Rev 1708 | Rev 1787 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1757 | jermar | 29 | /** @addtogroup genericadt |
1702 | cejka | 30 | * @{ |
31 | */ |
||
32 | |||
1248 | jermar | 33 | /** |
1704 | cejka | 34 | * @file |
1248 | jermar | 35 | * @brief B+tree implementation. |
1101 | jermar | 36 | * |
1248 | jermar | 37 | * This file implements B+tree type and operations. |
38 | * |
||
39 | * The B+tree has the following properties: |
||
40 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
41 | * @li values (i.e. pointers to values) are stored only in leaves |
||
42 | * @li leaves are linked in a list |
||
43 | * |
||
1134 | jermar | 44 | * Be carefull when using these trees. They need to allocate |
45 | * and deallocate memory for their index nodes and as such |
||
46 | * can sleep. |
||
1101 | jermar | 47 | */ |
48 | |||
49 | #include <adt/btree.h> |
||
50 | #include <adt/list.h> |
||
51 | #include <mm/slab.h> |
||
52 | #include <debug.h> |
||
53 | #include <panic.h> |
||
54 | #include <typedefs.h> |
||
55 | #include <print.h> |
||
56 | |||
1483 | jermar | 57 | static void btree_destroy_subtree(btree_node_t *root); |
1177 | jermar | 58 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
59 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
1101 | jermar | 60 | static void node_initialize(btree_node_t *node); |
1177 | jermar | 61 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
62 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
63 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
64 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
65 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
1142 | jermar | 66 | static btree_node_t *node_combine(btree_node_t *node); |
1136 | jermar | 67 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
1142 | jermar | 68 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
69 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
1177 | jermar | 70 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
71 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
1142 | jermar | 72 | static bool try_rotation_from_left(btree_node_t *rnode); |
73 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
1101 | jermar | 74 | |
75 | #define ROOT_NODE(n) (!(n)->parent) |
||
76 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
77 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
78 | |||
1140 | jermar | 79 | #define FILL_FACTOR ((BTREE_M-1)/2) |
80 | |||
1101 | jermar | 81 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
82 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
83 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
84 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
85 | |||
1164 | jermar | 86 | static slab_cache_t *btree_node_slab; |
87 | |||
88 | /** Initialize B-trees. */ |
||
89 | void btree_init(void) |
||
90 | { |
||
91 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
92 | } |
||
93 | |||
1101 | jermar | 94 | /** Create empty B-tree. |
95 | * |
||
96 | * @param t B-tree. |
||
97 | */ |
||
98 | void btree_create(btree_t *t) |
||
99 | { |
||
100 | list_initialize(&t->leaf_head); |
||
1164 | jermar | 101 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 102 | node_initialize(t->root); |
103 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
104 | } |
||
105 | |||
106 | /** Destroy empty B-tree. */ |
||
107 | void btree_destroy(btree_t *t) |
||
108 | { |
||
1483 | jermar | 109 | btree_destroy_subtree(t->root); |
1101 | jermar | 110 | } |
111 | |||
112 | /** Insert key-value pair into B-tree. |
||
113 | * |
||
114 | * @param t B-tree. |
||
115 | * @param key Key to be inserted. |
||
116 | * @param value Value to be inserted. |
||
117 | * @param leaf_node Leaf node where the insertion should begin. |
||
118 | */ |
||
1177 | jermar | 119 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
1101 | jermar | 120 | { |
121 | btree_node_t *lnode; |
||
122 | |||
123 | ASSERT(value); |
||
124 | |||
125 | lnode = leaf_node; |
||
126 | if (!lnode) { |
||
127 | if (btree_search(t, key, &lnode)) { |
||
1221 | decky | 128 | panic("B-tree %p already contains key %d\n", t, key); |
1101 | jermar | 129 | } |
130 | } |
||
131 | |||
132 | _btree_insert(t, key, value, NULL, lnode); |
||
133 | } |
||
134 | |||
1483 | jermar | 135 | /** Destroy subtree rooted in a node. |
136 | * |
||
137 | * @param root Root of the subtree. |
