Rev 1150 | Rev 1177 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | /* |
||
30 | * This B-tree has the following properties: |
||
1164 | jermar | 31 | * - it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
1101 | jermar | 32 | * - values (i.e. pointers to values) are stored only in leaves |
33 | * - leaves are linked in a list |
||
1148 | jermar | 34 | * - technically, it is a B+tree (because of the previous properties) |
1101 | jermar | 35 | * |
1134 | jermar | 36 | * Be carefull when using these trees. They need to allocate |
37 | * and deallocate memory for their index nodes and as such |
||
38 | * can sleep. |
||
1101 | jermar | 39 | */ |
40 | |||
41 | #include <adt/btree.h> |
||
42 | #include <adt/list.h> |
||
43 | #include <mm/slab.h> |
||
44 | #include <debug.h> |
||
45 | #include <panic.h> |
||
46 | #include <typedefs.h> |
||
47 | #include <print.h> |
||
48 | |||
49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
||
1142 | jermar | 50 | static void _btree_remove(btree_t *t, __native key, btree_node_t *node); |
1101 | jermar | 51 | static void node_initialize(btree_node_t *node); |
1144 | jermar | 52 | static void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree); |
1142 | jermar | 53 | static void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
1144 | jermar | 54 | static void node_remove_key_and_lsubtree(btree_node_t *node, __native key); |
55 | static void node_remove_key_and_rsubtree(btree_node_t *node, __native key); |
||
1101 | jermar | 56 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median); |
1142 | jermar | 57 | static btree_node_t *node_combine(btree_node_t *node); |
1136 | jermar | 58 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
1142 | jermar | 59 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
60 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
61 | static bool try_insert_by_rotation_to_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
62 | static bool try_insert_by_rotation_to_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
63 | static bool try_rotation_from_left(btree_node_t *rnode); |
||
64 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
1101 | jermar | 65 | |
66 | #define ROOT_NODE(n) (!(n)->parent) |
||
67 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
68 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
69 | |||
1140 | jermar | 70 | #define FILL_FACTOR ((BTREE_M-1)/2) |
71 | |||
1101 | jermar | 72 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
73 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
74 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
75 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
76 | |||
1164 | jermar | 77 | static slab_cache_t *btree_node_slab; |
78 | |||
79 | /** Initialize B-trees. */ |
||
80 | void btree_init(void) |
||
81 | { |
||
82 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
83 | } |
||
84 | |||
1101 | jermar | 85 | /** Create empty B-tree. |
86 | * |
||
87 | * @param t B-tree. |
||
88 | */ |
||
89 | void btree_create(btree_t *t) |
||
90 | { |
||
91 | list_initialize(&t->leaf_head); |
||
1164 | jermar | 92 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 93 | node_initialize(t->root); |
94 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
95 | } |
||
96 | |||
97 | /** Destroy empty B-tree. */ |
||
98 | void btree_destroy(btree_t *t) |
||
99 | { |
||
100 | ASSERT(!t->root->keys); |
||
1164 | jermar | 101 | slab_free(btree_node_slab, t->root); |
1101 | jermar | 102 | } |
103 | |||
104 | /** Insert key-value pair into B-tree. |
||
105 | * |
||
106 | * @param t B-tree. |
||
107 | * @param key Key to be inserted. |
||
108 | * @param value Value to be inserted. |
||
109 | * @param leaf_node Leaf node where the insertion should begin. |
||
110 | */ |
||
111 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node) |
||
112 | { |
||
113 | btree_node_t *lnode; |
||
114 | |||
115 | ASSERT(value); |
||
116 | |||
117 | lnode = leaf_node; |
||
118 | if (!lnode) { |
||
119 | if (btree_search(t, key, &lnode)) { |
||
120 | panic("B-tree %P already contains key %d\n", t, key); |
||
121 | } |
||
122 | } |
||
123 | |||
124 | _btree_insert(t, key, value, NULL, lnode); |
||
125 | } |
||
126 | |||
127 | /** Recursively insert into B-tree. |
