Rev 1136 | Rev 1142 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | /* |
||
30 | * This B-tree has the following properties: |
||
1140 | jermar | 31 | * - it is a ballanced 2-3-4-5 tree (i.e. BTREE_M = 5) |
1101 | jermar | 32 | * - values (i.e. pointers to values) are stored only in leaves |
33 | * - leaves are linked in a list |
||
34 | * - technically, it is a B+-tree (because of the previous properties) |
||
35 | * |
||
1134 | jermar | 36 | * Be carefull when using these trees. They need to allocate |
37 | * and deallocate memory for their index nodes and as such |
||
38 | * can sleep. |
||
1101 | jermar | 39 | */ |
40 | |||
41 | #include <adt/btree.h> |
||
42 | #include <adt/list.h> |
||
43 | #include <mm/slab.h> |
||
44 | #include <debug.h> |
||
45 | #include <panic.h> |
||
46 | #include <typedefs.h> |
||
47 | #include <print.h> |
||
48 | |||
49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
||
50 | static void node_initialize(btree_node_t *node); |
||
1136 | jermar | 51 | static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
52 | static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
1101 | jermar | 53 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median); |
1136 | jermar | 54 | static void node_remove_key_left(btree_node_t *node, __native key); |
55 | static void node_remove_key_right(btree_node_t *node, __native key); |
||
56 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
||
57 | static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
58 | static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
1101 | jermar | 59 | |
60 | #define ROOT_NODE(n) (!(n)->parent) |
||
61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
63 | |||
1140 | jermar | 64 | #define FILL_FACTOR ((BTREE_M-1)/2) |
65 | |||
1101 | jermar | 66 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
67 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
68 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
69 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
70 | |||
71 | /** Create empty B-tree. |
||
72 | * |
||
73 | * @param t B-tree. |
||
74 | */ |
||
75 | void btree_create(btree_t *t) |
||
76 | { |
||
77 | list_initialize(&t->leaf_head); |
||
78 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
||
79 | node_initialize(t->root); |
||
80 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
81 | } |
||
82 | |||
83 | /** Destroy empty B-tree. */ |
||
84 | void btree_destroy(btree_t *t) |
||
85 | { |
||
86 | ASSERT(!t->root->keys); |
||
87 | free(t->root); |
||
88 | } |
||
89 | |||
90 | /** Insert key-value pair into B-tree. |
||
91 | * |
||
92 | * @param t B-tree. |
||
93 | * @param key Key to be inserted. |
||
94 | * @param value Value to be inserted. |
||
95 | * @param leaf_node Leaf node where the insertion should begin. |
||
96 | */ |
||
97 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node) |
||
98 | { |
||
99 | btree_node_t *lnode; |
||
100 | |||
101 | ASSERT(value); |
||
102 | |||
103 | lnode = leaf_node; |
||
104 | if (!lnode) { |
||
105 | if (btree_search(t, key, &lnode)) { |
||
106 | panic("B-tree %P already contains key %d\n", t, key); |
||
107 | } |
||
108 | } |
||
109 | |||
110 | _btree_insert(t, key, value, NULL, lnode); |
||
111 | } |
||
112 | |||
113 | /** Recursively insert into B-tree. |
||
114 | * |
||
115 | * @param t B-tree. |
||
116 | * @param key Key to be inserted. |
||
117 | * @param value Value to be inserted. |
||
118 | * @param rsubtree Right subtree of the inserted key. |
||
119 | * @param node Start inserting into this node. |
||
120 | */ |
||
121 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
||
122 | { |
||
123 | if (node->keys < BTREE_MAX_KEYS) { |
||
124 | /* |
||
125 | * Node conatins enough space, the key can be stored immediately. |
||
126 | */ |
||
1136 | jermar | 127 | node_insert_key_right(node, key, value, rsubtree); |
128 | } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) { |
||
129 | /* |
||
130 | * The key-value-rsubtree triplet has been inserted because |