||
138 | */ |
||
139 | void btree_destroy_subtree(btree_node_t *root) |
||
140 | { |
||
141 | int i; |
||
142 | |||
143 | if (root->keys) { |
||
144 | for (i = 0; i < root->keys + 1; i++) { |
||
145 | if (root->subtree[i]) |
||
146 | btree_destroy_subtree(root->subtree[i]); |
||
147 | } |
||
148 | } |
||
149 | slab_free(btree_node_slab, root); |
||
150 | } |
||
151 | |||
1101 | jermar | 152 | /** Recursively insert into B-tree. |
153 | * |
||
154 | * @param t B-tree. |
||
155 | * @param key Key to be inserted. |
||
156 | * @param value Value to be inserted. |
||
157 | * @param rsubtree Right subtree of the inserted key. |
||
158 | * @param node Start inserting into this node. |
||
159 | */ |
||
1177 | jermar | 160 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
1101 | jermar | 161 | { |
162 | if (node->keys < BTREE_MAX_KEYS) { |
||
163 | /* |
||
164 | * Node conatins enough space, the key can be stored immediately. |
||
165 | */ |
||
1142 | jermar | 166 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
167 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
1136 | jermar | 168 | /* |
169 | * The key-value-rsubtree triplet has been inserted because |
||
170 | * some keys could have been moved to the left sibling. |
||
171 | */ |
||
1142 | jermar | 172 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
1136 | jermar | 173 | /* |
174 | * The key-value-rsubtree triplet has been inserted because |
||
175 | * some keys could have been moved to the right sibling. |
||
176 | */ |
||
1101 | jermar | 177 | } else { |
178 | btree_node_t *rnode; |
||
1177 | jermar | 179 | btree_key_t median; |
1101 | jermar | 180 | |
181 | /* |
||
1136 | jermar | 182 | * Node is full and both siblings (if both exist) are full too. |
183 | * Split the node and insert the smallest key from the node containing |
||
184 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 185 | */ |
186 | |||
187 | rnode = node_split(node, key, value, rsubtree, &median); |
||
188 | |||
189 | if (LEAF_NODE(node)) { |
||
1144 | jermar | 190 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
1101 | jermar | 191 | } |
192 | |||
193 | if (ROOT_NODE(node)) { |
||
194 | /* |
||
195 | * We split the root node. Create new root. |
||
196 | */ |
||
1164 | jermar | 197 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 198 | node->parent = t->root; |
199 | rnode->parent = t->root; |
||
200 | node_initialize(t->root); |
||
201 | |||
202 | /* |
||
203 | * Left-hand side subtree will be the old root (i.e. node). |
||
204 | * Right-hand side subtree will be rnode. |
||
205 | */ |
||
206 | t->root->subtree[0] = node; |
||
207 | |||
208 | t->root->depth = node->depth + 1; |
||
209 | } |
||
210 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
211 | } |
||
212 | |||
213 | } |
||
214 | |||
1140 | jermar | 215 | /** Remove B-tree node. |
216 | * |
||
1708 | jermar | 217 | * @param t B-tree. |
1140 | jermar | 218 | * @param key Key to be removed from the B-tree along with its associated value. |
219 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
220 | */ |
||
1177 | jermar | 221 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
1101 | jermar | 222 | { |
1140 | jermar | 223 | btree_node_t *lnode; |
224 | |||
225 | lnode = leaf_node; |
||
226 | if (!lnode) { |
||
227 | if (!btree_search(t, key, &lnode)) { |
||
1221 | decky | 228 | panic("B-tree %p does not contain key %d\n", t, key); |
1140 | jermar | 229 | } |
230 | } |
||
231 | |||
1142 | jermar | 232 | _btree_remove(t, key, lnode); |
233 | } |
||
1140 | jermar | 234 | |
1142 | jermar | 235 | /** Recursively remove B-tree node. |
236 | * |
||
1708 | jermar | 237 | * @param t B-tree. |
1142 | jermar | 238 | * @param key Key to be removed from the B-tree along with its associated value. |
239 | * @param node Node where the key being removed resides. |
||
240 | */ |
||
1177 | jermar | 241 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
1142 | jermar | 242 | { |
243 | if (ROOT_NODE(node)) { |
||
244 | if (node->keys == 1 && node->subtree[0]) { |
||
245 | /* |
||
246 | * Free the current root and set new root. |
||
247 | */ |
||
248 | t->root = node->subtree[0]; |
||
249 | t->root->parent = NULL; |
||
1164 | jermar | 250 | slab_free(btree_node_slab, node); |
1142 | jermar | 251 | } else { |
252 | /* |
||
253 | * Remove the key from the root node. |
||
