Rev 1134 | Rev 1140 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2 | * Copyright (C) 2006 Jakub Jermar |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
29 | /* |
||
30 | * This B-tree has the following properties: |
||
1121 | jermar | 31 | * - it is a ballanced 2-3-4 tree (i.e. BTREE_M = 4) |
1101 | jermar | 32 | * - values (i.e. pointers to values) are stored only in leaves |
33 | * - leaves are linked in a list |
||
34 | * - technically, it is a B+-tree (because of the previous properties) |
||
35 | * |
||
1134 | jermar | 36 | * Be carefull when using these trees. They need to allocate |
37 | * and deallocate memory for their index nodes and as such |
||
38 | * can sleep. |
||
1101 | jermar | 39 | */ |
40 | |||
41 | #include <adt/btree.h> |
||
42 | #include <adt/list.h> |
||
43 | #include <mm/slab.h> |
||
44 | #include <debug.h> |
||
45 | #include <panic.h> |
||
46 | #include <typedefs.h> |
||
47 | #include <print.h> |
||
48 | |||
49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
||
50 | static void node_initialize(btree_node_t *node); |
||
1136 | jermar | 51 | static void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
52 | static void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
1101 | jermar | 53 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median); |
1136 | jermar | 54 | static void node_remove_key_left(btree_node_t *node, __native key); |
55 | static void node_remove_key_right(btree_node_t *node, __native key); |
||
56 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
||
57 | static bool try_insert_by_left_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
58 | static bool try_insert_by_right_rotation(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree); |
||
1101 | jermar | 59 | |
60 | #define ROOT_NODE(n) (!(n)->parent) |
||
61 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
62 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
63 | |||
64 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
||
65 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
66 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
67 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
68 | |||
69 | /** Create empty B-tree. |
||
70 | * |
||
71 | * @param t B-tree. |
||
72 | */ |
||
73 | void btree_create(btree_t *t) |
||
74 | { |
||
75 | list_initialize(&t->leaf_head); |
||
76 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
||
77 | node_initialize(t->root); |
||
78 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
79 | } |
||
80 | |||
81 | /** Destroy empty B-tree. */ |
||
82 | void btree_destroy(btree_t *t) |
||
83 | { |
||
84 | ASSERT(!t->root->keys); |
||
85 | free(t->root); |
||
86 | } |
||
87 | |||
88 | /** Insert key-value pair into B-tree. |
||
89 | * |
||
90 | * @param t B-tree. |
||
91 | * @param key Key to be inserted. |
||
92 | * @param value Value to be inserted. |
||
93 | * @param leaf_node Leaf node where the insertion should begin. |
||
94 | */ |
||
95 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node) |
||
96 | { |
||
97 | btree_node_t *lnode; |
||
98 | |||
99 | ASSERT(value); |
||
100 | |||
101 | lnode = leaf_node; |
||
102 | if (!lnode) { |
||
103 | if (btree_search(t, key, &lnode)) { |
||
104 | panic("B-tree %P already contains key %d\n", t, key); |
||
105 | } |
||
106 | } |
||
107 | |||
108 | _btree_insert(t, key, value, NULL, lnode); |
||
109 | } |
||
110 | |||
111 | /** Recursively insert into B-tree. |
||
112 | * |
||
113 | * @param t B-tree. |
||
114 | * @param key Key to be inserted. |
||
115 | * @param value Value to be inserted. |
||
116 | * @param rsubtree Right subtree of the inserted key. |
||
117 | * @param node Start inserting into this node. |
||
118 | */ |
||
119 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
||
120 | { |
||
121 | if (node->keys < BTREE_MAX_KEYS) { |
||
122 | /* |
||
123 | * Node conatins enough space, the key can be stored immediately. |
||
124 | */ |
||