||
131 | * some keys could have been moved to the left sibling. |
||
132 | */ |
||
133 | } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) { |
||
134 | /* |
||
135 | * The key-value-rsubtree triplet has been inserted because |
||
136 | * some keys could have been moved to the right sibling. |
||
137 | */ |
||
1101 | jermar | 138 | } else { |
139 | btree_node_t *rnode; |
||
140 | __native median; |
||
141 | |||
142 | /* |
||
1136 | jermar | 143 | * Node is full and both siblings (if both exist) are full too. |
144 | * Split the node and insert the smallest key from the node containing |
||
145 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 146 | */ |
147 | |||
148 | rnode = node_split(node, key, value, rsubtree, &median); |
||
149 | |||
150 | if (LEAF_NODE(node)) { |
||
151 | list_append(&rnode->leaf_link, &node->leaf_link); |
||
152 | } |
||
153 | |||
154 | if (ROOT_NODE(node)) { |
||
155 | /* |
||
156 | * We split the root node. Create new root. |
||
157 | */ |
||
158 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
||
159 | node->parent = t->root; |
||
160 | rnode->parent = t->root; |
||
161 | node_initialize(t->root); |
||
162 | |||
163 | /* |
||
164 | * Left-hand side subtree will be the old root (i.e. node). |
||
165 | * Right-hand side subtree will be rnode. |
||
166 | */ |
||
167 | t->root->subtree[0] = node; |
||
168 | |||
169 | t->root->depth = node->depth + 1; |
||
170 | } |
||
171 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
172 | } |
||
173 | |||
174 | } |
||
175 | |||
1140 | jermar | 176 | /** Remove B-tree node. |
177 | * |
||
178 | * @param B-tree. |
||
179 | * @param key Key to be removed from the B-tree along with its associated value. |
||
180 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
181 | */ |
||
182 | void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node) |
||
1101 | jermar | 183 | { |
1140 | jermar | 184 | btree_node_t *lnode; |
185 | |||
186 | lnode = leaf_node; |
||
187 | if (!lnode) { |
||
188 | if (!btree_search(t, key, &lnode)) { |
||
189 | panic("B-tree %P does not contain key %d\n", t, key); |
||
190 | } |
||
191 | } |
||
192 | |||
193 | /* TODO */ |
||
194 | |||
1101 | jermar | 195 | } |
196 | |||
197 | /** Search key in a B-tree. |
||
198 | * |
||
199 | * @param t B-tree. |
||
200 | * @param key Key to be searched. |
||
201 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
202 | * |
||
203 | * @return Pointer to value or NULL if there is no such key. |
||
204 | */ |
||
205 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node) |
||
206 | { |
||
207 | btree_node_t *cur, *next; |
||
208 | |||
209 | /* |
||
1134 | jermar | 210 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 211 | */ |
212 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 213 | |
1101 | jermar | 214 | /* Last iteration will set this with proper leaf node address. */ |
215 | *leaf_node = cur; |
||
1134 | jermar | 216 | |
217 | /* |
||
218 | * The key can be in the leftmost subtree. |
||
219 | * Test it separately. |
||
220 | */ |
||
221 | if (key < cur->key[0]) { |
||
222 | next = cur->subtree[0]; |
||
223 | continue; |
||
224 | } else { |
||
225 | void *val; |
||
226 | int i; |
||
227 | |||
228 | /* |
||
229 | * Now if the key is smaller than cur->key[i] |
||
230 | * it can only mean that the value is in cur->subtree[i] |
||
231 | * or it is not in the tree at all. |
||
232 | */ |
||
233 | for (i = 1; i < cur->keys; i++) { |
||
234 | if (key < cur->key[i]) { |
||
235 | next = cur->subtree[i]; |
||
236 | val = cur->value[i - 1]; |
||
237 | |||
238 | if (LEAF_NODE(cur)) |
||
239 | return key == cur->key[i - 1] ? val : NULL; |
||
240 | |||
241 | goto descend; |
||
242 | } |
||
1101 | jermar | 243 | } |
1134 | jermar | 244 | |
245 | /* |
||
246 | * Last possibility is that the key is in the rightmost subtree. |
||
247 | */ |
||
248 | next = cur->subtree[i]; |
||
249 | val = cur->value[i - 1]; |
||
250 | if (LEAF_NODE(cur)) |
||
