Rev 2307 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2292 | hudecek | 1 | /* |
2 | * Copyright (c) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | /** @addtogroup genericddi |
||
30 | * @{ |
||
31 | */ |
||
32 | /** |
||
33 | * @file |
||
34 | * @brief IRQ dispatcher. |
||
35 | * |
||
36 | * This file provides means of connecting IRQs with particular |
||
37 | * devices and logic for dispatching interrupts to IRQ handlers |
||
38 | * defined by those devices. |
||
39 | * |
||
40 | * This code is designed to support: |
||
41 | * - multiple devices sharing single IRQ |
||
42 | * - multiple IRQs per signle device |
||
43 | * |
||
44 | * |
||
45 | * Note about architectures. |
||
46 | * |
||
47 | * Some architectures has the term IRQ well defined. Examples |
||
48 | * of such architectures include amd64, ia32 and mips32. Some |
||
49 | * other architectures, such as sparc64, don't use the term |
||
50 | * at all. In those cases, we boldly step forward and define what |
||
51 | * an IRQ is. |
||
52 | * |
||
53 | * The implementation is generic enough and still allows the |
||
54 | * architectures to use the hardware layout effectively. |
||
55 | * For instance, on amd64 and ia32, where there is only 16 |
||
56 | * IRQs, the irq_hash_table can be optimized to a one-dimensional |
||
57 | * array. Next, when it is known that the IRQ numbers (aka INR's) |
||
58 | * are unique, the claim functions can always return IRQ_ACCEPT. |
||
59 | * |
||
60 | * |
||
61 | * Note about the irq_hash_table. |
||
62 | * |
||
63 | * The hash table is configured to use two keys: inr and devno. |
||
64 | * However, the hash index is computed only from inr. Moreover, |
||
65 | * if devno is -1, the match is based on the return value of |
||
66 | * the claim() function instead of on devno. |
||
67 | */ |
||
68 | |||
69 | #include <ddi/irq.h> |
||
70 | #include <adt/hash_table.h> |
||
71 | #include <arch/types.h> |
||
72 | #include <synch/spinlock.h> |
||
73 | #include <arch.h> |
||
2456 | hudecek | 74 | #include <synch/rcu.h> |
2292 | hudecek | 75 | |
2456 | hudecek | 76 | |
2292 | hudecek | 77 | #define KEY_INR 0 |
78 | #define KEY_DEVNO 1 |
||
79 | |||
80 | /** |
||
81 | * Spinlock protecting the hash table. |
||
82 | * This lock must be taken only when interrupts are disabled. |
||
83 | */ |
||
84 | SPINLOCK_INITIALIZE(irq_hash_table_lock); |
||
85 | static hash_table_t irq_hash_table; |
||
86 | |||
87 | /** |
||
88 | * Hash table operations for cases when we know that |
||
89 | * there will be collisions between different keys. |
||
90 | */ |
||
91 | static index_t irq_ht_hash(unative_t *key); |
||
92 | static bool irq_ht_compare(unative_t *key, count_t keys, link_t *item); |
||
93 | |||
94 | static hash_table_operations_t irq_ht_ops = { |
||
95 | .hash = irq_ht_hash, |
||
96 | .compare = irq_ht_compare, |
||
97 | .remove_callback = NULL /* not used */ |
||
98 | }; |
||
99 | |||
100 | /** |
||
101 | * Hash table operations for cases when we know that |
||
102 | * there will be no collisions between different keys. |
||
103 | * However, there might be still collisions among |
||
104 | * elements with single key (sharing of one IRQ). |
||
105 | */ |
||
106 | static index_t irq_lin_hash(unative_t *key); |
||
107 | static bool irq_lin_compare(unative_t *key, count_t keys, link_t *item); |