254 | * Note that the right subtree is removed because when |
||
255 | * combining two nodes, the left-side sibling is preserved |
||
256 | * and the right-side sibling is freed. |
||
257 | */ |
||
258 | node_remove_key_and_rsubtree(node, key); |
||
259 | } |
||
260 | return; |
||
261 | } |
||
262 | |||
263 | if (node->keys <= FILL_FACTOR) { |
||
264 | /* |
||
265 | * If the node is below the fill factor, |
||
266 | * try to borrow keys from left or right sibling. |
||
267 | */ |
||
268 | if (!try_rotation_from_left(node)) |
||
269 | try_rotation_from_right(node); |
||
270 | } |
||
271 | |||
272 | if (node->keys > FILL_FACTOR) { |
||
273 | int i; |
||
274 | |||
275 | /* |
||
276 | * The key can be immediatelly removed. |
||
277 | * |
||
278 | * Note that the right subtree is removed because when |
||
279 | * combining two nodes, the left-side sibling is preserved |
||
280 | * and the right-side sibling is freed. |
||
281 | */ |
||
282 | node_remove_key_and_rsubtree(node, key); |
||
283 | for (i = 0; i < node->parent->keys; i++) { |
||
284 | if (node->parent->key[i] == key) |
||
285 | node->parent->key[i] = node->key[0]; |
||
286 | } |
||
287 | |||
288 | } else { |
||
289 | index_t idx; |
||
290 | btree_node_t *rnode, *parent; |
||
291 | |||
292 | /* |
||
293 | * The node is below the fill factor as well as its left and right sibling. |
||
294 | * Resort to combining the node with one of its siblings. |
||
295 | * The node which is on the left is preserved and the node on the right is |
||
296 | * freed. |
||
297 | */ |
||
298 | parent = node->parent; |
||
299 | node_remove_key_and_rsubtree(node, key); |
||
300 | rnode = node_combine(node); |
||
301 | if (LEAF_NODE(rnode)) |
||
302 | list_remove(&rnode->leaf_link); |
||
303 | idx = find_key_by_subtree(parent, rnode, true); |
||
304 | ASSERT((int) idx != -1); |
||
1164 | jermar | 305 | slab_free(btree_node_slab, rnode); |
1142 | jermar | 306 | _btree_remove(t, parent->key[idx], parent); |
307 | } |
||
1101 | jermar | 308 | } |
309 | |||
310 | /** Search key in a B-tree. |
||
311 | * |
||
312 | * @param t B-tree. |
||
313 | * @param key Key to be searched. |
||
314 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
315 | * |
||
316 | * @return Pointer to value or NULL if there is no such key. |
||
317 | */ |
||
1177 | jermar | 318 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
1101 | jermar | 319 | { |
320 | btree_node_t *cur, *next; |
||
321 | |||
322 | /* |
||
1134 | jermar | 323 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 324 | */ |
325 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 326 | |
1101 | jermar | 327 | /* Last iteration will set this with proper leaf node address. */ |
328 | *leaf_node = cur; |
||
1134 | jermar | 329 | |
330 | /* |
||
331 | * The key can be in the leftmost subtree. |
||
332 | * Test it separately. |
||
333 | */ |
||
334 | if (key < cur->key[0]) { |
||
335 | next = cur->subtree[0]; |
||
336 | continue; |
||
337 | } else { |
||
338 | void *val; |
||
339 | int i; |
||
340 | |||
341 | /* |
||
342 | * Now if the key is smaller than cur->key[i] |
||
343 | * it can only mean that the value is in cur->subtree[i] |
||
344 | * or it is not in the tree at all. |
||
345 | */ |
||
346 | for (i = 1; i < cur->keys; i++) { |
||
347 | if (key < cur->key[i]) { |
||
348 | next = cur->subtree[i]; |
||
349 | val = cur->value[i - 1]; |
||
350 | |||
351 | if (LEAF_NODE(cur)) |
||
352 | return key == cur->key[i - 1] ? val : NULL; |
||
353 | |||
354 | goto descend; |
||
355 | } |
||
1101 | jermar | 356 | } |
1134 | jermar | 357 | |
358 | /* |
||
359 | * Last possibility is that the key is in the rightmost subtree. |
||
360 | */ |
||
361 | next = cur->subtree[i]; |
||
362 | val = cur->value[i - 1]; |
||
363 | if (LEAF_NODE(cur)) |
||
364 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 365 | } |
1134 | jermar | 366 | descend: |
367 | ; |
||
1101 | jermar | 368 | } |
369 | |||
370 | /* |
||
1134 | jermar | 371 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 372 | */ |
373 | return NULL; |
||
374 | } |
||
375 | |||
1150 | jermar | 376 | /** Return pointer to B-tree leaf node's left neighbour. |
1147 | jermar | 377 | * |
378 | * @param t B-tree. |
||
1150 | jermar | 379 | * @param node Node whose left neighbour will be returned. |
1147 | jermar | 380 | * |
1150 | jermar | 381 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