251 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 252 | } |
1134 | jermar | 253 | descend: |
254 | ; |
||
1101 | jermar | 255 | } |
256 | |||
257 | /* |
||
1134 | jermar | 258 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 259 | */ |
260 | return NULL; |
||
261 | } |
||
262 | |||
263 | /** Get pointer to value with the smallest key within the node. |
||
264 | * |
||
265 | * Can be only used on leaf-level nodes. |
||
266 | * |
||
267 | * @param node B-tree node. |
||
268 | * |
||
269 | * @return Pointer to value assiciated with the smallest key. |
||
270 | */ |
||
271 | void *btree_node_min(btree_node_t *node) |
||
272 | { |
||
273 | ASSERT(LEAF_NODE(node)); |
||
274 | ASSERT(node->keys); |
||
275 | return node->value[0]; |
||
276 | } |
||
277 | |||
278 | /** Get pointer to value with the biggest key within the node. |
||
279 | * |
||
280 | * Can be only used on leaf-level nodes. |
||
281 | * |
||
282 | * @param node B-tree node. |
||
283 | * |
||
284 | * @return Pointer to value assiciated with the biggest key. |
||
285 | */ |
||
286 | void *btree_node_max(btree_node_t *node) |
||
287 | { |
||
288 | ASSERT(LEAF_NODE(node)); |
||
289 | ASSERT(node->keys); |
||
290 | return node->value[node->keys - 1]; |
||
291 | } |
||
292 | |||
293 | /** Initialize B-tree node. |
||
294 | * |
||
295 | * @param node B-tree node. |
||
296 | */ |
||
297 | void node_initialize(btree_node_t *node) |
||
298 | { |
||
299 | int i; |
||
300 | |||
301 | node->keys = 0; |
||
302 | |||
303 | /* Clean also space for the extra key. */ |
||
304 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
305 | node->key[i] = 0; |
||
306 | node->value[i] = NULL; |
||
307 | node->subtree[i] = NULL; |
||
308 | } |
||
309 | node->subtree[i] = NULL; |
||
310 | |||
311 | node->parent = NULL; |
||
312 | |||
313 | link_initialize(&node->leaf_link); |
||
314 | |||
315 | link_initialize(&node->bfs_link); |
||
316 | node->depth = 0; |
||
317 | } |
||
318 | |||
1136 | jermar | 319 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 320 | * |
321 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 322 | * This feature is used during insert by right rotation. |
323 | * |
||
324 | * @param node B-tree node into wich the new key is to be inserted. |
||
325 | * @param key The key to be inserted. |
||
326 | * @param value Pointer to value to be inserted. |
||
327 | * @param lsubtree Pointer to the left subtree. |
||
328 | */ |
||
329 | void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree) |
||
330 | { |
||
331 | int i; |
||
332 | |||
333 | for (i = 0; i < node->keys; i++) { |
||
334 | if (key < node->key[i]) { |
||
335 | int j; |
||
336 | |||
337 | for (j = node->keys; j > i; j--) { |
||
338 | node->key[j] = node->key[j - 1]; |
||
339 | node->value[j] = node->value[j - 1]; |
||
340 | node->subtree[j + 1] = node->subtree[j]; |
||
341 | } |
||
342 | node->subtree[j + 1] = node->subtree[j]; |
||
343 | break; |
||
344 | } |
||
345 | } |
||
346 | node->key[i] = key; |
||
347 | node->value[i] = value; |
||
348 | node->subtree[i] = lsubtree; |
||
349 | |||
350 | node->keys++; |
||
351 | } |
||
352 | |||
353 | |||
354 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
355 | * |
||
356 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 357 | * This feature is used during splitting the node when the |
1136 | jermar | 358 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
359 | * also makes use of this feature. |
||
1101 | jermar | 360 | * |
361 | * @param node B-tree node into wich the new key is to be inserted. |
||
362 | * @param key The key to be inserted. |
||
363 | * @param value Pointer to value to be inserted. |
||
364 | * @param rsubtree Pointer to the right subtree. |
||
365 | */ |
||
1136 | jermar | 366 | void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 367 | { |
368 | int i; |
||
369 | |||
370 | for (i = 0; i < node->keys; i++) { |
||
371 | if (key < node->key[i]) { |
||
372 | int j; |
||
373 | |||
374 | for (j = node->keys; j > i; j--) { |
||