||
128 | * |
||
129 | * @param t B-tree. |
||
130 | * @param key Key to be inserted. |
||
131 | * @param value Value to be inserted. |
||
132 | * @param rsubtree Right subtree of the inserted key. |
||
133 | * @param node Start inserting into this node. |
||
134 | */ |
||
135 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
||
136 | { |
||
137 | if (node->keys < BTREE_MAX_KEYS) { |
||
138 | /* |
||
139 | * Node conatins enough space, the key can be stored immediately. |
||
140 | */ |
||
1142 | jermar | 141 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
142 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
1136 | jermar | 143 | /* |
144 | * The key-value-rsubtree triplet has been inserted because |
||
145 | * some keys could have been moved to the left sibling. |
||
146 | */ |
||
1142 | jermar | 147 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
1136 | jermar | 148 | /* |
149 | * The key-value-rsubtree triplet has been inserted because |
||
150 | * some keys could have been moved to the right sibling. |
||
151 | */ |
||
1101 | jermar | 152 | } else { |
153 | btree_node_t *rnode; |
||
154 | __native median; |
||
155 | |||
156 | /* |
||
1136 | jermar | 157 | * Node is full and both siblings (if both exist) are full too. |
158 | * Split the node and insert the smallest key from the node containing |
||
159 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 160 | */ |
161 | |||
162 | rnode = node_split(node, key, value, rsubtree, &median); |
||
163 | |||
164 | if (LEAF_NODE(node)) { |
||
1144 | jermar | 165 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
1101 | jermar | 166 | } |
167 | |||
168 | if (ROOT_NODE(node)) { |
||
169 | /* |
||
170 | * We split the root node. Create new root. |
||
171 | */ |
||
1164 | jermar | 172 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 173 | node->parent = t->root; |
174 | rnode->parent = t->root; |
||
175 | node_initialize(t->root); |
||
176 | |||
177 | /* |
||
178 | * Left-hand side subtree will be the old root (i.e. node). |
||
179 | * Right-hand side subtree will be rnode. |
||
180 | */ |
||
181 | t->root->subtree[0] = node; |
||
182 | |||
183 | t->root->depth = node->depth + 1; |
||
184 | } |
||
185 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
186 | } |
||
187 | |||
188 | } |
||
189 | |||
1140 | jermar | 190 | /** Remove B-tree node. |
191 | * |
||
192 | * @param B-tree. |
||
193 | * @param key Key to be removed from the B-tree along with its associated value. |
||
194 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
195 | */ |
||
196 | void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node) |
||
1101 | jermar | 197 | { |
1140 | jermar | 198 | btree_node_t *lnode; |
199 | |||
200 | lnode = leaf_node; |
||
201 | if (!lnode) { |
||
202 | if (!btree_search(t, key, &lnode)) { |
||
203 | panic("B-tree %P does not contain key %d\n", t, key); |
||
204 | } |
||
205 | } |
||
206 | |||
1142 | jermar | 207 | _btree_remove(t, key, lnode); |
208 | } |
||
1140 | jermar | 209 | |
1142 | jermar | 210 | /** Recursively remove B-tree node. |
211 | * |
||
212 | * @param B-tree. |
||
213 | * @param key Key to be removed from the B-tree along with its associated value. |
||
214 | * @param node Node where the key being removed resides. |
||
215 | */ |
||
216 | void _btree_remove(btree_t *t, __native key, btree_node_t *node) |
||
217 | { |
||
218 | if (ROOT_NODE(node)) { |
||
219 | if (node->keys == 1 && node->subtree[0]) { |
||
220 | /* |
||
221 | * Free the current root and set new root. |
||
222 | */ |
||
223 | t->root = node->subtree[0]; |
||
224 | t->root->parent = NULL; |
||
1164 | jermar | 225 | slab_free(btree_node_slab, node); |
1142 | jermar | 226 | } else { |
227 | /* |
||
228 | * Remove the key from the root node. |
||
229 | * Note that the right subtree is removed because when |
||
230 | * combining two nodes, the left-side sibling is preserved |
||
231 | * and the right-side sibling is freed. |
||
232 | */ |
||
233 | node_remove_key_and_rsubtree(node, key); |
||
234 | } |
||
235 | return; |
||
236 | } |
||
237 | |||
238 | if (node->keys <= FILL_FACTOR) { |
||
239 | /* |
||
240 | * If the node is below the fill factor, |
||
241 | * try to borrow keys from left or right sibling. |
||
242 | */ |
||