1136 | jermar | 125 | node_insert_key_right(node, key, value, rsubtree); |
126 | } else if (try_insert_by_left_rotation(node, key, value, rsubtree)) { |
||
127 | /* |
||
128 | * The key-value-rsubtree triplet has been inserted because |
||
129 | * some keys could have been moved to the left sibling. |
||
130 | */ |
||
131 | } else if (try_insert_by_right_rotation(node, key, value, rsubtree)) { |
||
132 | /* |
||
133 | * The key-value-rsubtree triplet has been inserted because |
||
134 | * some keys could have been moved to the right sibling. |
||
135 | */ |
||
1101 | jermar | 136 | } else { |
137 | btree_node_t *rnode; |
||
138 | __native median; |
||
139 | |||
140 | /* |
||
1136 | jermar | 141 | * Node is full and both siblings (if both exist) are full too. |
142 | * Split the node and insert the smallest key from the node containing |
||
143 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 144 | */ |
145 | |||
146 | rnode = node_split(node, key, value, rsubtree, &median); |
||
147 | |||
148 | if (LEAF_NODE(node)) { |
||
149 | list_append(&rnode->leaf_link, &node->leaf_link); |
||
150 | } |
||
151 | |||
152 | if (ROOT_NODE(node)) { |
||
153 | /* |
||
154 | * We split the root node. Create new root. |
||
155 | */ |
||
156 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
||
157 | node->parent = t->root; |
||
158 | rnode->parent = t->root; |
||
159 | node_initialize(t->root); |
||
160 | |||
161 | /* |
||
162 | * Left-hand side subtree will be the old root (i.e. node). |
||
163 | * Right-hand side subtree will be rnode. |
||
164 | */ |
||
165 | t->root->subtree[0] = node; |
||
166 | |||
167 | t->root->depth = node->depth + 1; |
||
168 | } |
||
169 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
170 | } |
||
171 | |||
172 | } |
||
173 | |||
174 | /* TODO */ |
||
175 | void btree_remove(btree_t *t, __native key) |
||
176 | { |
||
177 | } |
||
178 | |||
179 | /** Search key in a B-tree. |
||
180 | * |
||
181 | * @param t B-tree. |
||
182 | * @param key Key to be searched. |
||
183 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
184 | * |
||
185 | * @return Pointer to value or NULL if there is no such key. |
||
186 | */ |
||
187 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node) |
||
188 | { |
||
189 | btree_node_t *cur, *next; |
||
190 | |||
191 | /* |
||
1134 | jermar | 192 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 193 | */ |
194 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 195 | |
1101 | jermar | 196 | /* Last iteration will set this with proper leaf node address. */ |
197 | *leaf_node = cur; |
||
1134 | jermar | 198 | |
199 | /* |
||
200 | * The key can be in the leftmost subtree. |
||
201 | * Test it separately. |
||
202 | */ |
||
203 | if (key < cur->key[0]) { |
||
204 | next = cur->subtree[0]; |
||
205 | continue; |
||
206 | } else { |
||
207 | void *val; |
||
208 | int i; |
||
209 | |||
210 | /* |
||
211 | * Now if the key is smaller than cur->key[i] |
||
212 | * it can only mean that the value is in cur->subtree[i] |
||
213 | * or it is not in the tree at all. |
||
214 | */ |
||
215 | for (i = 1; i < cur->keys; i++) { |
||
216 | if (key < cur->key[i]) { |
||
217 | next = cur->subtree[i]; |
||
218 | val = cur->value[i - 1]; |
||
219 | |||
220 | if (LEAF_NODE(cur)) |
||
221 | return key == cur->key[i - 1] ? val : NULL; |
||
222 | |||
223 | goto descend; |
||
224 | } |
||
1101 | jermar | 225 | } |
1134 | jermar | 226 | |
227 | /* |
||
228 | * Last possibility is that the key is in the rightmost subtree. |
||
229 | */ |
||
230 | next = cur->subtree[i]; |
||
231 | val = cur->value[i - 1]; |
||
232 | if (LEAF_NODE(cur)) |
||
233 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 234 | } |
1134 | jermar | 235 | descend: |
236 | ; |
||
1101 | jermar | 237 | } |
238 | |||
239 | /* |
||
1134 | jermar | 240 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 241 | */ |
242 | return NULL; |
||
243 | } |
||
244 | |||