375 | node->key[j] = node->key[j - 1]; |
||
376 | node->value[j] = node->value[j - 1]; |
||
377 | node->subtree[j + 1] = node->subtree[j]; |
||
378 | } |
||
379 | break; |
||
380 | } |
||
381 | } |
||
382 | node->key[i] = key; |
||
383 | node->value[i] = value; |
||
384 | node->subtree[i + 1] = rsubtree; |
||
385 | |||
386 | node->keys++; |
||
387 | } |
||
388 | |||
1134 | jermar | 389 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 390 | * |
391 | * This function will split a node and return pointer to a newly created |
||
1134 | jermar | 392 | * node containing keys greater than or equal to the greater of medians |
393 | * (or median) of the old keys and the newly added key. It will also write |
||
394 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 395 | * |
1134 | jermar | 396 | * If the node being split is an index node, the median will not be |
397 | * included in the new node. If the node is a leaf node, |
||
398 | * the median will be copied there. |
||
1101 | jermar | 399 | * |
400 | * @param node B-tree node wich is going to be split. |
||
401 | * @param key The key to be inserted. |
||
402 | * @param value Pointer to the value to be inserted. |
||
403 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
404 | * @param median Address in memory, where the median key will be stored. |
||
405 | * |
||
406 | * @return Newly created right sibling of node. |
||
407 | */ |
||
408 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median) |
||
409 | { |
||
410 | btree_node_t *rnode; |
||
411 | int i, j; |
||
412 | |||
413 | ASSERT(median); |
||
414 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 415 | |
1101 | jermar | 416 | /* |
417 | * Use the extra space to store the extra node. |
||
418 | */ |
||
1136 | jermar | 419 | node_insert_key_right(node, key, value, rsubtree); |
1101 | jermar | 420 | |
421 | /* |
||
422 | * Compute median of keys. |
||
423 | */ |
||
1134 | jermar | 424 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 425 | |
1134 | jermar | 426 | /* |
427 | * Allocate and initialize new right sibling. |
||
428 | */ |
||
1101 | jermar | 429 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
430 | node_initialize(rnode); |
||
431 | rnode->parent = node->parent; |
||
432 | rnode->depth = node->depth; |
||
433 | |||
434 | /* |
||
435 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 436 | * If this is an index node, do not copy the median. |
1101 | jermar | 437 | */ |
1134 | jermar | 438 | i = (int) INDEX_NODE(node); |
439 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 440 | rnode->key[j] = node->key[i]; |
441 | rnode->value[j] = node->value[i]; |
||
442 | rnode->subtree[j] = node->subtree[i]; |
||
443 | |||
444 | /* |
||
445 | * Fix parent links in subtrees. |
||
446 | */ |
||
447 | if (rnode->subtree[j]) |
||
448 | rnode->subtree[j]->parent = rnode; |
||
449 | |||
450 | } |
||
451 | rnode->subtree[j] = node->subtree[i]; |
||
452 | if (rnode->subtree[j]) |
||
453 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 454 | |
455 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
456 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 457 | |
458 | return rnode; |
||
459 | } |
||
460 | |||
1136 | jermar | 461 | /** Remove key and its left subtree pointer from B-tree node. |
1134 | jermar | 462 | * |
1136 | jermar | 463 | * Remove the key and eliminate gaps in node->key array. |
464 | * Note that the value pointer and the left subtree pointer |
||
465 | * is removed from the node as well. |
||
466 | * |
||
1134 | jermar | 467 | * @param node B-tree node. |
468 | * @param key Key to be removed. |
||
469 | */ |
||
1136 | jermar | 470 | void node_remove_key_left(btree_node_t *node, __native key) |
1134 | jermar | 471 | { |
1136 | jermar | 472 | int i, j; |
473 | |||
474 | for (i = 0; i < node->keys; i++) { |
||
475 | if (key == node->key[i]) { |
||
476 | for (j = i + 1; j < node->keys; j++) { |
||
477 | node->key[j - 1] = node->key[j]; |
||
478 | node->value[j - 1] = node->value[j]; |