243 | if (!try_rotation_from_left(node)) |
||
244 | try_rotation_from_right(node); |
||
245 | } |
||
246 | |||
247 | if (node->keys > FILL_FACTOR) { |
||
248 | int i; |
||
249 | |||
250 | /* |
||
251 | * The key can be immediatelly removed. |
||
252 | * |
||
253 | * Note that the right subtree is removed because when |
||
254 | * combining two nodes, the left-side sibling is preserved |
||
255 | * and the right-side sibling is freed. |
||
256 | */ |
||
257 | node_remove_key_and_rsubtree(node, key); |
||
258 | for (i = 0; i < node->parent->keys; i++) { |
||
259 | if (node->parent->key[i] == key) |
||
260 | node->parent->key[i] = node->key[0]; |
||
261 | } |
||
262 | |||
263 | } else { |
||
264 | index_t idx; |
||
265 | btree_node_t *rnode, *parent; |
||
266 | |||
267 | /* |
||
268 | * The node is below the fill factor as well as its left and right sibling. |
||
269 | * Resort to combining the node with one of its siblings. |
||
270 | * The node which is on the left is preserved and the node on the right is |
||
271 | * freed. |
||
272 | */ |
||
273 | parent = node->parent; |
||
274 | node_remove_key_and_rsubtree(node, key); |
||
275 | rnode = node_combine(node); |
||
276 | if (LEAF_NODE(rnode)) |
||
277 | list_remove(&rnode->leaf_link); |
||
278 | idx = find_key_by_subtree(parent, rnode, true); |
||
279 | ASSERT((int) idx != -1); |
||
1164 | jermar | 280 | slab_free(btree_node_slab, rnode); |
1142 | jermar | 281 | _btree_remove(t, parent->key[idx], parent); |
282 | } |
||
1101 | jermar | 283 | } |
284 | |||
285 | /** Search key in a B-tree. |
||
286 | * |
||
287 | * @param t B-tree. |
||
288 | * @param key Key to be searched. |
||
289 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
290 | * |
||
291 | * @return Pointer to value or NULL if there is no such key. |
||
292 | */ |
||
293 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node) |
||
294 | { |
||
295 | btree_node_t *cur, *next; |
||
296 | |||
297 | /* |
||
1134 | jermar | 298 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 299 | */ |
300 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 301 | |
1101 | jermar | 302 | /* Last iteration will set this with proper leaf node address. */ |
303 | *leaf_node = cur; |
||
1134 | jermar | 304 | |
305 | /* |
||
306 | * The key can be in the leftmost subtree. |
||
307 | * Test it separately. |
||
308 | */ |
||
309 | if (key < cur->key[0]) { |
||
310 | next = cur->subtree[0]; |
||
311 | continue; |
||
312 | } else { |
||
313 | void *val; |
||
314 | int i; |
||
315 | |||
316 | /* |
||
317 | * Now if the key is smaller than cur->key[i] |
||
318 | * it can only mean that the value is in cur->subtree[i] |
||
319 | * or it is not in the tree at all. |
||
320 | */ |
||
321 | for (i = 1; i < cur->keys; i++) { |
||
322 | if (key < cur->key[i]) { |
||
323 | next = cur->subtree[i]; |
||
324 | val = cur->value[i - 1]; |
||
325 | |||
326 | if (LEAF_NODE(cur)) |
||
327 | return key == cur->key[i - 1] ? val : NULL; |
||
328 | |||
329 | goto descend; |
||
330 | } |
||
1101 | jermar | 331 | } |
1134 | jermar | 332 | |
333 | /* |
||
334 | * Last possibility is that the key is in the rightmost subtree. |
||
335 | */ |
||
336 | next = cur->subtree[i]; |
||
337 | val = cur->value[i - 1]; |
||
338 | if (LEAF_NODE(cur)) |
||
339 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 340 | } |
1134 | jermar | 341 | descend: |
342 | ; |
||
1101 | jermar | 343 | } |
344 | |||
345 | /* |
||
1134 | jermar | 346 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 347 | */ |
348 | return NULL; |
||
349 | } |
||
350 | |||
1150 | jermar | 351 | /** Return pointer to B-tree leaf node's left neighbour. |
1147 | jermar | 352 | * |
353 | * @param t B-tree. |
||
1150 | jermar | 354 | * @param node Node whose left neighbour will be returned. |
1147 | jermar | 355 | * |
1150 | jermar | 356 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
1147 | jermar | 357 | */ |
1150 | jermar | 358 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 359 | { |
360 | ASSERT(LEAF_NODE(node)); |
||
361 | if (node->leaf_link.prev != &t->leaf_head) |
||
362 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
363 | else |
||
364 | return NULL; |
||
365 | } |
||
366 | |||
1150 | jermar | 367 | /** Return pointer to B-tree leaf node's right neighbour. |