1147 | jermar | 382 | */ |
1150 | jermar | 383 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 384 | { |
385 | ASSERT(LEAF_NODE(node)); |
||
386 | if (node->leaf_link.prev != &t->leaf_head) |
||
387 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
388 | else |
||
389 | return NULL; |
||
390 | } |
||
391 | |||
1150 | jermar | 392 | /** Return pointer to B-tree leaf node's right neighbour. |
1147 | jermar | 393 | * |
394 | * @param t B-tree. |
||
1150 | jermar | 395 | * @param node Node whose right neighbour will be returned. |
1147 | jermar | 396 | * |
1150 | jermar | 397 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
1147 | jermar | 398 | */ |
1150 | jermar | 399 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 400 | { |
401 | ASSERT(LEAF_NODE(node)); |
||
402 | if (node->leaf_link.next != &t->leaf_head) |
||
403 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
404 | else |
||
405 | return NULL; |
||
406 | } |
||
407 | |||
1101 | jermar | 408 | /** Initialize B-tree node. |
409 | * |
||
410 | * @param node B-tree node. |
||
411 | */ |
||
412 | void node_initialize(btree_node_t *node) |
||
413 | { |
||
414 | int i; |
||
415 | |||
416 | node->keys = 0; |
||
417 | |||
418 | /* Clean also space for the extra key. */ |
||
419 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
420 | node->key[i] = 0; |
||
421 | node->value[i] = NULL; |
||
422 | node->subtree[i] = NULL; |
||
423 | } |
||
424 | node->subtree[i] = NULL; |
||
425 | |||
426 | node->parent = NULL; |
||
427 | |||
428 | link_initialize(&node->leaf_link); |
||
429 | |||
430 | link_initialize(&node->bfs_link); |
||
431 | node->depth = 0; |
||
432 | } |
||
433 | |||
1136 | jermar | 434 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 435 | * |
436 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 437 | * This feature is used during insert by right rotation. |
438 | * |
||
439 | * @param node B-tree node into wich the new key is to be inserted. |
||
440 | * @param key The key to be inserted. |
||
441 | * @param value Pointer to value to be inserted. |
||
442 | * @param lsubtree Pointer to the left subtree. |
||
443 | */ |
||
1177 | jermar | 444 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
1136 | jermar | 445 | { |
446 | int i; |
||
447 | |||
448 | for (i = 0; i < node->keys; i++) { |
||
449 | if (key < node->key[i]) { |
||
450 | int j; |
||
451 | |||
452 | for (j = node->keys; j > i; j--) { |
||
453 | node->key[j] = node->key[j - 1]; |
||
454 | node->value[j] = node->value[j - 1]; |
||
455 | node->subtree[j + 1] = node->subtree[j]; |
||
456 | } |
||
457 | node->subtree[j + 1] = node->subtree[j]; |
||
458 | break; |
||
459 | } |
||
460 | } |
||
461 | node->key[i] = key; |
||
462 | node->value[i] = value; |
||
463 | node->subtree[i] = lsubtree; |
||
464 | |||
465 | node->keys++; |
||
466 | } |
||
467 | |||
468 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
469 | * |
||
470 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 471 | * This feature is used during splitting the node when the |
1136 | jermar | 472 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
473 | * also makes use of this feature. |
||
1101 | jermar | 474 | * |
475 | * @param node B-tree node into wich the new key is to be inserted. |
||
476 | * @param key The key to be inserted. |
||
477 | * @param value Pointer to value to be inserted. |
||
478 | * @param rsubtree Pointer to the right subtree. |
||
479 | */ |
||
1177 | jermar | 480 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 481 | { |
482 | int i; |
||
483 | |||
484 | for (i = 0; i < node->keys; i++) { |
||
485 | if (key < node->key[i]) { |
||
486 | int j; |
||
487 | |||
488 | for (j = node->keys; j > i; j--) { |
||
489 | node->key[j] = node->key[j - 1]; |
||
490 | node->value[j] = node->value[j - 1]; |
||
491 | node->subtree[j + 1] = node->subtree[j]; |
||
492 | } |
||
493 | break; |
||
494 | } |
||
495 | } |
||
496 | node->key[i] = key; |
||
497 | node->value[i] = value; |
||
498 | node->subtree[i + 1] = rsubtree; |
||
499 | |||
500 | node->keys++; |
||
501 | } |
||
502 | |||
1144 | jermar | 503 | /** Remove key and its left subtree pointer from B-tree node. |
504 | * |
||
505 | * Remove the key and eliminate gaps in node->key array. |
||
506 | * Note that the value pointer and the left subtree pointer |
||