||
479 | node->subtree[j - 1] = node->subtree[j]; |
||
480 | } |
||
481 | node->subtree[j - 1] = node->subtree[j]; |
||
482 | node->keys--; |
||
483 | return; |
||
484 | } |
||
485 | } |
||
486 | panic("node %P does not contain key %d\n", node, key); |
||
1134 | jermar | 487 | } |
488 | |||
1136 | jermar | 489 | /** Remove key and its right subtree pointer from B-tree node. |
490 | * |
||
491 | * Remove the key and eliminate gaps in node->key array. |
||
492 | * Note that the value pointer and the right subtree pointer |
||
493 | * is removed from the node as well. |
||
494 | * |
||
495 | * @param node B-tree node. |
||
496 | * @param key Key to be removed. |
||
497 | */ |
||
498 | void node_remove_key_right(btree_node_t *node, __native key) |
||
499 | { |
||
500 | int i, j; |
||
501 | |||
502 | for (i = 0; i < node->keys; i++) { |
||
503 | if (key == node->key[i]) { |
||
504 | for (j = i + 1; j < node->keys; j++) { |
||
505 | node->key[j - 1] = node->key[j]; |
||
506 | node->value[j - 1] = node->value[j]; |
||
507 | node->subtree[j] = node->subtree[j + 1]; |
||
508 | } |
||
509 | node->keys--; |
||
510 | return; |
||
511 | } |
||
512 | } |
||
513 | panic("node %P does not contain key %d\n", node, key); |
||
514 | } |
||
515 | |||
516 | /** Find key by its left or right subtree. |
||
517 | * |
||
518 | * @param node B-tree node. |
||
519 | * @param subtree Left or right subtree of a key found in node. |
||
520 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
521 | * |
||
522 | * @return Index of the key associated with the subtree. |
||
523 | */ |
||
524 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
525 | { |
||
526 | int i; |
||
527 | |||
528 | for (i = 0; i < node->keys + 1; i++) { |
||
529 | if (subtree == node->subtree[i]) |
||
530 | return i - (int) (right != false); |
||
531 | } |
||
532 | panic("node %P does not contain subtree %P\n", node, subtree); |
||
533 | } |
||
534 | |||
535 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
||
536 | * |
||
537 | * Left sibling of the node (if it exists) is checked for free space. |
||
538 | * If there is free space, the key is inserted and the smallest key of |
||
539 | * the node is moved there. The index node which is the parent of both |
||
540 | * nodes is fixed. |
||
541 | * |
||
542 | * @param node B-tree node. |
||
543 | * @param inskey Key to be inserted. |
||
544 | * @param insvalue Value to be inserted. |
||
545 | * @param rsubtree Right subtree of inskey. |
||
546 | * |
||
547 | * @return True if the rotation was performed, false otherwise. |
||
548 | */ |
||
549 | bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
||
550 | { |
||
551 | index_t idx; |
||
552 | btree_node_t *lnode; |
||
553 | |||
554 | /* |
||
555 | * If this is root node, the rotation can not be done. |
||
556 | */ |
||
557 | if (ROOT_NODE(node)) |
||
558 | return false; |
||
559 | |||
560 | idx = find_key_by_subtree(node->parent, node, true); |
||
561 | if ((int) idx == -1) { |
||
562 | /* |
||
563 | * If this node is the leftmost subtree of its parent, |
||
564 | * the rotation can not be done. |
||
565 | */ |
||
566 | return false; |
||
567 | } |
||
568 | |||
569 | lnode = node->parent->subtree[idx]; |
||
570 | |||
571 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
572 | __native key; |
||
573 | |||
574 | /* |
||
575 | * The rotaion can be done. The left sibling has free space. |
||
576 | */ |
||
577 | |||
578 | node_insert_key_right(node, inskey, insvalue, rsubtree); |
||
579 | key = node->key[0]; |
||
580 | |||
581 | if (LEAF_NODE(node)) { |
||
582 | void *value; |
||
583 | |||
584 | value = node->value[0]; |
||
585 | node_remove_key_left(node, key); |
||
586 | node_insert_key_right(lnode, key, value, NULL); |
||
587 | node->parent->key[idx] = node->key[0]; |
||
588 | } else { |
||
589 | btree_node_t *lsubtree; |
||
590 | |||
591 | lsubtree = node->subtree[0]; |
||
592 | node_remove_key_left(node, key); |
||
593 | node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree); |