1147 | jermar | 368 | * |
369 | * @param t B-tree. |
||
1150 | jermar | 370 | * @param node Node whose right neighbour will be returned. |
1147 | jermar | 371 | * |
1150 | jermar | 372 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
1147 | jermar | 373 | */ |
1150 | jermar | 374 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 375 | { |
376 | ASSERT(LEAF_NODE(node)); |
||
377 | if (node->leaf_link.next != &t->leaf_head) |
||
378 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
379 | else |
||
380 | return NULL; |
||
381 | } |
||
382 | |||
1101 | jermar | 383 | /** Initialize B-tree node. |
384 | * |
||
385 | * @param node B-tree node. |
||
386 | */ |
||
387 | void node_initialize(btree_node_t *node) |
||
388 | { |
||
389 | int i; |
||
390 | |||
391 | node->keys = 0; |
||
392 | |||
393 | /* Clean also space for the extra key. */ |
||
394 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
395 | node->key[i] = 0; |
||
396 | node->value[i] = NULL; |
||
397 | node->subtree[i] = NULL; |
||
398 | } |
||
399 | node->subtree[i] = NULL; |
||
400 | |||
401 | node->parent = NULL; |
||
402 | |||
403 | link_initialize(&node->leaf_link); |
||
404 | |||
405 | link_initialize(&node->bfs_link); |
||
406 | node->depth = 0; |
||
407 | } |
||
408 | |||
1136 | jermar | 409 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 410 | * |
411 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 412 | * This feature is used during insert by right rotation. |
413 | * |
||
414 | * @param node B-tree node into wich the new key is to be inserted. |
||
415 | * @param key The key to be inserted. |
||
416 | * @param value Pointer to value to be inserted. |
||
417 | * @param lsubtree Pointer to the left subtree. |
||
418 | */ |
||
1142 | jermar | 419 | void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree) |
1136 | jermar | 420 | { |
421 | int i; |
||
422 | |||
423 | for (i = 0; i < node->keys; i++) { |
||
424 | if (key < node->key[i]) { |
||
425 | int j; |
||
426 | |||
427 | for (j = node->keys; j > i; j--) { |
||
428 | node->key[j] = node->key[j - 1]; |
||
429 | node->value[j] = node->value[j - 1]; |
||
430 | node->subtree[j + 1] = node->subtree[j]; |
||
431 | } |
||
432 | node->subtree[j + 1] = node->subtree[j]; |
||
433 | break; |
||
434 | } |
||
435 | } |
||
436 | node->key[i] = key; |
||
437 | node->value[i] = value; |
||
438 | node->subtree[i] = lsubtree; |
||
439 | |||
440 | node->keys++; |
||
441 | } |
||
442 | |||
443 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
444 | * |
||
445 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 446 | * This feature is used during splitting the node when the |
1136 | jermar | 447 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
448 | * also makes use of this feature. |
||
1101 | jermar | 449 | * |
450 | * @param node B-tree node into wich the new key is to be inserted. |
||
451 | * @param key The key to be inserted. |
||
452 | * @param value Pointer to value to be inserted. |
||
453 | * @param rsubtree Pointer to the right subtree. |
||
454 | */ |
||
1142 | jermar | 455 | void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 456 | { |
457 | int i; |
||
458 | |||
459 | for (i = 0; i < node->keys; i++) { |
||
460 | if (key < node->key[i]) { |
||
461 | int j; |
||
462 | |||
463 | for (j = node->keys; j > i; j--) { |
||
464 | node->key[j] = node->key[j - 1]; |
||
465 | node->value[j] = node->value[j - 1]; |
||
466 | node->subtree[j + 1] = node->subtree[j]; |
||
467 | } |
||
468 | break; |
||
469 | } |
||
470 | } |
||
471 | node->key[i] = key; |
||
472 | node->value[i] = value; |
||
473 | node->subtree[i + 1] = rsubtree; |
||
474 | |||
475 | node->keys++; |
||
476 | } |
||
477 | |||
1144 | jermar | 478 | /** Remove key and its left subtree pointer from B-tree node. |
479 | * |
||
480 | * Remove the key and eliminate gaps in node->key array. |
||
481 | * Note that the value pointer and the left subtree pointer |
||
482 | * is removed from the node as well. |
||
483 | * |
||
484 | * @param node B-tree node. |
||
485 | * @param key Key to be removed. |
||
486 | */ |
||
487 | void node_remove_key_and_lsubtree(btree_node_t *node, __native key) |
||
488 | { |
||
489 | int i, j; |
||
490 | |||