||
108 | |||
109 | static hash_table_operations_t irq_lin_ops = { |
||
110 | .hash = irq_lin_hash, |
||
111 | .compare = irq_lin_compare, |
||
112 | .remove_callback = NULL /* not used */ |
||
113 | }; |
||
114 | |||
115 | /** Initialize IRQ subsystem. |
||
116 | * |
||
117 | * @param inrs Numbers of unique IRQ numbers or INRs. |
||
118 | * @param chains Number of chains in the hash table. |
||
119 | */ |
||
120 | void irq_init(count_t inrs, count_t chains) |
||
121 | { |
||
122 | /* |
||
123 | * Be smart about the choice of the hash table operations. |
||
124 | * In cases in which inrs equals the requested number of |
||
125 | * chains (i.e. where there is no collision between |
||
126 | * different keys), we can use optimized set of operations. |
||
127 | */ |
||
128 | if (inrs == chains) |
||
129 | hash_table_create(&irq_hash_table, chains, 2, &irq_lin_ops); |
||
130 | else |
||
131 | hash_table_create(&irq_hash_table, chains, 2, &irq_ht_ops); |
||
132 | } |
||
133 | |||
134 | /** Initialize one IRQ structure. |
||
135 | * |
||
136 | * @param irq Pointer to the IRQ structure to be initialized. |
||
137 | * |
||
138 | */ |
||
139 | void irq_initialize(irq_t *irq) |
||
140 | { |
||
141 | link_initialize(&irq->link); |
||
142 | spinlock_initialize(&irq->lock, "irq.lock"); |
||
2307 | hudecek | 143 | irq->preack = false; |
2292 | hudecek | 144 | irq->inr = -1; |
145 | irq->devno = -1; |
||
146 | irq->trigger = (irq_trigger_t) 0; |
||
147 | irq->claim = NULL; |
||
148 | irq->handler = NULL; |
||
149 | irq->arg = NULL; |
||
2456 | hudecek | 150 | irq->notif_cfg = malloc(sizeof(ipc_notif_cfg_t), 0); |
151 | irq->notif_cfg->notify = false; |
||
152 | irq->notif_cfg->answerbox = NULL; |
||
153 | irq->notif_cfg->code = NULL; |
||
154 | irq->notif_cfg->method = 0; |
||
155 | irq->notif_cfg->counter = 0; |
||
156 | link_initialize(&irq->notif_cfg->link); |
||
2292 | hudecek | 157 | } |
158 | |||
159 | /** Register IRQ for device. |
||
160 | * |
||
161 | * The irq structure must be filled with information |
||
162 | * about the interrupt source and with the claim() |
||
163 | * function pointer and irq_handler() function pointer. |
||
164 | * |
||
165 | * @param irq IRQ structure belonging to a device. |
||
166 | */ |
||
167 | void irq_register(irq_t *irq) |
||
168 | { |
||
169 | ipl_t ipl; |
||
170 | unative_t key[] = { |
||
171 | (unative_t) irq->inr, |
||
172 | (unative_t) irq->devno |
||
173 | }; |
||
174 | |||
175 | ipl = interrupts_disable(); |
||
176 | spinlock_lock(&irq_hash_table_lock); |
||
177 | hash_table_insert(&irq_hash_table, key, &irq->link); |
||
178 | spinlock_unlock(&irq_hash_table_lock); |
||
179 | interrupts_restore(ipl); |
||
180 | } |
||
181 | |||
182 | /** Dispatch the IRQ. |
||
183 | * |
||
184 | * We assume this function is only called from interrupt |
||
185 | * context (i.e. that interrupts are disabled prior to |
||
186 | * this call). |
||
187 | * |
||
188 | * This function attempts to lookup a fitting IRQ |
||
189 | * structure. In case of success, return with interrupts |
||
190 | * disabled and holding the respective structure. |
||
191 | * |
||
192 | * @param inr Interrupt number (aka inr or irq). |
||
193 | * |
||
194 | * @return IRQ structure of the respective device or NULL. |