507 | * is removed from the node as well. |
||
508 | * |
||
509 | * @param node B-tree node. |
||
510 | * @param key Key to be removed. |
||
511 | */ |
||
1177 | jermar | 512 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 513 | { |
514 | int i, j; |
||
515 | |||
516 | for (i = 0; i < node->keys; i++) { |
||
517 | if (key == node->key[i]) { |
||
518 | for (j = i + 1; j < node->keys; j++) { |
||
519 | node->key[j - 1] = node->key[j]; |
||
520 | node->value[j - 1] = node->value[j]; |
||
521 | node->subtree[j - 1] = node->subtree[j]; |
||
522 | } |
||
523 | node->subtree[j - 1] = node->subtree[j]; |
||
524 | node->keys--; |
||
525 | return; |
||
526 | } |
||
527 | } |
||
1221 | decky | 528 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 529 | } |
530 | |||
531 | /** Remove key and its right subtree pointer from B-tree node. |
||
532 | * |
||
533 | * Remove the key and eliminate gaps in node->key array. |
||
534 | * Note that the value pointer and the right subtree pointer |
||
535 | * is removed from the node as well. |
||
536 | * |
||
537 | * @param node B-tree node. |
||
538 | * @param key Key to be removed. |
||
539 | */ |
||
1177 | jermar | 540 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 541 | { |
542 | int i, j; |
||
543 | |||
544 | for (i = 0; i < node->keys; i++) { |
||
545 | if (key == node->key[i]) { |
||
546 | for (j = i + 1; j < node->keys; j++) { |
||
547 | node->key[j - 1] = node->key[j]; |
||
548 | node->value[j - 1] = node->value[j]; |
||
549 | node->subtree[j] = node->subtree[j + 1]; |
||
550 | } |
||
551 | node->keys--; |
||
552 | return; |
||
553 | } |
||
554 | } |
||
1221 | decky | 555 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 556 | } |
557 | |||
1134 | jermar | 558 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 559 | * |
1757 | jermar | 560 | * This function will split a node and return a pointer to a newly created |
1134 | jermar | 561 | * node containing keys greater than or equal to the greater of medians |
562 | * (or median) of the old keys and the newly added key. It will also write |
||
563 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 564 | * |
1134 | jermar | 565 | * If the node being split is an index node, the median will not be |
566 | * included in the new node. If the node is a leaf node, |
||
567 | * the median will be copied there. |
||
1101 | jermar | 568 | * |
569 | * @param node B-tree node wich is going to be split. |
||
570 | * @param key The key to be inserted. |
||
571 | * @param value Pointer to the value to be inserted. |
||
572 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
573 | * @param median Address in memory, where the median key will be stored. |
||
574 | * |
||
575 | * @return Newly created right sibling of node. |
||
576 | */ |
||
1177 | jermar | 577 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
1101 | jermar | 578 | { |
579 | btree_node_t *rnode; |
||
580 | int i, j; |
||
581 | |||
582 | ASSERT(median); |
||
583 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 584 | |
1101 | jermar | 585 | /* |
586 | * Use the extra space to store the extra node. |
||
587 | */ |
||
1142 | jermar | 588 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
1101 | jermar | 589 | |
590 | /* |
||
591 | * Compute median of keys. |
||
592 | */ |
||
1134 | jermar | 593 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 594 | |
1134 | jermar | 595 | /* |
596 | * Allocate and initialize new right sibling. |
||
597 | */ |
||
1164 | jermar | 598 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 599 | node_initialize(rnode); |
600 | rnode->parent = node->parent; |
||
601 | rnode->depth = node->depth; |
||
602 | |||
603 | /* |
||
604 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 605 | * If this is an index node, do not copy the median. |
1101 | jermar | 606 | */ |
1134 | jermar | 607 | i = (int) INDEX_NODE(node); |
608 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 609 | rnode->key[j] = node->key[i]; |
610 | rnode->value[j] = node->value[i]; |
||
611 | rnode->subtree[j] = node->subtree[i]; |
||
612 | |||
613 | /* |
||
614 | * Fix parent links in subtrees. |
||
615 | */ |
||
616 | if (rnode->subtree[j]) |
||
617 | rnode->subtree[j]->parent = rnode; |
||
618 | |||
619 | } |
||
620 | rnode->subtree[j] = node->subtree[i]; |
||
621 | if (rnode->subtree[j]) |
||
622 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 623 | |