491 | for (i = 0; i < node->keys; i++) { |
||
492 | if (key == node->key[i]) { |
||
493 | for (j = i + 1; j < node->keys; j++) { |
||
494 | node->key[j - 1] = node->key[j]; |
||
495 | node->value[j - 1] = node->value[j]; |
||
496 | node->subtree[j - 1] = node->subtree[j]; |
||
497 | } |
||
498 | node->subtree[j - 1] = node->subtree[j]; |
||
499 | node->keys--; |
||
500 | return; |
||
501 | } |
||
502 | } |
||
503 | panic("node %P does not contain key %d\n", node, key); |
||
504 | } |
||
505 | |||
506 | /** Remove key and its right subtree pointer from B-tree node. |
||
507 | * |
||
508 | * Remove the key and eliminate gaps in node->key array. |
||
509 | * Note that the value pointer and the right subtree pointer |
||
510 | * is removed from the node as well. |
||
511 | * |
||
512 | * @param node B-tree node. |
||
513 | * @param key Key to be removed. |
||
514 | */ |
||
515 | void node_remove_key_and_rsubtree(btree_node_t *node, __native key) |
||
516 | { |
||
517 | int i, j; |
||
518 | |||
519 | for (i = 0; i < node->keys; i++) { |
||
520 | if (key == node->key[i]) { |
||
521 | for (j = i + 1; j < node->keys; j++) { |
||
522 | node->key[j - 1] = node->key[j]; |
||
523 | node->value[j - 1] = node->value[j]; |
||
524 | node->subtree[j] = node->subtree[j + 1]; |
||
525 | } |
||
526 | node->keys--; |
||
527 | return; |
||
528 | } |
||
529 | } |
||
530 | panic("node %P does not contain key %d\n", node, key); |
||
531 | } |
||
532 | |||
1134 | jermar | 533 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 534 | * |
535 | * This function will split a node and return pointer to a newly created |
||
1134 | jermar | 536 | * node containing keys greater than or equal to the greater of medians |
537 | * (or median) of the old keys and the newly added key. It will also write |
||
538 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 539 | * |
1134 | jermar | 540 | * If the node being split is an index node, the median will not be |
541 | * included in the new node. If the node is a leaf node, |
||
542 | * the median will be copied there. |
||
1101 | jermar | 543 | * |
544 | * @param node B-tree node wich is going to be split. |
||
545 | * @param key The key to be inserted. |
||
546 | * @param value Pointer to the value to be inserted. |
||
547 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
548 | * @param median Address in memory, where the median key will be stored. |
||
549 | * |
||
550 | * @return Newly created right sibling of node. |
||
551 | */ |
||
552 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median) |
||
553 | { |
||
554 | btree_node_t *rnode; |
||
555 | int i, j; |
||
556 | |||
557 | ASSERT(median); |
||
558 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 559 | |
1101 | jermar | 560 | /* |
561 | * Use the extra space to store the extra node. |
||
562 | */ |
||
1142 | jermar | 563 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
1101 | jermar | 564 | |
565 | /* |
||
566 | * Compute median of keys. |
||
567 | */ |
||
1134 | jermar | 568 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 569 | |
1134 | jermar | 570 | /* |
571 | * Allocate and initialize new right sibling. |
||
572 | */ |
||
1164 | jermar | 573 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 574 | node_initialize(rnode); |
575 | rnode->parent = node->parent; |
||
576 | rnode->depth = node->depth; |
||
577 | |||
578 | /* |
||
579 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 580 | * If this is an index node, do not copy the median. |
1101 | jermar | 581 | */ |
1134 | jermar | 582 | i = (int) INDEX_NODE(node); |
583 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 584 | rnode->key[j] = node->key[i]; |
585 | rnode->value[j] = node->value[i]; |
||
586 | rnode->subtree[j] = node->subtree[i]; |
||
587 | |||
588 | /* |
||
589 | * Fix parent links in subtrees. |
||
590 | */ |
||
591 | if (rnode->subtree[j]) |
||
592 | rnode->subtree[j]->parent = rnode; |
||
593 | |||
594 | } |
||
595 | rnode->subtree[j] = node->subtree[i]; |
||
596 | if (rnode->subtree[j]) |
||
597 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 598 | |
599 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
600 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 601 | |
602 | return rnode; |
||
603 | } |
||
604 | |||