||
195 | */ |
||
196 | irq_t *irq_dispatch_and_lock(inr_t inr) |
||
197 | { |
||
198 | link_t *lnk; |
||
199 | unative_t key[] = { |
||
200 | (unative_t) inr, |
||
201 | (unative_t) -1 /* search will use claim() instead of devno */ |
||
202 | }; |
||
203 | |||
204 | spinlock_lock(&irq_hash_table_lock); |
||
205 | |||
206 | lnk = hash_table_find(&irq_hash_table, key); |
||
207 | if (lnk) { |
||
208 | irq_t *irq; |
||
209 | |||
210 | irq = hash_table_get_instance(lnk, irq_t, link); |
||
211 | |||
212 | spinlock_unlock(&irq_hash_table_lock); |
||
213 | return irq; |
||
214 | } |
||
215 | |||
216 | spinlock_unlock(&irq_hash_table_lock); |
||
217 | |||
218 | return NULL; |
||
219 | } |
||
220 | |||
221 | /** Find the IRQ structure corresponding to inr and devno. |
||
222 | * |
||
223 | * This functions attempts to lookup the IRQ structure |
||
224 | * corresponding to its arguments. On success, this |
||
225 | * function returns with interrups disabled, holding |
||
226 | * the lock of the respective IRQ structure. |
||
227 | * |
||
228 | * This function assumes interrupts are already disabled. |
||
229 | * |
||
230 | * @param inr INR being looked up. |
||
231 | * @param devno Devno being looked up. |
||
232 | * |
||
233 | * @return Locked IRQ structure on success or NULL on failure. |
||
234 | */ |
||
235 | irq_t *irq_find_and_lock(inr_t inr, devno_t devno) |
||
236 | { |
||
237 | link_t *lnk; |
||
238 | unative_t keys[] = { |
||
239 | (unative_t) inr, |
||
240 | (unative_t) devno |
||
241 | }; |
||
242 | |||
243 | spinlock_lock(&irq_hash_table_lock); |
||
244 | |||
245 | lnk = hash_table_find(&irq_hash_table, keys); |
||
246 | if (lnk) { |
||
247 | irq_t *irq; |
||
248 | |||
249 | irq = hash_table_get_instance(lnk, irq_t, link); |
||
250 | |||
251 | spinlock_unlock(&irq_hash_table_lock); |
||
252 | return irq; |
||
253 | } |
||
254 | |||
255 | spinlock_unlock(&irq_hash_table_lock); |
||
256 | |||
257 | return NULL; |
||
258 | } |
||
259 | |||
260 | /** Compute hash index for the key. |
||
261 | * |
||
262 | * This function computes hash index into |
||
263 | * the IRQ hash table for which there |
||
264 | * can be collisions between different |
||
265 | * INRs. |
||
266 | * |
||
267 | * The devno is not used to compute the hash. |
||
268 | * |
||
269 | * @param key The first of the keys is inr and the second is devno or -1. |
||
270 | * |
||
271 | * @return Index into the hash table. |
||
272 | */ |
||
273 | index_t irq_ht_hash(unative_t key[]) |
||
274 | { |
||
275 | inr_t inr = (inr_t) key[KEY_INR]; |
||
276 | return inr % irq_hash_table.entries; |
||
277 | } |
||
278 | |||
279 | /** Compare hash table element with a key. |
||
280 | * |
||
281 | * There are two things to note about this function. |
||
282 | * First, it is used for the more complex architecture setup |
||
283 | * in which there are way too many interrupt numbers (i.e. inr's) |
||
284 | * to arrange the hash table so that collisions occur only |
||
285 | * among same inrs of different devnos. So the explicit check |
||
286 | * for inr match must be done. |
||
287 | * Second, if devno is -1, the second key (i.e. devno) is not |
||
288 | * used for the match and the result of the claim() function |
||
289 | * is used instead. |
||
290 | * |
||