624 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
625 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 626 | |
627 | return rnode; |
||
628 | } |
||
629 | |||
1142 | jermar | 630 | /** Combine node with any of its siblings. |
631 | * |
||
632 | * The siblings are required to be below the fill factor. |
||
633 | * |
||
634 | * @param node Node to combine with one of its siblings. |
||
635 | * |
||
636 | * @return Pointer to the rightmost of the two nodes. |
||
637 | */ |
||
638 | btree_node_t *node_combine(btree_node_t *node) |
||
639 | { |
||
640 | index_t idx; |
||
641 | btree_node_t *rnode; |
||
642 | int i; |
||
643 | |||
644 | ASSERT(!ROOT_NODE(node)); |
||
645 | |||
646 | idx = find_key_by_subtree(node->parent, node, false); |
||
647 | if (idx == node->parent->keys) { |
||
648 | /* |
||
649 | * Rightmost subtree of its parent, combine with the left sibling. |
||
650 | */ |
||
651 | idx--; |
||
652 | rnode = node; |
||
653 | node = node->parent->subtree[idx]; |
||
654 | } else { |
||
655 | rnode = node->parent->subtree[idx + 1]; |
||
656 | } |
||
657 | |||
658 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
659 | if (INDEX_NODE(node)) |
||
660 | node->key[node->keys++] = node->parent->key[idx]; |
||
661 | |||
662 | /* Copy the key-value-subtree triplets from the right node. */ |
||
663 | for (i = 0; i < rnode->keys; i++) { |
||
664 | node->key[node->keys + i] = rnode->key[i]; |
||
665 | node->value[node->keys + i] = rnode->value[i]; |
||
666 | if (INDEX_NODE(node)) { |
||
667 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
668 | rnode->subtree[i]->parent = node; |
||
669 | } |
||
670 | } |
||
671 | if (INDEX_NODE(node)) { |
||
672 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
673 | rnode->subtree[i]->parent = node; |
||
674 | } |
||
675 | |||
676 | node->keys += rnode->keys; |
||
677 | |||
678 | return rnode; |
||
679 | } |
||
680 | |||
1136 | jermar | 681 | /** Find key by its left or right subtree. |
682 | * |
||
683 | * @param node B-tree node. |
||
684 | * @param subtree Left or right subtree of a key found in node. |
||
685 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
686 | * |
||
687 | * @return Index of the key associated with the subtree. |
||
688 | */ |
||
689 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
690 | { |
||
691 | int i; |
||
692 | |||
693 | for (i = 0; i < node->keys + 1; i++) { |
||
694 | if (subtree == node->subtree[i]) |
||
695 | return i - (int) (right != false); |
||
696 | } |
||
1221 | decky | 697 | panic("node %p does not contain subtree %p\n", node, subtree); |
1136 | jermar | 698 | } |
699 | |||
1142 | jermar | 700 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
701 | * |
||
702 | * The biggest key and its value and right subtree is rotated from the left node |
||
703 | * to the right. If the node is an index node, than the parent node key belonging to |
||
704 | * the left node takes part in the rotation. |
||
705 | * |
||
706 | * @param lnode Left sibling. |
||
707 | * @param rnode Right sibling. |
||
708 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
709 | */ |
||
710 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
711 | { |
||
1177 | jermar | 712 | btree_key_t key; |
1142 | jermar | 713 | |
714 | key = lnode->key[lnode->keys - 1]; |
||
715 | |||
716 | if (LEAF_NODE(lnode)) { |
||
717 | void *value; |
||
718 | |||
719 | value = lnode->value[lnode->keys - 1]; |
||
720 | node_remove_key_and_rsubtree(lnode, key); |
||
721 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
722 | lnode->parent->key[idx] = key; |
||
723 | } else { |
||
724 | btree_node_t *rsubtree; |
||
725 | |||
726 | rsubtree = lnode->subtree[lnode->keys]; |
||
727 | node_remove_key_and_rsubtree(lnode, key); |
||
728 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
729 | lnode->parent->key[idx] = key; |
||
730 | |||
731 | /* Fix parent link of the reconnected right subtree. */ |
||
732 | rsubtree->parent = rnode; |
||
733 | } |
||
734 | |||
735 | } |
||
736 | |||
737 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
738 | * |
||
739 | * The smallest key and its value and left subtree is rotated from the right node |
||
740 | * to the left. If the node is an index node, than the parent node key belonging to |
||
741 | * the right node takes part in the rotation. |
||
742 | * |
||