1142 | jermar | 605 | /** Combine node with any of its siblings. |
606 | * |
||
607 | * The siblings are required to be below the fill factor. |
||
608 | * |
||
609 | * @param node Node to combine with one of its siblings. |
||
610 | * |
||
611 | * @return Pointer to the rightmost of the two nodes. |
||
612 | */ |
||
613 | btree_node_t *node_combine(btree_node_t *node) |
||
614 | { |
||
615 | index_t idx; |
||
616 | btree_node_t *rnode; |
||
617 | int i; |
||
618 | |||
619 | ASSERT(!ROOT_NODE(node)); |
||
620 | |||
621 | idx = find_key_by_subtree(node->parent, node, false); |
||
622 | if (idx == node->parent->keys) { |
||
623 | /* |
||
624 | * Rightmost subtree of its parent, combine with the left sibling. |
||
625 | */ |
||
626 | idx--; |
||
627 | rnode = node; |
||
628 | node = node->parent->subtree[idx]; |
||
629 | } else { |
||
630 | rnode = node->parent->subtree[idx + 1]; |
||
631 | } |
||
632 | |||
633 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
634 | if (INDEX_NODE(node)) |
||
635 | node->key[node->keys++] = node->parent->key[idx]; |
||
636 | |||
637 | /* Copy the key-value-subtree triplets from the right node. */ |
||
638 | for (i = 0; i < rnode->keys; i++) { |
||
639 | node->key[node->keys + i] = rnode->key[i]; |
||
640 | node->value[node->keys + i] = rnode->value[i]; |
||
641 | if (INDEX_NODE(node)) { |
||
642 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
643 | rnode->subtree[i]->parent = node; |
||
644 | } |
||
645 | } |
||
646 | if (INDEX_NODE(node)) { |
||
647 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
648 | rnode->subtree[i]->parent = node; |
||
649 | } |
||
650 | |||
651 | node->keys += rnode->keys; |
||
652 | |||
653 | return rnode; |
||
654 | } |
||
655 | |||
1136 | jermar | 656 | /** Find key by its left or right subtree. |
657 | * |
||
658 | * @param node B-tree node. |
||
659 | * @param subtree Left or right subtree of a key found in node. |
||
660 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
661 | * |
||
662 | * @return Index of the key associated with the subtree. |
||
663 | */ |
||
664 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
665 | { |
||
666 | int i; |
||
667 | |||
668 | for (i = 0; i < node->keys + 1; i++) { |
||
669 | if (subtree == node->subtree[i]) |
||
670 | return i - (int) (right != false); |
||
671 | } |
||
672 | panic("node %P does not contain subtree %P\n", node, subtree); |
||
673 | } |
||
674 | |||
1142 | jermar | 675 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
676 | * |
||
677 | * The biggest key and its value and right subtree is rotated from the left node |
||
678 | * to the right. If the node is an index node, than the parent node key belonging to |
||
679 | * the left node takes part in the rotation. |
||
680 | * |
||
681 | * @param lnode Left sibling. |
||
682 | * @param rnode Right sibling. |
||
683 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
684 | */ |
||
685 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
686 | { |
||
687 | __native key; |
||
688 | |||
689 | key = lnode->key[lnode->keys - 1]; |
||
690 | |||
691 | if (LEAF_NODE(lnode)) { |
||
692 | void *value; |
||
693 | |||
694 | value = lnode->value[lnode->keys - 1]; |
||
695 | node_remove_key_and_rsubtree(lnode, key); |
||
696 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
697 | lnode->parent->key[idx] = key; |
||
698 | } else { |
||
699 | btree_node_t *rsubtree; |
||
700 | |||
701 | rsubtree = lnode->subtree[lnode->keys]; |
||
702 | node_remove_key_and_rsubtree(lnode, key); |
||
703 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
704 | lnode->parent->key[idx] = key; |
||
705 | |||
706 | /* Fix parent link of the reconnected right subtree. */ |
||
707 | rsubtree->parent = rnode; |
||
708 | } |
||
709 | |||
710 | } |
||
711 | |||
712 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
713 | * |
||
714 | * The smallest key and its value and left subtree is rotated from the right node |
||
715 | * to the left. If the node is an index node, than the parent node key belonging to |
||
716 | * the right node takes part in the rotation. |
||
717 | * |
||
718 | * @param lnode Left sibling. |
||
719 | * @param rnode Right sibling. |
||
720 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
721 | */ |
||