245 | /** Get pointer to value with the smallest key within the node. |
||
246 | * |
||
247 | * Can be only used on leaf-level nodes. |
||
248 | * |
||
249 | * @param node B-tree node. |
||
250 | * |
||
251 | * @return Pointer to value assiciated with the smallest key. |
||
252 | */ |
||
253 | void *btree_node_min(btree_node_t *node) |
||
254 | { |
||
255 | ASSERT(LEAF_NODE(node)); |
||
256 | ASSERT(node->keys); |
||
257 | return node->value[0]; |
||
258 | } |
||
259 | |||
260 | /** Get pointer to value with the biggest key within the node. |
||
261 | * |
||
262 | * Can be only used on leaf-level nodes. |
||
263 | * |
||
264 | * @param node B-tree node. |
||
265 | * |
||
266 | * @return Pointer to value assiciated with the biggest key. |
||
267 | */ |
||
268 | void *btree_node_max(btree_node_t *node) |
||
269 | { |
||
270 | ASSERT(LEAF_NODE(node)); |
||
271 | ASSERT(node->keys); |
||
272 | return node->value[node->keys - 1]; |
||
273 | } |
||
274 | |||
275 | /** Initialize B-tree node. |
||
276 | * |
||
277 | * @param node B-tree node. |
||
278 | */ |
||
279 | void node_initialize(btree_node_t *node) |
||
280 | { |
||
281 | int i; |
||
282 | |||
283 | node->keys = 0; |
||
284 | |||
285 | /* Clean also space for the extra key. */ |
||
286 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
287 | node->key[i] = 0; |
||
288 | node->value[i] = NULL; |
||
289 | node->subtree[i] = NULL; |
||
290 | } |
||
291 | node->subtree[i] = NULL; |
||
292 | |||
293 | node->parent = NULL; |
||
294 | |||
295 | link_initialize(&node->leaf_link); |
||
296 | |||
297 | link_initialize(&node->bfs_link); |
||
298 | node->depth = 0; |
||
299 | } |
||
300 | |||
1136 | jermar | 301 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 302 | * |
303 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 304 | * This feature is used during insert by right rotation. |
305 | * |
||
306 | * @param node B-tree node into wich the new key is to be inserted. |
||
307 | * @param key The key to be inserted. |
||
308 | * @param value Pointer to value to be inserted. |
||
309 | * @param lsubtree Pointer to the left subtree. |
||
310 | */ |
||
311 | void node_insert_key_left(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree) |
||
312 | { |
||
313 | int i; |
||
314 | |||
315 | for (i = 0; i < node->keys; i++) { |
||
316 | if (key < node->key[i]) { |
||
317 | int j; |
||
318 | |||
319 | for (j = node->keys; j > i; j--) { |
||
320 | node->key[j] = node->key[j - 1]; |
||
321 | node->value[j] = node->value[j - 1]; |
||
322 | node->subtree[j + 1] = node->subtree[j]; |
||
323 | } |
||
324 | node->subtree[j + 1] = node->subtree[j]; |
||
325 | break; |
||
326 | } |
||
327 | } |
||
328 | node->key[i] = key; |
||
329 | node->value[i] = value; |
||
330 | node->subtree[i] = lsubtree; |
||
331 | |||
332 | node->keys++; |
||
333 | } |
||
334 | |||
335 | |||
336 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
337 | * |
||
338 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 339 | * This feature is used during splitting the node when the |
1136 | jermar | 340 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
341 | * also makes use of this feature. |
||
1101 | jermar | 342 | * |
343 | * @param node B-tree node into wich the new key is to be inserted. |
||
344 | * @param key The key to be inserted. |
||
345 | * @param value Pointer to value to be inserted. |
||
346 | * @param rsubtree Pointer to the right subtree. |
||
347 | */ |
||
1136 | jermar | 348 | void node_insert_key_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 349 | { |
350 | int i; |
||
351 | |||
352 | for (i = 0; i < node->keys; i++) { |
||
353 | if (key < node->key[i]) { |
||
354 | int j; |
||
355 | |||
356 | for (j = node->keys; j > i; j--) { |
||
357 | node->key[j] = node->key[j - 1]; |
||
358 | node->value[j] = node->value[j - 1]; |
||
359 | node->subtree[j + 1] = node->subtree[j]; |
||
360 | } |
||
361 | break; |
||
362 | } |
||
363 | } |
||
364 | node->key[i] = key; |