743 | * @param lnode Left sibling. |
||
744 | * @param rnode Right sibling. |
||
745 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
746 | */ |
||
747 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
748 | { |
||
1177 | jermar | 749 | btree_key_t key; |
1142 | jermar | 750 | |
751 | key = rnode->key[0]; |
||
752 | |||
753 | if (LEAF_NODE(rnode)) { |
||
754 | void *value; |
||
755 | |||
756 | value = rnode->value[0]; |
||
757 | node_remove_key_and_lsubtree(rnode, key); |
||
758 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
759 | rnode->parent->key[idx] = rnode->key[0]; |
||
760 | } else { |
||
761 | btree_node_t *lsubtree; |
||
762 | |||
763 | lsubtree = rnode->subtree[0]; |
||
764 | node_remove_key_and_lsubtree(rnode, key); |
||
765 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
766 | rnode->parent->key[idx] = key; |
||
767 | |||
768 | /* Fix parent link of the reconnected left subtree. */ |
||
769 | lsubtree->parent = lnode; |
||
770 | } |
||
771 | |||
772 | } |
||
773 | |||
1136 | jermar | 774 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
775 | * |
||
776 | * Left sibling of the node (if it exists) is checked for free space. |
||
777 | * If there is free space, the key is inserted and the smallest key of |
||
778 | * the node is moved there. The index node which is the parent of both |
||
779 | * nodes is fixed. |
||
780 | * |
||
781 | * @param node B-tree node. |
||
782 | * @param inskey Key to be inserted. |
||
783 | * @param insvalue Value to be inserted. |
||
784 | * @param rsubtree Right subtree of inskey. |
||
785 | * |
||
786 | * @return True if the rotation was performed, false otherwise. |
||
787 | */ |
||
1177 | jermar | 788 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 789 | { |
790 | index_t idx; |
||
791 | btree_node_t *lnode; |
||
792 | |||
793 | /* |
||
794 | * If this is root node, the rotation can not be done. |
||
795 | */ |
||
796 | if (ROOT_NODE(node)) |
||
797 | return false; |
||
798 | |||
799 | idx = find_key_by_subtree(node->parent, node, true); |
||
800 | if ((int) idx == -1) { |
||
801 | /* |
||
802 | * If this node is the leftmost subtree of its parent, |
||
803 | * the rotation can not be done. |
||
804 | */ |
||
805 | return false; |
||
806 | } |
||
807 | |||
808 | lnode = node->parent->subtree[idx]; |
||
809 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
810 | /* |
||
811 | * The rotaion can be done. The left sibling has free space. |
||
812 | */ |
||
1142 | jermar | 813 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
814 | rotate_from_right(lnode, node, idx); |
||
1136 | jermar | 815 | return true; |
816 | } |
||
817 | |||
818 | return false; |
||
819 | } |
||
820 | |||
821 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
822 | * |
||
823 | * Right sibling of the node (if it exists) is checked for free space. |
||
824 | * If there is free space, the key is inserted and the biggest key of |
||
825 | * the node is moved there. The index node which is the parent of both |
||
826 | * nodes is fixed. |
||
827 | * |
||
828 | * @param node B-tree node. |
||
829 | * @param inskey Key to be inserted. |
||
830 | * @param insvalue Value to be inserted. |
||
831 | * @param rsubtree Right subtree of inskey. |
||
832 | * |
||
833 | * @return True if the rotation was performed, false otherwise. |
||
834 | */ |
||
1177 | jermar | 835 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 836 | { |
837 | index_t idx; |
||
838 | btree_node_t *rnode; |
||
839 | |||
840 | /* |
||
841 | * If this is root node, the rotation can not be done. |
||
842 | */ |
||
843 | if (ROOT_NODE(node)) |
||
844 | return false; |
||
845 | |||
846 | idx = find_key_by_subtree(node->parent, node, false); |
||
847 | if (idx == node->parent->keys) { |
||
848 | /* |
||
849 | * If this node is the rightmost subtree of its parent, |
||
850 | * the rotation can not be done. |
||
851 | */ |
||
852 | return false; |
||
853 | } |
||
854 | |||
855 | rnode = node->parent->subtree[idx + 1]; |
||
856 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
857 | /* |
||
858 | * The rotaion can be done. The right sibling has free space. |
||
859 | */ |
||
1142 | jermar | 860 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
861 | rotate_from_left(node, rnode, idx); |
||
862 | return true; |
||
863 | } |
||
1136 | jermar | 864 | |
1142 | jermar | 865 | return false; |