722 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
723 | { |
||
724 | __native key; |
||
725 | |||
726 | key = rnode->key[0]; |
||
727 | |||
728 | if (LEAF_NODE(rnode)) { |
||
729 | void *value; |
||
730 | |||
731 | value = rnode->value[0]; |
||
732 | node_remove_key_and_lsubtree(rnode, key); |
||
733 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
734 | rnode->parent->key[idx] = rnode->key[0]; |
||
735 | } else { |
||
736 | btree_node_t *lsubtree; |
||
737 | |||
738 | lsubtree = rnode->subtree[0]; |
||
739 | node_remove_key_and_lsubtree(rnode, key); |
||
740 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
741 | rnode->parent->key[idx] = key; |
||
742 | |||
743 | /* Fix parent link of the reconnected left subtree. */ |
||
744 | lsubtree->parent = lnode; |
||
745 | } |
||
746 | |||
747 | } |
||
748 | |||
1136 | jermar | 749 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
750 | * |
||
751 | * Left sibling of the node (if it exists) is checked for free space. |
||
752 | * If there is free space, the key is inserted and the smallest key of |
||
753 | * the node is moved there. The index node which is the parent of both |
||
754 | * nodes is fixed. |
||
755 | * |
||
756 | * @param node B-tree node. |
||
757 | * @param inskey Key to be inserted. |
||
758 | * @param insvalue Value to be inserted. |
||
759 | * @param rsubtree Right subtree of inskey. |
||
760 | * |
||
761 | * @return True if the rotation was performed, false otherwise. |
||
762 | */ |
||
1142 | jermar | 763 | bool try_insert_by_rotation_to_left(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 764 | { |
765 | index_t idx; |
||
766 | btree_node_t *lnode; |
||
767 | |||
768 | /* |
||
769 | * If this is root node, the rotation can not be done. |
||
770 | */ |
||
771 | if (ROOT_NODE(node)) |
||
772 | return false; |
||
773 | |||
774 | idx = find_key_by_subtree(node->parent, node, true); |
||
775 | if ((int) idx == -1) { |
||
776 | /* |
||
777 | * If this node is the leftmost subtree of its parent, |
||
778 | * the rotation can not be done. |
||
779 | */ |
||
780 | return false; |
||
781 | } |
||
782 | |||
783 | lnode = node->parent->subtree[idx]; |
||
784 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
785 | /* |
||
786 | * The rotaion can be done. The left sibling has free space. |
||
787 | */ |
||
1142 | jermar | 788 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
789 | rotate_from_right(lnode, node, idx); |
||
1136 | jermar | 790 | return true; |
791 | } |
||
792 | |||
793 | return false; |
||
794 | } |
||
795 | |||
796 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
797 | * |
||
798 | * Right sibling of the node (if it exists) is checked for free space. |
||
799 | * If there is free space, the key is inserted and the biggest key of |
||
800 | * the node is moved there. The index node which is the parent of both |
||
801 | * nodes is fixed. |
||
802 | * |
||
803 | * @param node B-tree node. |
||
804 | * @param inskey Key to be inserted. |
||
805 | * @param insvalue Value to be inserted. |
||
806 | * @param rsubtree Right subtree of inskey. |
||
807 | * |
||
808 | * @return True if the rotation was performed, false otherwise. |
||
809 | */ |
||
1142 | jermar | 810 | bool try_insert_by_rotation_to_right(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 811 | { |
812 | index_t idx; |
||
813 | btree_node_t *rnode; |
||
814 | |||
815 | /* |
||
816 | * If this is root node, the rotation can not be done. |
||
817 | */ |
||
818 | if (ROOT_NODE(node)) |
||
819 | return false; |
||
820 | |||
821 | idx = find_key_by_subtree(node->parent, node, false); |
||
822 | if (idx == node->parent->keys) { |
||
823 | /* |
||
824 | * If this node is the rightmost subtree of its parent, |
||
825 | * the rotation can not be done. |
||
826 | */ |
||
827 | return false; |
||
828 | } |
||
829 | |||
830 | rnode = node->parent->subtree[idx + 1]; |
||
831 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
832 | /* |
||
833 | * The rotaion can be done. The right sibling has free space. |
||
834 | */ |
||
1142 | jermar | 835 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
836 | rotate_from_left(node, rnode, idx); |
||
837 | return true; |
||
838 | } |
||
1136 | jermar | 839 | |
1142 | jermar | 840 | return false; |
