*
1242
             * The interval can be added by moving the base of the right interval down
1243
             * and increasing its size accordingly.
1244
             */
1245
            leaf->key[0] = page;
1403 jermar 1246
            leaf->value[0] += count;
1387 jermar 1247
            return 1;
1248
        } else {
1249
            /*
1250
             * The interval doesn't adjoin with the right interval.
1251
             * It must be added individually.
1252
             */
1253
            btree_insert(&a->used_space, page, (void *) count, leaf);
1254
            return 1;
1255
        }
1256
    }
1257
 
1258
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1259
    if (node) {
1780 jermar 1260
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1261
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1262
 
1263
        /*
1264
         * Examine the possibility that the interval fits
1265
         * somewhere between the leftmost interval of
1266
         * the right neigbour and the last interval of the leaf.
1267
         */
1268
 
1269
        if (page < left_pg) {
1270
            /* Do nothing. */
1271
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1272
            /* The interval intersects with the left interval. */
1273
            return 0;
1274
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1275
            /* The interval intersects with the right interval. */
1276
            return 0;          
1277
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1278
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1279
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1280
            btree_remove(&a->used_space, right_pg, node);
1281
            return 1;
1282
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1283
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1284
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1285
            return 1;
1286
        } else if (page + count*PAGE_SIZE == right_pg) {
1287
            /*
1288
             * The interval can be addded by simply moving base of the right
1289
             * interval down and increasing its size accordingly.
1290
             */
1403 jermar 1291
            node->value[0] += count;
1387 jermar 1292
            node->key[0] = page;
1293
            return 1;
1294
        } else {
1295
            /*
1296
             * The interval is between both neigbouring intervals,
1297
             * but cannot be merged with any of them.
1298
             */
1299
            btree_insert(&a->used_space, page, (void *) count, leaf);
1300
            return 1;
1301
        }
1302
    } else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1303
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1304
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1305
 
1306
        /*
1307
         * Investigate the border case in which the right neighbour does not
1308
         * exist but the interval fits from the right.
1309
         */
1310
 
1311
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1312
            /* The interval intersects with the left interval. */
1387 jermar 1313
            return 0;
1314
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1315
            /* The interval can be added by growing the left interval. */
1403 jermar 1316
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1317
            return 1;
1318
        } else {
1319
            /*
1320
             * The interval doesn't adjoin with the left interval.
1321
             * It must be added individually.
1322
             */
1323
            btree_insert(&a->used_space, page, (void *) count, leaf);
1324
            return 1;
1325
        }
1326
    }
1327
 
1328
    /*
1329
     * Note that if the algorithm made it thus far, the interval can fit only
1330
     * between two other intervals of the leaf. The two border cases were already
1331
     * resolved.
1332
     */
1333
    for (i = 1; i < leaf->keys; i++) {
1334
        if (page < leaf->key[i]) {
1780 jermar 1335
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1336
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1337
 
1338
            /*
1339
             * The interval fits between left_pg and right_pg.
1340
             */
1341
 
1342
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1343
                /* The interval intersects with the left interval. */
1344
                return 0;
1345
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1346
                /* The interval intersects with the right interval. */
1347
                return 0;          
1348
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1349
                /* The interval can be added by merging the two already present intervals. */
1403 jermar 1350
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1351
                btree_remove(&a->used_space, right_pg, leaf);
1352
                return 1;
1353
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1354
                /* The interval can be added by simply growing the left interval. */
1403 jermar 1355
                leaf->value[i - 1] += count;
1387 jermar 1356
                return 1;
1357
            } else if (page + count*PAGE_SIZE == right_pg) {
1358
                /*
1359
                     * The interval can be addded by simply moving base of the right
1360
                 * interval down and increasing its size accordingly.
1361
                 */
1403 jermar 1362
                leaf->value[i] += count;
1387 jermar 1363
                leaf->key[i] = page;
1364
                return 1;
1365
            } else {
1366
                /*
1367
                 * The interval is between both neigbouring intervals,
1368
                 * but cannot be merged with any of them.
1369
                 */
1370
                btree_insert(&a->used_space, page, (void *) count, leaf);
1371
                return 1;
1372
            }
1373
        }
1374
    }
1375
 