||
365 | node->value[i] = value; |
||
366 | node->subtree[i + 1] = rsubtree; |
||
367 | |||
368 | node->keys++; |
||
369 | } |
||
370 | |||
1134 | jermar | 371 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 372 | * |
373 | * This function will split a node and return pointer to a newly created |
||
1134 | jermar | 374 | * node containing keys greater than or equal to the greater of medians |
375 | * (or median) of the old keys and the newly added key. It will also write |
||
376 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 377 | * |
1134 | jermar | 378 | * If the node being split is an index node, the median will not be |
379 | * included in the new node. If the node is a leaf node, |
||
380 | * the median will be copied there. |
||
1101 | jermar | 381 | * |
382 | * @param node B-tree node wich is going to be split. |
||
383 | * @param key The key to be inserted. |
||
384 | * @param value Pointer to the value to be inserted. |
||
385 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
386 | * @param median Address in memory, where the median key will be stored. |
||
387 | * |
||
388 | * @return Newly created right sibling of node. |
||
389 | */ |
||
390 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median) |
||
391 | { |
||
392 | btree_node_t *rnode; |
||
393 | int i, j; |
||
394 | |||
395 | ASSERT(median); |
||
396 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 397 | |
1101 | jermar | 398 | /* |
399 | * Use the extra space to store the extra node. |
||
400 | */ |
||
1136 | jermar | 401 | node_insert_key_right(node, key, value, rsubtree); |
1101 | jermar | 402 | |
403 | /* |
||
404 | * Compute median of keys. |
||
405 | */ |
||
1134 | jermar | 406 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 407 | |
1134 | jermar | 408 | /* |
409 | * Allocate and initialize new right sibling. |
||
410 | */ |
||
1101 | jermar | 411 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0); |
412 | node_initialize(rnode); |
||
413 | rnode->parent = node->parent; |
||
414 | rnode->depth = node->depth; |
||
415 | |||
416 | /* |
||
417 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 418 | * If this is an index node, do not copy the median. |
1101 | jermar | 419 | */ |
1134 | jermar | 420 | i = (int) INDEX_NODE(node); |
421 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
||
1101 | jermar | 422 | rnode->key[j] = node->key[i]; |
423 | rnode->value[j] = node->value[i]; |
||
424 | rnode->subtree[j] = node->subtree[i]; |
||
425 | |||
426 | /* |
||
427 | * Fix parent links in subtrees. |
||
428 | */ |
||
429 | if (rnode->subtree[j]) |
||
430 | rnode->subtree[j]->parent = rnode; |
||
431 | |||
432 | } |
||
433 | rnode->subtree[j] = node->subtree[i]; |
||
434 | if (rnode->subtree[j]) |
||
435 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 436 | |
437 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
438 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 439 | |
440 | return rnode; |
||
441 | } |
||
442 | |||
1136 | jermar | 443 | /** Remove key and its left subtree pointer from B-tree node. |
1134 | jermar | 444 | * |
1136 | jermar | 445 | * Remove the key and eliminate gaps in node->key array. |
446 | * Note that the value pointer and the left subtree pointer |
||
447 | * is removed from the node as well. |
||
448 | * |
||
1134 | jermar | 449 | * @param node B-tree node. |
450 | * @param key Key to be removed. |
||
451 | */ |
||
1136 | jermar | 452 | void node_remove_key_left(btree_node_t *node, __native key) |
1134 | jermar | 453 | { |
1136 | jermar | 454 | int i, j; |
455 | |||
456 | for (i = 0; i < node->keys; i++) { |
||
457 | if (key == node->key[i]) { |
||
458 | for (j = i + 1; j < node->keys; j++) { |
||
459 | node->key[j - 1] = node->key[j]; |
||
460 | node->value[j - 1] = node->value[j]; |
||
461 | node->subtree[j - 1] = node->subtree[j]; |
||
462 | } |
||
463 | node->subtree[j - 1] = node->subtree[j]; |
||
464 | node->keys--; |
||
465 | return; |