841 | } |
||
1136 | jermar | 842 | |
1142 | jermar | 843 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
844 | * |
||
845 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
846 | * |
||
847 | * @return True if the rotation was performed, false otherwise. |
||
848 | */ |
||
849 | bool try_rotation_from_left(btree_node_t *rnode) |
||
850 | { |
||
851 | index_t idx; |
||
852 | btree_node_t *lnode; |
||
1136 | jermar | 853 | |
1142 | jermar | 854 | /* |
855 | * If this is root node, the rotation can not be done. |
||
856 | */ |
||
857 | if (ROOT_NODE(rnode)) |
||
858 | return false; |
||
859 | |||
860 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
861 | if ((int) idx == -1) { |
||
862 | /* |
||
863 | * If this node is the leftmost subtree of its parent, |
||
864 | * the rotation can not be done. |
||
865 | */ |
||
866 | return false; |
||
867 | } |
||
868 | |||
869 | lnode = rnode->parent->subtree[idx]; |
||
870 | if (lnode->keys > FILL_FACTOR) { |
||
871 | rotate_from_left(lnode, rnode, idx); |
||
1136 | jermar | 872 | return true; |
873 | } |
||
1142 | jermar | 874 | |
875 | return false; |
||
876 | } |
||
1136 | jermar | 877 | |
1142 | jermar | 878 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
879 | * |
||
880 | * @param rnode Node into which to add key from its right sibling or from the index node. |
||
881 | * |
||
882 | * @return True if the rotation was performed, false otherwise. |
||
883 | */ |
||
884 | bool try_rotation_from_right(btree_node_t *lnode) |
||
885 | { |
||
886 | index_t idx; |
||
887 | btree_node_t *rnode; |
||
888 | |||
889 | /* |
||
890 | * If this is root node, the rotation can not be done. |
||
891 | */ |
||
892 | if (ROOT_NODE(lnode)) |
||
893 | return false; |
||
894 | |||
895 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
896 | if (idx == lnode->parent->keys) { |
||
897 | /* |
||
898 | * If this node is the rightmost subtree of its parent, |
||
899 | * the rotation can not be done. |
||
900 | */ |
||
901 | return false; |
||
902 | } |
||
903 | |||
904 | rnode = lnode->parent->subtree[idx + 1]; |
||
905 | if (rnode->keys > FILL_FACTOR) { |
||
906 | rotate_from_right(lnode, rnode, idx); |
||
907 | return true; |
||
908 | } |
||
909 | |||
1136 | jermar | 910 | return false; |
911 | } |
||
912 | |||
1101 | jermar | 913 | /** Print B-tree. |
914 | * |
||
915 | * @param t Print out B-tree. |
||
916 | */ |
||
917 | void btree_print(btree_t *t) |
||
918 | { |
||
919 | int i, depth = t->root->depth; |
||
1144 | jermar | 920 | link_t head, *cur; |
921 | |||
922 | printf("Printing B-tree:\n"); |
||
1101 | jermar | 923 | list_initialize(&head); |
924 | list_append(&t->root->bfs_link, &head); |
||
925 | |||
926 | /* |
||
927 | * Use BFS search to print out the tree. |
||
928 | * Levels are distinguished from one another by node->depth. |
||
929 | */ |
||
930 | while (!list_empty(&head)) { |
||
931 | link_t *hlp; |
||
932 | btree_node_t *node; |
||
933 | |||
934 | hlp = head.next; |
||
935 | ASSERT(hlp != &head); |
||
936 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
937 | list_remove(hlp); |
||
938 | |||
939 | ASSERT(node); |
||
940 | |||
941 | if (node->depth != depth) { |
||
942 | printf("\n"); |
||
943 | depth = node->depth; |
||
944 | } |
||
945 | |||
946 | printf("("); |
||
947 | for (i = 0; i < node->keys; i++) { |
||
1144 | jermar | 948 | printf("%d%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1101 | jermar | 949 | if (node->depth && node->subtree[i]) { |
950 | list_append(&node->subtree[i]->bfs_link, &head); |
||
951 | } |
||
952 | } |
||
953 | if (node->depth && node->subtree[i]) { |
||
954 | list_append(&node->subtree[i]->bfs_link, &head); |
||
955 | } |
||
956 | printf(")"); |
||
957 | } |
||
958 | printf("\n"); |
||
1144 | jermar | 959 | |
960 | printf("Printing list of leaves:\n"); |
||
961 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
962 | btree_node_t *node; |
||
963 | |||
964 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
965 | |||
966 | ASSERT(node); |
||
967 | |||
968 | printf("("); |
||
969 | for (i = 0; i < node->keys; i++) |
||
970 | printf("%d%s", node->key[i], i < node->keys - 1 ? "," : ""); |
||
971 | printf(")"); |
||
972 | } |
||
973 | printf("\n"); |
||
1101 | jermar | 974 | } |