1735 decky 1376
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1377
}
1378
 
1379
/** Mark portion of address space area as unused.
1380
 *
1381
 * The address space area must be already locked.
1382
 *
1383
 * @param a Address space area.
1384
 * @param page First page to be marked.
1385
 * @param count Number of page to be marked.
1386
 *
1387
 * @return 0 on failure and 1 on success.
1388
 */
1780 jermar 1389
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1390
{
1391
    btree_node_t *leaf, *node;
1392
    count_t pages;
1393
    int i;
1394
 
1395
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1396
    ASSERT(count);
1397
 
1398
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1399
    if (pages) {
1400
        /*
1401
         * We are lucky, page is the beginning of some interval.
1402
         */
1403
        if (count > pages) {
1404
            return 0;
1405
        } else if (count == pages) {
1406
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1407
            return 1;
1387 jermar 1408
        } else {
1409
            /*
1410
             * Find the respective interval.
1411
             * Decrease its size and relocate its start address.
1412
             */
1413
            for (i = 0; i < leaf->keys; i++) {
1414
                if (leaf->key[i] == page) {
1415
                    leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1416
                    leaf->value[i] -= count;
1387 jermar 1417
                    return 1;
1418
                }
1419
            }
1420
            goto error;
1421
        }
1422
    }
1423
 
1424
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1425
    if (node && page < leaf->key[0]) {
1780 jermar 1426
        uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1427
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1428
 
1429
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1430
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1431
                /*
1432
                 * The interval is contained in the rightmost interval
1433
                 * of the left neighbour and can be removed by
1434
                 * updating the size of the bigger interval.
1435
                 */
1403 jermar 1436
                node->value[node->keys - 1] -= count;
1387 jermar 1437
                return 1;
1438
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1439
                count_t new_cnt;
1387 jermar 1440
 
1441
                /*
1442
                 * The interval is contained in the rightmost interval
1443
                 * of the left neighbour but its removal requires
1444
                 * both updating the size of the original interval and
1445
                 * also inserting a new interval.
1446
                 */
1403 jermar 1447
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1448
                node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1449
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1450
                return 1;
1451
            }
1452
        }
1453
        return 0;
1454
    } else if (page < leaf->key[0]) {
1455
        return 0;
1456
    }
1457
 
1458
    if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1459
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1460
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1461
 
1462
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1463
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1464
                /*
1465
                 * The interval is contained in the rightmost interval
1466
                 * of the leaf and can be removed by updating the size
1467
                 * of the bigger interval.
1468
                 */
1403 jermar 1469
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1470
                return 1;
1471
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1472
                count_t new_cnt;
1387 jermar 1473
 
1474
                /*
1475
                 * The interval is contained in the rightmost interval
1476
                 * of the leaf but its removal requires both updating
1477
                 * the size of the original interval and
1478
                 * also inserting a new interval.
1479
                 */
1403 jermar 1480
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1481
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1482
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1483
                return 1;
1484
            }
1485
        }
1486
        return 0;
1487
    }  
1488
 
1489
    /*
1490
     * The border cases have been already resolved.
1491
     * Now the interval can be only between intervals of the leaf.
1492
     */
1493
    for (i = 1; i < leaf->keys - 1; i++) {
1494
        if (page < leaf->key[i]) {
1780 jermar 1495
            uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1496
            count_t left_cnt = (count_t) leaf->value[i - 1];
1497
 