291 | * This function assumes interrupts are already disabled. |
||
292 | * |
||
293 | * @param key Keys (i.e. inr and devno). |
||
294 | * @param keys This is 2. |
||
295 | * @param item The item to compare the key with. |
||
296 | * |
||
297 | * @return True on match or false otherwise. |
||
298 | */ |
||
299 | bool irq_ht_compare(unative_t key[], count_t keys, link_t *item) |
||
300 | { |
||
301 | irq_t *irq = hash_table_get_instance(item, irq_t, link); |
||
302 | inr_t inr = (inr_t) key[KEY_INR]; |
||
303 | devno_t devno = (devno_t) key[KEY_DEVNO]; |
||
304 | |||
305 | bool rv; |
||
306 | |||
307 | spinlock_lock(&irq->lock); |
||
308 | if (devno == -1) { |
||
309 | /* Invoked by irq_dispatch_and_lock(). */ |
||
310 | rv = ((irq->inr == inr) && (irq->claim() == IRQ_ACCEPT)); |
||
311 | } else { |
||
312 | /* Invoked by irq_find_and_lock(). */ |
||
313 | rv = ((irq->inr == inr) && (irq->devno == devno)); |
||
314 | } |
||
315 | |||
316 | /* unlock only on non-match */ |
||
317 | if (!rv) |
||
318 | spinlock_unlock(&irq->lock); |
||
319 | |||
320 | return rv; |
||
321 | } |
||
322 | |||
323 | /** Compute hash index for the key. |
||
324 | * |
||
325 | * This function computes hash index into |
||
326 | * the IRQ hash table for which there |
||
327 | * are no collisions between different |
||
328 | * INRs. |
||
329 | * |
||
330 | * @param key The first of the keys is inr and the second is devno or -1. |
||
331 | * |
||
332 | * @return Index into the hash table. |
||
333 | */ |
||
334 | index_t irq_lin_hash(unative_t key[]) |
||
335 | { |
||
336 | inr_t inr = (inr_t) key[KEY_INR]; |
||
337 | return inr; |
||
338 | } |
||
339 | |||
340 | /** Compare hash table element with a key. |
||
341 | * |
||
342 | * There are two things to note about this function. |
||
343 | * First, it is used for the less complex architecture setup |
||
344 | * in which there are not too many interrupt numbers (i.e. inr's) |
||
345 | * to arrange the hash table so that collisions occur only |
||
346 | * among same inrs of different devnos. So the explicit check |
||
347 | * for inr match is not done. |
||
348 | * Second, if devno is -1, the second key (i.e. devno) is not |
||
349 | * used for the match and the result of the claim() function |
||
350 | * is used instead. |
||
351 | * |
||
352 | * This function assumes interrupts are already disabled. |
||
353 | * |
||
354 | * @param key Keys (i.e. inr and devno). |
||
355 | * @param keys This is 2. |
||
356 | * @param item The item to compare the key with. |
||
357 | * |
||
358 | * @return True on match or false otherwise. |
||
359 | */ |
||
360 | bool irq_lin_compare(unative_t key[], count_t keys, link_t *item) |
||
361 | { |
||
362 | irq_t *irq = list_get_instance(item, irq_t, link); |
||
363 | devno_t devno = (devno_t) key[KEY_DEVNO]; |
||
364 | bool rv; |
||
365 | |||
366 | spinlock_lock(&irq->lock); |
||
367 | if (devno == -1) { |
||
368 | /* Invoked by irq_dispatch_and_lock() */ |
||
369 | rv = (irq->claim() == IRQ_ACCEPT); |
||
370 | } else { |
||
371 | /* Invoked by irq_find_and_lock() */ |
||
372 | rv = (irq->devno == devno); |
||
373 | } |
||
374 | |||
375 | /* unlock only on non-match */ |
||
376 | if (!rv) |
||
377 | spinlock_unlock(&irq->lock); |
||
378 | |||
379 | return rv; |
||
380 | } |
||
381 | |||
382 | /** @} |
||
383 | */ |