||
466 | } |
||
467 | } |
||
468 | panic("node %P does not contain key %d\n", node, key); |
||
1134 | jermar | 469 | } |
470 | |||
1136 | jermar | 471 | /** Remove key and its right subtree pointer from B-tree node. |
472 | * |
||
473 | * Remove the key and eliminate gaps in node->key array. |
||
474 | * Note that the value pointer and the right subtree pointer |
||
475 | * is removed from the node as well. |
||
476 | * |
||
477 | * @param node B-tree node. |
||
478 | * @param key Key to be removed. |
||
479 | */ |
||
480 | void node_remove_key_right(btree_node_t *node, __native key) |
||
481 | { |
||
482 | int i, j; |
||
483 | |||
484 | for (i = 0; i < node->keys; i++) { |
||
485 | if (key == node->key[i]) { |
||
486 | for (j = i + 1; j < node->keys; j++) { |
||
487 | node->key[j - 1] = node->key[j]; |
||
488 | node->value[j - 1] = node->value[j]; |
||
489 | node->subtree[j] = node->subtree[j + 1]; |
||
490 | } |
||
491 | node->keys--; |
||
492 | return; |
||
493 | } |
||
494 | } |
||
495 | panic("node %P does not contain key %d\n", node, key); |
||
496 | } |
||
497 | |||
498 | /** Find key by its left or right subtree. |
||
499 | * |
||
500 | * @param node B-tree node. |
||
501 | * @param subtree Left or right subtree of a key found in node. |
||
502 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
503 | * |
||
504 | * @return Index of the key associated with the subtree. |
||
505 | */ |
||
506 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
507 | { |
||
508 | int i; |
||
509 | |||
510 | for (i = 0; i < node->keys + 1; i++) { |
||
511 | if (subtree == node->subtree[i]) |
||
512 | return i - (int) (right != false); |
||
513 | } |
||
514 | panic("node %P does not contain subtree %P\n", node, subtree); |
||
515 | } |
||
516 | |||
517 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
||
518 | * |
||
519 | * Left sibling of the node (if it exists) is checked for free space. |
||
520 | * If there is free space, the key is inserted and the smallest key of |
||
521 | * the node is moved there. The index node which is the parent of both |
||
522 | * nodes is fixed. |
||
523 | * |
||
524 | * @param node B-tree node. |
||
525 | * @param inskey Key to be inserted. |
||
526 | * @param insvalue Value to be inserted. |
||
527 | * @param rsubtree Right subtree of inskey. |
||
528 | * |
||
529 | * @return True if the rotation was performed, false otherwise. |
||
530 | */ |
||
531 | bool try_insert_by_left_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
||
532 | { |
||
533 | index_t idx; |
||
534 | btree_node_t *lnode; |
||
535 | |||
536 | /* |
||
537 | * If this is root node, the rotation can not be done. |
||
538 | */ |
||
539 | if (ROOT_NODE(node)) |
||
540 | return false; |
||
541 | |||
542 | idx = find_key_by_subtree(node->parent, node, true); |
||
543 | if ((int) idx == -1) { |
||
544 | /* |
||
545 | * If this node is the leftmost subtree of its parent, |
||
546 | * the rotation can not be done. |
||
547 | */ |
||
548 | return false; |
||
549 | } |
||
550 | |||
551 | lnode = node->parent->subtree[idx]; |
||
552 | |||
553 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
554 | __native key; |
||
555 | |||
556 | /* |
||
557 | * The rotaion can be done. The left sibling has free space. |
||
558 | */ |
||
559 | |||
560 | node_insert_key_right(node, inskey, insvalue, rsubtree); |
||
561 | key = node->key[0]; |
||
562 | |||
563 | if (LEAF_NODE(node)) { |
||
564 | void *value; |
||
565 | |||
566 | value = node->value[0]; |
||
567 | node_remove_key_left(node, key); |
||
568 | node_insert_key_right(lnode, key, value, NULL); |
||
569 | node->parent->key[idx] = node->key[0]; |
||
570 | } else { |
||
571 | btree_node_t *lsubtree; |
||
572 | |||
573 | lsubtree = node->subtree[0]; |
||
574 | node_remove_key_left(node, key); |
||
575 | node_insert_key_right(lnode, node->parent->key[idx], NULL, lsubtree); |
||
576 | node->parent->key[idx] = key; |
||
577 | |||