1498
            /*
1499
             * Now the interval is between intervals corresponding to (i - 1) and i.
1500
             */
1501
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1502
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1503
                    /*
1504
                    * The interval is contained in the interval (i - 1)
1505
                     * of the leaf and can be removed by updating the size
1506
                     * of the bigger interval.
1507
                     */
1403 jermar 1508
                    leaf->value[i - 1] -= count;
1387 jermar 1509
                    return 1;
1510
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1511
                    count_t new_cnt;
1387 jermar 1512
 
1513
                    /*
1514
                     * The interval is contained in the interval (i - 1)
1515
                     * of the leaf but its removal requires both updating
1516
                     * the size of the original interval and
1517
                     * also inserting a new interval.
1518
                     */
1403 jermar 1519
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1520
                    leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1521
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1522
                    return 1;
1523
                }
1524
            }
1525
            return 0;
1526
        }
1527
    }
1528
 
1529
error:
1735 decky 1530
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1531
}
1532
 
1409 jermar 1533
/** Remove reference to address space area share info.
1534
 *
1535
 * If the reference count drops to 0, the sh_info is deallocated.
1536
 *
1537
 * @param sh_info Pointer to address space area share info.
1538
 */
1539
void sh_info_remove_reference(share_info_t *sh_info)
1540
{
1541
    bool dealloc = false;
1542
 
1543
    mutex_lock(&sh_info->lock);
1544
    ASSERT(sh_info->refcount);
1545
    if (--sh_info->refcount == 0) {
1546
        dealloc = true;
1495 jermar 1547
        link_t *cur;
1409 jermar 1548
 
1549
        /*
1550
         * Now walk carefully the pagemap B+tree and free/remove
1551
         * reference from all frames found there.
1552
         */
1495 jermar 1553
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1554
            btree_node_t *node;
1495 jermar 1555
            int i;
1409 jermar 1556
 
1495 jermar 1557
            node = list_get_instance(cur, btree_node_t, leaf_link);
1558
            for (i = 0; i < node->keys; i++)
1780 jermar 1559
                frame_free((uintptr_t) node->value[i]);
1409 jermar 1560
        }
1561
 
1562
    }
1563
    mutex_unlock(&sh_info->lock);
1564
 
1565
    if (dealloc) {
1566
        btree_destroy(&sh_info->pagemap);
1567
        free(sh_info);
1568
    }
1569
}
1570
 
1235 jermar 1571
/*
1572
 * Address space related syscalls.
1573
 */
1574
 
1575
/** Wrapper for as_area_create(). */
1780 jermar 1576
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1577
{
1424 jermar 1578
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1579
        return (unative_t) address;
1235 jermar 1580
    else
1780 jermar 1581
        return (unative_t) -1;
1235 jermar 1582
}
1583
 
1793 jermar 1584
/** Wrapper for as_area_resize(). */
1780 jermar 1585
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1586
{
1780 jermar 1587
    return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1588
}
1589
 
1793 jermar 1590
/** Wrapper for as_area_destroy(). */
1780 jermar 1591
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1592
{
1780 jermar 1593
    return (unative_t) as_area_destroy(AS, address);
1306 jermar 1594
}
1702 cejka 1595
 
1914 jermar 1596
/** Print out information about address space.
1597
 *
1598
 * @param as Address space.
1599
 */
1600
void as_print(as_t *as)
1601
{
1602
    ipl_t ipl;
1603
 
1604
    ipl = interrupts_disable();
1605
    mutex_lock(&as->lock);
1606
 
1607
    /* print out info about address space areas */
1608
    link_t *cur;
1609
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1915 jermar 1610
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1914 jermar 1611
 
1612
        int i;
1613
        for (i = 0; i < node->keys; i++) {
1915 jermar 1614
            as_area_t *area = node->value[i];
1914 jermar 1615
 
1616
            mutex_lock(&area->lock);
1617
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1618
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1619
            mutex_unlock(&area->lock);
1620
        }
1621
    }
1622
 
1623
    mutex_unlock(&as->lock);
1624
    interrupts_restore(ipl);
1625
}
1626
 
1757 jermar 1627
/** @}
1702 cejka 1628
 */