866 | } |
||
1136 | jermar | 867 | |
1142 | jermar | 868 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
869 | * |
||
870 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
871 | * |
||
872 | * @return True if the rotation was performed, false otherwise. |
||
873 | */ |
||
874 | bool try_rotation_from_left(btree_node_t *rnode) |
||
875 | { |
||
876 | index_t idx; |
||
877 | btree_node_t *lnode; |
||
1136 | jermar | 878 | |
1142 | jermar | 879 | /* |
880 | * If this is root node, the rotation can not be done. |
||
881 | */ |
||
882 | if (ROOT_NODE(rnode)) |
||
883 | return false; |
||
884 | |||
885 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
886 | if ((int) idx == -1) { |
||
887 | /* |
||
888 | * If this node is the leftmost subtree of its parent, |
||
889 | * the rotation can not be done. |
||
890 | */ |
||
891 | return false; |
||
892 | } |
||
893 | |||
894 | lnode = rnode->parent->subtree[idx]; |
||
895 | if (lnode->keys > FILL_FACTOR) { |
||
896 | rotate_from_left(lnode, rnode, idx); |
||
1136 | jermar | 897 | return true; |
898 | } |
||
1142 | jermar | 899 | |
900 | return false; |
||
901 | } |
||
1136 | jermar | 902 | |
1142 | jermar | 903 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
904 | * |
||
1708 | jermar | 905 | * @param lnode Node into which to add key from its right sibling or from the index node. |
1142 | jermar | 906 | * |
907 | * @return True if the rotation was performed, false otherwise. |
||
908 | */ |
||
909 | bool try_rotation_from_right(btree_node_t *lnode) |
||
910 | { |
||
911 | index_t idx; |
||
912 | btree_node_t *rnode; |
||
913 | |||
914 | /* |
||
915 | * If this is root node, the rotation can not be done. |
||
916 | */ |
||
917 | if (ROOT_NODE(lnode)) |
||
918 | return false; |
||
919 | |||
920 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
921 | if (idx == lnode->parent->keys) { |
||
922 | /* |
||
923 | * If this node is the rightmost subtree of its parent, |
||
924 | * the rotation can not be done. |
||
925 | */ |
||
926 | return false; |
||
927 | } |
||
928 | |||
929 | rnode = lnode->parent->subtree[idx + 1]; |
||
930 | if (rnode->keys > FILL_FACTOR) { |
||
931 | rotate_from_right(lnode, rnode, idx); |
||
932 | return true; |
||
933 | } |
||
934 | |||
1136 | jermar | 935 | return false; |
936 | } |
||
937 | |||
1101 | jermar | 938 | /** Print B-tree. |
939 | * |
||
940 | * @param t Print out B-tree. |
||
941 | */ |
||
942 | void btree_print(btree_t *t) |
||
943 | { |
||
944 | int i, depth = t->root->depth; |
||
1144 | jermar | 945 | link_t head, *cur; |
946 | |||
947 | printf("Printing B-tree:\n"); |
||
1101 | jermar | 948 | list_initialize(&head); |
949 | list_append(&t->root->bfs_link, &head); |
||
950 | |||
951 | /* |
||
952 | * Use BFS search to print out the tree. |
||
953 | * Levels are distinguished from one another by node->depth. |
||
954 | */ |
||
955 | while (!list_empty(&head)) { |
||
956 | link_t *hlp; |
||
957 | btree_node_t *node; |
||
958 | |||
959 | hlp = head.next; |
||
960 | ASSERT(hlp != &head); |
||
961 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
962 | list_remove(hlp); |
||
963 | |||
964 | ASSERT(node); |
||
965 | |||
966 | if (node->depth != depth) { |
||
967 | printf("\n"); |
||
968 | depth = node->depth; |
||
969 | } |
||
970 | |||
971 | printf("("); |
||
972 | for (i = 0; i < node->keys; i++) { |
||
1196 | cejka | 973 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1101 | jermar | 974 | if (node->depth && node->subtree[i]) { |
975 | list_append(&node->subtree[i]->bfs_link, &head); |
||
976 | } |
||
977 | } |
||
978 | if (node->depth && node->subtree[i]) { |
||
979 | list_append(&node->subtree[i]->bfs_link, &head); |
||
980 | } |
||
981 | printf(")"); |
||
982 | } |
||
983 | printf("\n"); |
||
1144 | jermar | 984 | |
985 | printf("Printing list of leaves:\n"); |
||
986 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
987 | btree_node_t *node; |
||
988 | |||
989 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
990 | |||
991 | ASSERT(node); |
||
992 | |||
993 | printf("("); |
||
994 | for (i = 0; i < node->keys; i++) |
||
1196 | cejka | 995 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1144 | jermar | 996 | printf(")"); |
997 | } |
||
998 | printf("\n"); |
||
1101 | jermar | 999 | } |
1702 | cejka | 1000 | |
1757 | jermar | 1001 | /** @} |
1702 | cejka | 1002 | */ |