||
594 | node->parent->key[idx] = key; |
||
595 | |||
596 | /* Fix parent link of the reconnected left subtree. */ |
||
597 | lsubtree->parent = lnode; |
||
598 | } |
||
599 | return true; |
||
600 | } |
||
601 | |||
602 | return false; |
||
603 | } |
||
604 | |||
605 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
606 | * |
||
607 | * Right sibling of the node (if it exists) is checked for free space. |
||
608 | * If there is free space, the key is inserted and the biggest key of |
||
609 | * the node is moved there. The index node which is the parent of both |
||
610 | * nodes is fixed. |
||
611 | * |
||
612 | * @param node B-tree node. |
||
613 | * @param inskey Key to be inserted. |
||
614 | * @param insvalue Value to be inserted. |
||
615 | * @param rsubtree Right subtree of inskey. |
||
616 | * |
||
617 | * @return True if the rotation was performed, false otherwise. |
||
618 | */ |
||
619 | bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
||
620 | { |
||
621 | index_t idx; |
||
622 | btree_node_t *rnode; |
||
623 | |||
624 | /* |
||
625 | * If this is root node, the rotation can not be done. |
||
626 | */ |
||
627 | if (ROOT_NODE(node)) |
||
628 | return false; |
||
629 | |||
630 | idx = find_key_by_subtree(node->parent, node, false); |
||
631 | if (idx == node->parent->keys) { |
||
632 | /* |
||
633 | * If this node is the rightmost subtree of its parent, |
||
634 | * the rotation can not be done. |
||
635 | */ |
||
636 | return false; |
||
637 | } |
||
638 | |||
639 | rnode = node->parent->subtree[idx + 1]; |
||
640 | |||
641 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
642 | __native key; |
||
643 | |||
644 | /* |
||
645 | * The rotaion can be done. The right sibling has free space. |
||
646 | */ |
||
647 | |||
648 | node_insert_key_right(node, inskey, insvalue, rsubtree); |
||
649 | key = node->key[node->keys - 1]; |
||
650 | |||
651 | if (LEAF_NODE(node)) { |
||
652 | void *value; |
||
653 | |||
654 | value = node->value[node->keys - 1]; |
||
655 | node_remove_key_right(node, key); |
||
656 | node_insert_key_left(rnode, key, value, NULL); |
||
657 | node->parent->key[idx] = key; |
||
658 | } else { |
||
659 | btree_node_t *rsubt; |
||
660 | |||
661 | rsubt = node->subtree[node->keys]; |
||
662 | node_remove_key_right(node, key); |
||
663 | node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt); |
||
664 | node->parent->key[idx] = key; |
||
665 | |||
666 | /* Fix parent link of the reconnected right subtree. */ |
||
667 | rsubt->parent = rnode; |
||
668 | } |
||
669 | return true; |
||
670 | } |
||
671 | |||
672 | return false; |
||
673 | } |
||
674 | |||
1101 | jermar | 675 | /** Print B-tree. |
676 | * |
||
677 | * @param t Print out B-tree. |
||
678 | */ |
||
679 | void btree_print(btree_t *t) |
||
680 | { |
||
681 | int i, depth = t->root->depth; |
||
682 | link_t head; |
||
683 | |||
684 | list_initialize(&head); |
||
685 | list_append(&t->root->bfs_link, &head); |
||
686 | |||
687 | /* |
||
688 | * Use BFS search to print out the tree. |
||
689 | * Levels are distinguished from one another by node->depth. |
||
690 | */ |
||
691 | while (!list_empty(&head)) { |
||
692 | link_t *hlp; |
||
693 | btree_node_t *node; |
||
694 | |||
695 | hlp = head.next; |
||
696 | ASSERT(hlp != &head); |
||
697 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
698 | list_remove(hlp); |
||
699 | |||
700 | ASSERT(node); |
||
701 | |||
702 | if (node->depth != depth) { |
||
703 | printf("\n"); |
||
704 | depth = node->depth; |
||
705 | } |
||
706 | |||
707 | printf("("); |
||
708 | for (i = 0; i < node->keys; i++) { |
||
709 | printf("%d,", node->key[i]); |
||
710 | if (node->depth && node->subtree[i]) { |
||
711 | list_append(&node->subtree[i]->bfs_link, &head); |
||
712 | } |
||
713 | } |
||
714 | if (node->depth && node->subtree[i]) { |
||
715 | list_append(&node->subtree[i]->bfs_link, &head); |
||
716 | } |
||
717 | printf(")"); |
||
718 | } |
||
719 | printf("\n"); |
||
720 | } |