578 | /* Fix parent link of the reconnected left subtree. */ |
||
579 | lsubtree->parent = lnode; |
||
580 | } |
||
581 | return true; |
||
582 | } |
||
583 | |||
584 | return false; |
||
585 | } |
||
586 | |||
587 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
588 | * |
||
589 | * Right sibling of the node (if it exists) is checked for free space. |
||
590 | * If there is free space, the key is inserted and the biggest key of |
||
591 | * the node is moved there. The index node which is the parent of both |
||
592 | * nodes is fixed. |
||
593 | * |
||
594 | * @param node B-tree node. |
||
595 | * @param inskey Key to be inserted. |
||
596 | * @param insvalue Value to be inserted. |
||
597 | * @param rsubtree Right subtree of inskey. |
||
598 | * |
||
599 | * @return True if the rotation was performed, false otherwise. |
||
600 | */ |
||
601 | bool try_insert_by_right_rotation(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree) |
||
602 | { |
||
603 | index_t idx; |
||
604 | btree_node_t *rnode; |
||
605 | |||
606 | /* |
||
607 | * If this is root node, the rotation can not be done. |
||
608 | */ |
||
609 | if (ROOT_NODE(node)) |
||
610 | return false; |
||
611 | |||
612 | idx = find_key_by_subtree(node->parent, node, false); |
||
613 | if (idx == node->parent->keys) { |
||
614 | /* |
||
615 | * If this node is the rightmost subtree of its parent, |
||
616 | * the rotation can not be done. |
||
617 | */ |
||
618 | return false; |
||
619 | } |
||
620 | |||
621 | rnode = node->parent->subtree[idx + 1]; |
||
622 | |||
623 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
624 | __native key; |
||
625 | |||
626 | /* |
||
627 | * The rotaion can be done. The right sibling has free space. |
||
628 | */ |
||
629 | |||
630 | node_insert_key_right(node, inskey, insvalue, rsubtree); |
||
631 | key = node->key[node->keys - 1]; |
||
632 | |||
633 | if (LEAF_NODE(node)) { |
||
634 | void *value; |
||
635 | |||
636 | value = node->value[node->keys - 1]; |
||
637 | node_remove_key_right(node, key); |
||
638 | node_insert_key_left(rnode, key, value, NULL); |
||
639 | node->parent->key[idx] = key; |
||
640 | } else { |
||
641 | btree_node_t *rsubt; |
||
642 | |||
643 | rsubt = node->subtree[node->keys]; |
||
644 | node_remove_key_right(node, key); |
||
645 | node_insert_key_left(rnode, node->parent->key[idx], NULL, rsubt); |
||
646 | node->parent->key[idx] = key; |
||
647 | |||
648 | /* Fix parent link of the reconnected right subtree. */ |
||
649 | rsubt->parent = rnode; |
||
650 | } |
||
651 | return true; |
||
652 | } |
||
653 | |||
654 | return false; |
||
655 | } |
||
656 | |||
1101 | jermar | 657 | /** Print B-tree. |
658 | * |
||
659 | * @param t Print out B-tree. |
||
660 | */ |
||
661 | void btree_print(btree_t *t) |
||
662 | { |
||
663 | int i, depth = t->root->depth; |
||
664 | link_t head; |
||
665 | |||
666 | list_initialize(&head); |
||
667 | list_append(&t->root->bfs_link, &head); |
||
668 | |||
669 | /* |
||
670 | * Use BFS search to print out the tree. |
||
671 | * Levels are distinguished from one another by node->depth. |
||
672 | */ |
||
673 | while (!list_empty(&head)) { |
||
674 | link_t *hlp; |
||
675 | btree_node_t *node; |
||
676 | |||
677 | hlp = head.next; |
||
678 | ASSERT(hlp != &head); |
||
679 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
680 | list_remove(hlp); |
||
681 | |||
682 | ASSERT(node); |
||
683 | |||
684 | if (node->depth != depth) { |
||
685 | printf("\n"); |
||
686 | depth = node->depth; |
||
687 | } |
||
688 | |||
689 | printf("("); |
||
690 | for (i = 0; i < node->keys; i++) { |
||
691 | printf("%d,", node->key[i]); |
||
692 | if (node->depth && node->subtree[i]) { |
||
693 | list_append(&node->subtree[i]->bfs_link, &head); |
||
694 | } |
||
695 | } |
||
696 | if (node->depth && node->subtree[i]) { |
||
697 | list_append(&node->subtree[i]->bfs_link, &head); |
||
698 | } |
||
699 | printf(")"); |
||
700 | } |
||
701 | printf("\n"); |
||
702 | } |